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Overview

These lecture notes are for the course entitled Specification and Verification II. The topic

of this course is the specification and verification of hardware. Knowledge of the contents

of the Part II course on the specification and verification of software entitled Specification

and Verification I is assumed.

Learning Guide

These notes contain general and background material for the course.

Some of the material in the notes may not be covered in the course, and some additional

details and examples are only presented in the lectures.

The examinable material is what is actually covered in the lectures.
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Chapter 1

Hardware Oriented Programs

Floyd-Hoare logic can be used to verify hardware algorithms. This will be il-

lustrated with addition and multiplication. Although natural numbers can be

used to represent words, this leads to messy details so a type of words is intro-

duced. Proofs depend on laws relating bit and word operations to arithmetical

operations.

Suppose we want to multiply two natural numbers a and b represented as n-bit words in

the usual way. Writing ab to abbreviate a× b:

a = 2n−1an−1 + 2n−2an−2 + · · ·+ 20a0

Here ai is the i-th bit of the binary representation of a (a0 being the least significant bit).

Then:

ab = (2n−1an−1 + 2n−2an−2 + · · ·+ 20a0)b

= 2n−1an−1b + 2n−2an−2b + · · ·+ 20a0b

= an−12
n−1b + an−22

n−2b + · · ·+ a02
0b

Multiplying by 2 corresponds to shifting one place to the left and adding a 0 as the least

significant bit. Denote this operation by b 7→ b⌢0, then:

20b = b

21b = b⌢0

22b = b⌢00

...

2nb = b⌢ 0 · · · 0
︸ ︷︷ ︸

n 0s

1



2 Chapter 1. Hardware Oriented Programs

Thus the product of a and b is given by the sum:

a0b
+ a1b⌢0
+ a2b⌢00
+ a3b⌢000

...
+ an−1b⌢0 · · · 0

This corresponds to the standard ‘high school’ algorithm for doing multiplication. In the

binary case, the ith row is either all zeros (if ai is 0) or b shifted i places to the left (if ai

is 1). If a and b are both n-bit words, then the product needs 2n bits.

1.1 Hoare logic verification of a multiplier

Let A[n] denote the n-th bit (considered as a number 1 or 0) of the binary representation

of A (with A[0] being the least significant bit).

A[n] = (A div 2n) mod 2

Define A[m : n] to be the numerical value of the word comprising bits n up to m of A:

A[m : n] =







2m−nA[m] + 2m−n−1A[m−1] + · · · + 20A[n] if m > n
A[n] if m = n
0 if m < n

Below is an annotated specification of the correctness of ‘high school’ multiplication.

{A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
I := 0; PROD := 0;

{A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ I = 0 ∧ PROD = 0}

WHILE I < N DO {I ≤ N ∧ 2IA[N-1 : I]B + PROD = ab}

BEGIN PROD := PROD + A[I] × (2I× B);

I := I + 1;

END

{PROD = a× b}

The verification conditions are:

(i) (A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0)

⇒

(A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ 0 = 0 ∧ 0 = 0)
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(ii) (A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ I = 0 ∧ PROD = 0)

⇒

(I ≤ N ∧ 2IA[N-1 : I]B + PROD = ab)

(iii) I < N ∧ (I ≤ N ∧ 2IA[N-1 : I]B + PROD = ab)

⇒

(I+1 ≤ N ∧ 2I+1A[N-1 : I+1]B + (PROD + A[I]× (2I × B)) = ab)

(iv) (I ≤ N ∧ 2IA[N-1 : I]B + PROD = ab) ∧ ¬(I < N)⇒ PROD = a× b

The first VC (i) is trivial.

The second VC (ii) is true because if N > 0 and A < 2N then A[N-1 : 0] = A.

For the third VC (iii), consider separately the cases (a) that I+1 = N and (b) that I+1 < N.

In case (a) A[N-1 : I+1] = 0 and A[N-1 : I] = A[I] and the VC follows easily. In case

(b) use 2×A[N-1 : I+1] + A[I] = A[N-1 : I].

The final verification condition (iv) follows because if I = N, then A[N-1 : I] = 0.

Exercise:

Prove

⊢ {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
BEGIN

VAR I;

I := 0; PROD := 0;

WHILE I < N DO

BEGIN PROD := PROD + A[I]×B;
B := 2 × B;

I := I + 1;

END

END

{PROD = a× b}

Exercise:

Prove

⊢ {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
PROD := 0;

FOR I := 0 UNTIL N-1 DO PROD := PROD + A[I]×(2I×B)
{PROD = a× b}

Exercise:

Prove
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⊢ {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}
PROD := 0;

FOR I := 0 UNTIL N-1 DO BEGIN PROD := PROD + A[I]×B;
B := 2×B;

END

{PROD = a× b}

The program in this last exercise corresponds directly to a possible hardware implemen-

tation. One has three registers A, B and PROD. Initially PROD is set to 0 and A and B

contain the numbers to be multiplied. The I-th step of the multiplication consists in

adding A[I]× B to PROD and then shifting B one bit to the left (i.e. multiplying it by 2).

Register PROD holds the product and so must be 2N-bits wide. However, register B is

shifted N times and so it must also be 2N bits wide. This is redundant, because B always

just contains the same bits plus some 0s shifted in from the right. An optimisation is to

shift PROD to the right instead of shifting B to the left. Then B can be an N-bit register.

The program below exploits this idea.

Note that shifting right corresponds to division by 2.

PROD := 0;

FOR I := 0 UNTIL N-1 DO

BEGIN PROD := 2NA[I]B + PROD;

PROD := PROD div 2

END

Consider the case when N = 4.

Initially PROD = 0, so PROD div 2 = 0.

The multiplication according to this program proceeds as follows:

I = 0, PROD = 24A[0]B
PROD = 23A[0]B

I = 1, PROD = 24A[1]B + 23A[0]B
PROD = 23A[1]B + 22A[0]B

I = 2, PROD = 24A[2]B + 23A[1]B + 22A[0]B
PROD = 23A[2]B + 22A[1]B + 21A[0]B

I = 3, PROD = 24A[3]B + 23A[2]B + 22A[1]B + 21A[0]B
PROD = 23A[3]B + 22A[2]B + 21A[1]B + 20A[0]B

Recall the verification conditions for FOR-commands:
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FOR-commands

The verification conditions generated from

{P} FOR V :=E1 UNTIL E2 DO {R} C {Q}

are

(i) P ⇒ R[E1/V ]

(ii) R[E2+1/V ] ⇒ Q

(iii) P ∧ E2 < E1 ⇒ Q

(iv) the verification conditions generated by

{R ∧ E1 ≤ V ∧ V ≤ E2} C {R[V + 1/V ]}

(v) the syntactic condition that neither V , nor any variable occurring in E1 or E2, is
assigned to inside C.

The program is easily verified by computing the VCs for:

⊢ {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0}

PROD := 0; {A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ PROD = 0}

FOR I := 0 UNTIL N-1 DO {PROD + 2NA[N−1 : I]B = 2N−Iab}
BEGIN

PROD := 2NA[I]B + PROD;

PROD := PROD div 2

END

{PROD = ab}

These are:

(i) (A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0)

⇒

(A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ 0 = 0)

(ii) (A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ PROD = 0)

⇒

(PROD + 2NA[N-1 : 0]B = 2N-0ab)
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(iii) (PROD + 2NA[N−1 : N]B = 2N−Nab)

⇒

(PROD = ab)

(iv) (A = a ∧ B = b ∧ a < 2N ∧ b < 2N ∧ N > 0 ∧ PROD = 0) ∧ N-1 < 0

⇒

(PROD = ab)

(v) (PROD + 2NA[N−1 : I]B = 2N−Iab) ∧ 0 ≤ I ∧ I ≤ N-1

⇒

(((2NA[I]B + PROD) div 2) + 2NA[N-1 : I+1]B = 2N−(I+1)ab)

VCs (i), (ii), (iii) and (iv) are straightforward (note that in the case of (iv) the antecedent

N-1 < 0 of the implication is false).

The final VC (v) is also quite easy: assume the antecedent of the implication and then

deduce the consequent. Thus assume 0 ≤ I ∧ I ≤ N-1 and

PROD + 2NA[N−1 : I]B = 2N−Iab

If this equation holds, then as N-I > 0, PROD must be divisible by 2 and hence dividing

both sides of the equation by 2:

(PROD div 2) + 2N−1A[N−1 : I]B = 2N−(I+1)ab

Now as I ≤ N-1 we have: A[N−1 : I] = 2×A[N−1 : I+1] + A[I] so:

(PROD div 2) + 2N−1(2×A[N−1 : I+1] + A[I])B = 2N−(I+1)ab

which simplifies to:

(PROD div 2) + 2NA[N−1 : I+1]B + 2N−1A[I]B = 2N−(I+1)ab

which is equivalent to:

(PROD div 2) + 2NA[N−1 : I+1]B + ((2NA[I]B) div 2) = 2N−(I+1)ab

which can be rearranged to the consequent of the implication of VC (v).

Note that the word representing 2NA[I]B consists of the word representing A[I]B shifted

N places to the left. Thus adding 2NA[I]B to an 2N-bit word will not change the N least

significant bits, so the addition can be done by adding A[I]B to the N most significant bits

and then concatenating the result with the N least significant bits. Thus if PROD < 2(2N)

then:

PROD = 2NPROD[2N-1 : N] + PROD[N-1 : 0]

hence:

2NA[I]B + PROD = 2N(A[I]B + PROD[2N-1 : N]) + PROD[N-1 : 0]

and the first sum on the right hand side of this equation (the one in the brackets) is the

addition of two N-bit numbers, which might require N+1 bits.
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Let us split PROD into two N-bit variables PROD1 and PROD2 holding PROD[N-1 : 0] and

PROD[2N-1 : N], respectively. Thus:

PROD = 2NPROD2 + PROD1

Let SUM be an N+1 bit variable for holding the result of A[I]B + PROD2.

Then the program above can then be reformulated as:

SUM := 0; PROD1 := 0; PROD2 := 0;

FOR I := 0 UNTIL N-1 DO BEGIN

SUM := A[I]B + PROD2;

PROD1 := ((2NSUM + PROD1) div 2)[N-1:0];

PROD2 := ((2NSUM + PROD1) div 2)[2N-1:N];

END

Exercise: Write an annotated partial correctness specification of this program that says

that it does multiplication, generate the verification conditions and outline why they are

true. [Warning: I have not formally verified this program – it might have bugs!]

As a final optimisation, the initially unused space in PROD1 can be used to store A. After

each right shift (div 2) a bit of A is lost, but we can cunningly arrange that the I-th bit

of A is the 0-th bit of PROD1 on iteration I so bits of A are only lost after they have been

‘used’.

SUM := 0; PROD1 := A; PROD2 := 0;

FOR I := 0 UNTIL N-1 DO BEGIN

SUM := PROD1[0]B + PROD2;

PROD1 := ((2NSUM + PROD1) div 2)[N-1:0];

PROD2 := ((2NSUM + PROD1) div 2)[2N-1:N];

END

Exercise: Write an annotated partial correctness specification of this program that says

that it does multiplication, generate the verification conditions and outline why they are

true. [Warning: I have not formally verified this program – it might have bugs!]

The multiplier discussed above modelled n-bit words as natural numbers less than 2n.

Hardware operations are usually specified in terms of bit manipulations like shifts, word

concatenations, subword extractions etc. Although these operations can be represented

arithmetically (left-shift is multiplication by 2, right-shift is division by 2 etc.) it turns

out to be convenient to work with a separate type of words. An important advantage of

this is that words can carry their size and so the concatenation of an m-bit word w1 with

an n-bit word w2 can be unambiguously written as w1
⌢w2. The arithmetical counterpart

to concatenation needs to be parameterised on n. Thus, if w1 denotes number a and w2
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denotes b then w1
⌢w2 denotes 2na + b – an expression depending on n. Thus a⌢b doesn’t

make sense and one would need to write something like a⌢

nb, – i.e. have a family of

operators ⌢

n instead of a single ⌢.

For such reasons, a type of words is useful.

1.2 Words

A word is a fixed-size array of bits. Bits are represented by the truth values T and F of

type bool. Following standard practice, the two numerals 1 and 0 will sometimes be used

to denote the bits T and F, respectively.

The ‘empty word’ has zero length and all other words have length greater than zero. The

length of a word is denoted by |w|.

Two words are equal if they have both the same length and the same bits:

(w1 = w2) ≡ (|w1| = |w2|) ∧ ∀i. i < |w1| ⇒ w1[i] = w2[i]

Individual words will be written in the stardard way with the least significant bit at the

right. For example, here is an 8-bit word: 00011011:

|00011011| = 8

If b is a bit and n > 0 then bn is the concatenation of n bs, e.g. 03 = 000. Clearly |bn| = n.

1.3 Selecting bits and subwords

The nth bit of a word w will be denoted by w[n], where the least significant bit is

considered to be the 0th bit. Thus:

bn−1 · · · b0[i] = bi

When n ≥ |w| the convention adopted is that w[n] = 0. Thus in general:

bn−1 · · · b0[i] = (i < n→ bi | 0)

For m ≥ n the notation w[m : n] denotes the word consisting of bits m to n of w.

bn−1 · · · bi · · · bj · · · b0[i : j] = bi · · · bj

The convention is adopted that if m < n then w[m : n] denotes the empty word, and if

either m > |w| or n > |w|, then w is padded (at its left) with 0s. Thus if m ≥ n, then:

|w[m : n]| = m− n + 1
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For example:
100101[4 : 1] = 0010
100101[7 : 1] = 0010010
100101[8 : 6] = 000
100101[1 : 2] = the empty word

w[n : n] denotes the 1-bit word consisting of w[n].

The type of all words is word, thus w[n] : bool but w[n : n] : word.

Thus for m ≥ n, the subword selection w[m : n] is defined by:

(w[m : n])[i] = (i+n ≤ m→ w[i+n] | 0)

Obvious facts can be derived from this definition, for example:

|w| > 0 ⇒ w[|w|−1 : 0] = w

p+n ≤ m ⇒ w[m : n][p : q] = w[p+n : q+n]

Each of these conditional equations are verified by first checking the equated words have

the same length (obvious) and then checking that corresponding bits are equal.

In the first example:

w[|w|−1 : 0][i] = (i+0 ≤ |w|−1→ w[i+0] | 0)
= (i < |w| → w[i] | 0)
= w[i]

For the second example:

(w[m : n][p : q])[i] = (i+q ≤ p→ w[m : n][i+q] | 0)
= (i+q ≤ p→ ((i+q)+n ≤ m→ w[(i+q)+n] | 0) | 0)
= ((i+q ≤ p) ∧ ((i+q)+n ≤ m)→ w[(i+q)+n] | 0)

and
w[p+n : q+n][i] = (i+(q+n) ≤ p+n→ w[i+(q+n)] | 0)

= (i+q ≤ p→ w[i+(q+n)] | 0)

Now, if p + n ≤ m then clearly:

(i+q ≤ p) ⇒ ((i+q)+n ≤ m)

hence (as A⇒B ≡ A∧B = A):

(i+q ≤ p) ∧ ((i+q)+n ≤ m) ≡ (i+q ≤ p)

and so (w[m : n][p : q])[i] = w[p+n : q+n][i].

Bits and 1-bit words are different types. The word corresponding to a bit b is Bw(b).

Thus: Bw(b)[0] = b.
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1.4 Representing numbers

Words represent natural numbers and integers in a standard way:

• Natural number: bn−1 · · · b0 represents 2n−1×bn−1 + 2n−2×bn−2 + · · ·+ 20×b0

• Integer1: bn−1 · · · b0 represents −2n−1×bn−1 + 2n−2×bn−2 + · · ·+ 20×b0

The notation V(w) will be used to denote the natural number represented by a word, i.e.:

V(bn−1 · · · b0) = 2n−1×bn−1 + 2n−2×bn−2 + · · ·+ 20×b0

Words can, of course, also represent other numeric or non-numeric values (e.g. floating

point numbers or opcodes).

The number represented by a bit b will be denoted by Bv(b), thus:

Bv(T) = 1 and Bv(F) = 0

Word operations are related to arithmetical operations via div and mod, where

m div n = integer part of dividing m by n

m mod n = remainder after dividing m by n

The fundamental properties relating div and mod are:

0 < n ⇒ n× (m div n) + m mod n = m

0 < n ⇒ (m mod n) < n

Note the following:

Bv(w[n]) = (V(w) div 2n) mod 2

V(w[m+n : n]) = (V(w) div 2n) mod 2m+1

V(w[n : 0]) = 2n × Bv(w[n]) + V(w[n−1 : 0])

Whilst there is a canonical natural number V(w) associated with a word w, there is no

canonical inverse function, since e.g.:

V(101) = 5
V(0101) = 5
V(00101) = 5

...

For any size n, the function W n maps a number m to the unique n-bit word w such that

V(w) = m mod 2n, i.e.:
V(W n m) = m mod 2n

W |w| (V(w)) = w

For example, W 5 143 = 01111.

1Two’s complement representation.
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1.5 Operations on bits and words

The standard infixed binary operators of Boolean algebra are ∧ (‘and’), ∨ (‘or’), ⊕ (‘ex-

clusive or’ or ‘unequal’) and = (‘if and only if’ or ‘equals’). Note that these are all

commutative and associative. Negation, ¬, is a prefixed unary operator. These operators

will be extended (overloaded) to operate bitwise on words.

The concatenation of an m-bit word w1 with an n-bit word w2 is denoted by w1
⌢w2. This

is an m+n-bit word. Note the following properties:

0 < |w2| ⇒ (w1
⌢w2)[|w2|−1 : 0] = w2

0 < |w1| ⇒ (w1
⌢w2)[|w1|+|w2|−1 : |w2|] = w1

V(w1
⌢w2) = 2|w2|V(w1) + V(w2)

p < |w2| ⇒ (w1
⌢w2)[p : q] = w2[p : q]

p ≥ q ∧ q ≥ |w2| ⇒ (w1
⌢w2)[p : q] = w1[p−|w2| : q−|w2|]

p ≥ |w2| ∧ q < |w2| ⇒ (w1
⌢w2)[p : q] = w1[p−|w2| : 0]⌢w2[|w2|−1 : q]

Exercise: are any of the preconditions (antecedents of ⇒) redundant?

The ‘array update’ notation w{n←b} denotes a word identical to w, except that w[n] = b

(when n ≥ |w|, w is extended with 0s before updating). Note that:

V(w{n←b}[n : 0]) = 2n × Bv(b) + V(w[n−1 : 0])

1.6 Arithmetic on bits and words

The sum of two bits a and b and a carry-in bit c is computed by a⊕b⊕c and the carry-out

by (a ∧ b) ∨ (c ∧ (a⊕ b)). This is verified by the equations:

Bv(a⊕ b⊕ c) = (Bv(a) + Bv(b) + Bv(c)) mod 2

Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) = (Bv(a) + Bv(b) + Bv(c)) div 2

These are most simply verified by exhaustive enumeration. The equation for the sum is

verified by:

a b c Bv(a⊕ b⊕ c) (Bv(a) + Bv(b) + Bv(c)) mod 2
1 1 1 1 1
1 1 0 0 0
1 0 1 0 0
1 0 0 1 1
0 1 1 0 0
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0
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The equation for the carry is verified by:

a b c Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) (Bv(a) + Bv(b) + Bv(c)) div 2
1 1 1 1 1
1 1 0 1 1
1 0 1 1 1
1 0 0 0 0
0 1 1 1 1
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

The addition of two non-empty words w1 and w2 is denoted by w1 ⊎ w2 and defined by:

w1 ⊎ w2 = W (max(|w1|, |w2|) + 1) (V(w1) + V(w2))

w1 ⊎ w2 satisfies:
|w1 ⊎ w2| = max(|w1|, |w2|) + 1

V(w1 ⊎ w2) = V(w1) + V(w2)

w ⊎ (W |w| 0) = 0⌢w

1.7 Verification of a ripple-carry adder

Let R be:

2IBv(CARRY) + V(SUM[I−1 : 0]) = V(A[I−1 : 0]) + V(B[I−1 : 0])
∧ A = w1 ∧ B = w2

Consider the following annotated specification:

{A = w1 ∧ B = w2 ∧ SUM = W N 0 ∧ CARRY = F

∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N > 0}
FOR I := 0 UNTIL N-1 DO {R}
BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

{A = w1 ∧ B = w2

∧ 2NBv(CARRY) + V(SUM[N-1 : 0]) = V(A[N-1 : 0]) + V(B[N-1 : 0])}

Here, A, B are SUM are N-bit words, but CARRY is a bit (truthvalue) and I is an integer.

The verification conditions (VCs) are:
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(i) (A = w1 ∧ B = w2 ∧ SUM = W N 0 ∧ CARRY = F

∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N > 0)

⇒

(20Bv(CARRY) + V(SUM[0−1 : 0]) = V(A[0−1 : 0]) + V(B[0−1 : 0])

∧ A = w1 ∧ B = w2)

(ii) (2NBv(CARRY) + V(SUM[N−1 : 0]) = V(A[N−1 : 0]) + V(B[N−1 : 0])

∧ A = w1 ∧ B = w2)

⇒

(A = w1 ∧ B = w2

∧ 2NBv(CARRY) + V(SUM[N-1 : 0]) = V(A[N-1 : 0]) + V(B[N-1 : 0]))

(iii) (A = w1 ∧ B = w2 ∧ SUM = W N 0 ∧ CARRY = F

∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N > 0)

∧ (N-1 < 0) ⇒ (· · ·)

(iv) VCs from

{R ∧ 0 ≤ I ∧ I ≤ N-1}
SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));
{R[I+1/I]}

The VCs (i), (ii) and (iii) are obviously true.

There is one VC from (iv):

(2I×Bv(CARRY) + V(SUM[I-1 : 0]) = V(A[I-1 : 0]) + V(B[I-1 : 0])

∧ A = w1 ∧ B = w2) ∧ 0 ≤ I ∧ I ≤ N-1

⇒

((2I+1×Bv((A[I] ∧ B[I]) ∨ (CARRY ∧ (A[I]⊕ B[I])))
+ V(SUM{I←A[I]⊕ B[I]⊕ CARRY}[I : 0])

= V(A[I : 0]) + V(B[I : 0]))
∧ A = w1 ∧ B = w2)

It was previously established by exhaustive enumeration that:

Bv(a⊕ b⊕ c) = (Bv(a) + Bv(b) + Bv(c)) mod 2

Bv((a ∧ b) ∨ (c ∧ (a⊕ b))) = (Bv(a) + Bv(b) + Bv(c)) div 2

Recall also that:

V(w{n←b}[n : 0]) = 2n × Bv(b) + V(w[n−1 : 0])

Thus:
2I+1×Bv((A[I] ∧ B[I]) ∨ (CARRY ∧ (A[I]⊕ B[I])))

+ V(SUM{I←A[I]⊕ B[I]⊕ CARRY}[I : 0])
= V(A[I : 0]) + V(B[I : 0])
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is equivalent to

2I+1×((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) div 2)
+ 2I × ((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) mod 2) + V(SUM[I−1 : 0])
= V(A[I : 0]) + V(B[I : 0])

Using V(w[n : 0]) = 2n × Bv(w[n]) + V(w[n−1 : 0]) yields:

2I+1×((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) div 2)
+ 2I × ((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) mod 2) + V(SUM[I−1 : 0])

= 2I × Bv(A[I]) + V(A[I−1 : 0]) + 2I × Bv(B[I]) + V(B[I−1 : 0])

Now, the antecendent of VC (iv) contains:

2I×Bv(CARRY) + V(SUM[I−1 : 0]) = V(A[I−1 : 0]) + V(B[I−1 : 0])

hence the first conjunct of the consequent can be simplified to:

2I+1×((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) div 2)
+ 2I × ((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) mod 2) + V(SUM[I−1 : 0])

= 2I×Bv(CARRY) + V(SUM[I−1 : 0]) + 2I × Bv(A[I]) + 2I × Bv(B[I])

Cancelling V(SUM[I−1 : 0]) and then dividing by 2I yields:

2×((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) div 2)
+ ((Bv(A[I]) + Bv(B[I]) + Bv(CARRY)) mod 2)
= Bv(CARRY) + Bv(A[I]) + Bv(B[I])

This is just an instance of n× (m div n) + m mod n = m. Thus VC (iv) is established.

1.8 Verification of an add-shift multiplier

The notation b•w, where b is a bit (truth value) and w a word, denotes w if b = T and

W |w| 0 if b = F, i.e. b•w = (b→ w | W |w| 0). Note that:

V(b•w) = Bv(b)× V(w)

The product of two natural numbers represented as n-bit words w1 and w2 is a word w

such that (writing m× n as mn):

V(w) = V(w1)V(w2)

= (2n−1Bv(w1[n−1]) + 2n−2Bv(w1[n−2]) + · · ·+ 20Bv(w1[0]))V(w2)

= 2n−1Bv(w1[n−1])V(w2) + 2n−2Bv(w1[n−2])V(w2) + · · ·+ 20Bv(w1[0])V(w2)

= 2n−1V(w1[n−1]•w2) + 2n−2V(w1[n−2]•w2) + · · ·+ 20V(w1[0]•w2)
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Multiplying by 2 corresponds to shifting one place to the left:

20V(w) = V(w)

21V(w) = V(w⌢0)

22V(w) = V(w⌢00)

...

2nV(w) = V(w⌢ 0 · · · 0
︸ ︷︷ ︸

n 0s

)

Thus the product of w1 and w2 is given by adding:

w1[0]•w2

w1[1]•w2
⌢0

w1[2]•w2
⌢00

w1[3]•w2
⌢000
...

w1[n−1]•w2
⌢0 · · · 0

This is the ‘high school’ algorithm for doing multiplication described earlier.

The following annotated specification expresses the correctness of this algorithm:

{V(A) = a ∧ V(B) = b ∧ PROD = W(2N)0 ∧ |A| ≤ N ∧ |B| ≤ N ∧ N > 0}

FOR I:=0 UNTIL N-1 DO {2IV(A[N-1 : I])b + V(PROD) = ab ∧ V(B) = 2Ib}
BEGIN

PROD := PROD ⊎ A[I]•B;

B := B⌢0

END

{V(PROD) = ab}

The VCs for the correctness of the ‘high school’ multiplication algorithm are:

(i) (V(A) = a ∧ V(B) = b ∧ PROD = W(2N)0 ∧ |A| ≤ N ∧ |B| ≤ N ∧ N > 0)

⇒

(20V(A[N-1 : 0])b + V(PROD) = ab ∧ V(B) = 20b)

(ii) (2NV(A[N-1 : N])b + V(PROD) = ab ∧ V(B) = 2Nb)⇒ (PROD = ab)

(iii) (V(A) = a ∧ V(B) = b ∧ PROD = W(2N)0 ∧ |A| ≤ N ∧ |B| ≤ N ∧ N > 0) ∧ N−1 < 0

⇒

(PROD = ab)

(iv) (2IV(A[N-1 : I])b + V(PROD) = ab ∧ V(B) = 2Ib) ∧ 0 ≤ I ∧ I ≤ N−1

⇒

2I+1V(A[N-1 : I+1])b + V(PROD ⊎ A[I]•B) = ab ∧ V(B⌢0) = 2I+1b
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Exercise: Check whether these verification conditions are true.

(Warning: quite likely to be wrong!)

Here is a standard textbook multiplier: 2

Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

In the program below, the product is computed in a single 2N-bit variable R. The N high

order bits of R correspond the register P (after CARRY has been right-shifted into P); the N

low-order bits of R correspond to register A.

At the Ith iteration R[2N−1 : N−I] holds the result of adding the first I rows of the sum:

w1[0]•w2

w1[1]•w2
⌢0

w1[2]•w2
⌢00

w1[3]•w2
⌢000
...

w1[n−1]•w2
⌢0 · · · 0

and R[N−I−1 : 0] holds w1[N−1 : I]. Initially w1 is loaded into the bottom half of R, but

during the computation this is gradually overwritten by the low-order bits of the product.

The variable B holds w2.

Let

I1 ≡ w1[N−1 : I] = R[N−1−I : 0]

I2 ≡ V(R[2N−1 : N−I]) = V(w1[I−1 : 0])× V(B)

Consider:

2Computer Architecture: A Quantitative Approach by Hennessy and Patterson (ISDBN 1-55860-069-
8).
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{R = (W N 0)⌢w1 ∧ B = w2 ∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N > 0}

FOR I := 0 UNTIL N-1 DO {I1 ∧ I2 ∧ B = w2}
R := (R[0]•B ⊎ R[2N-1:N])⌢R[N-1:1]

{V(R[2N−1 : 0]) = V(w1)× V(w2) ∧ B = w2}

The verification conditions are:

(i) (R = (W N 0)⌢w1 ∧ B = w2 ∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N > 0)

⇒

(I1 ∧ I2 ∧ B = w2)[0/I]

(ii) (I1 ∧ I2 ∧ B = w2)[N/I]

⇒

(V(R[2N−1 : 0]) = V(w1)× V(w2) ∧ B = w2)

(iii) (· · · ∧ N > 0) ∧ (N-1 < 0) ⇒ (· · ·)

(iv) VCs from

{I1 ∧ I2 ∧ B = w2 ∧ 0 ≤ I ∧ I ≤ N-1}
R:=(R[0]•B ⊎ R[2N-1:N])⌢R[N-1:1]

{(I1 ∧ I2 ∧ B = w2)[I+1/I]}

To show VC (i) assume

R = (W N 0)⌢w1 ∧ B = w2 ∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N > 0

I1[0/I] is:

w1[N−1 : 0] = ((W N 0)⌢w1[N-1:0])[N−1 : 0]

which follows from:

p < |w2| ⇒ (w1
⌢w2)[p : q] = w2[p : q]

I2[0/I] is:

V(((W N 0)⌢w1[N-1:0])[2N−1 : N]) = V(w1[0−1 : 0])× V(B)

which is equivalent to 0 = 0 because of the convention that V(A[0-1:0]) is 0, from which

it follows that the RHS is 0. The LHS can be simplified using:

q ≥ |w2| ⇒ (w1
⌢w2)[p : q] = w1[p−|w2| : q−|w2|]

w[|w|−1 : 0] = w

V(W n m) = m mod 2n

From this, it follows that:

V(((W N 0)⌢A[N-1:0])[2N−1 : N]) = V((W N 0)[N−1 : 0])

= V(W N 0)

= 0
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To establish the second VC (ii) observe that I2[N/I] is

V(R[2N−1 : N−N]) = V(w1[N−1 : 0])× V(B)

so if |w1| ≤ N and B = w2 then clearly

V(R[2N-1 : 0]) = V(w1)× V(w2)

The third VC (iii) is trivial (contradictory antecedent of an implication).

The final VC (iv) is the guts of the verification. The invariance of B is obvious. The

remaining things to establish are:

VC4.1
I1 ∧ I2 ∧ B = w2 ∧ 0 ≤ I ∧ I ≤ N− 1

⇒
w1[N−1 : I+1] = ((R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : 1])[N−I−2 : 0]

VC4.2
I1 ∧ I2 ∧ B = w2 ∧ 0 ≤ I ∧ I ≤ N− 1

⇒
V(((R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : 1])[2N−1 : N−I−1]) = V(w1[I : 0])× V(B)

VC4.1 follows from:

p < |w2| ⇒ (w1
⌢w2)[p : q] = w2[p : q]

(w[m : n])[p : q] = w[p+n : q+n]

Since:

(R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : 1])[N−I−2 : 0] = (R[N−1 : 1])[N−I−2 : 0]
= R[N−I−1 : 1]
= R[N−1−I : 1]

and
I1 ≡ w1[N−1 : I] = R[N−1−I : 0]
⇒ w1[N−1 : I][N−1−I : 1] = R[N−1−I : 0][N−1−I : 1]
⇒ w1[N−1 : I+1] = R[N−1−I : 1]

To establish VC4.2 first observe that:

I1 ≡ w1[N−1 : I] = R[N−1−I : 0]

⇒ w1[N−1 : I][0] = R[N−1−I : 0][0]

⇒ w1[I] = R[0]

The cases I = 0 and I > 0 need to be considered separately.

If I = 0 then:

I2 ≡ V(R[2N−1 : N−I]) = V(w1[I−1 : 0])× V(B)

⇒ V(R[2N−1 : N]) = V(w1[0−1 : 0])× V(B)

⇒ V(R[2N−1 : N]) = 0× V(B)

⇒ V(R[2N−1 : N]) = 0

⇒ R[2N−1 : N] = W N 0
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hence, assuming I1:

V((R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : 1])[2N−1 : N−I−1]) = V(w1[I : 0])× V(B)
⇔
V((R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : 1])[2N−1 : N−1]) = V(w1[0 : 0])× V(B)
⇔
V((w1[0]•B ⊎W N 0))⌢R[N−1 : 1])[2N−1 : N−1] = Bv(w1[0])× V(B)
⇔
V(0⌢(w1[0]•B)⌢R[N−1 : 1])[2N−1 : N−1]) = Bv(w1[0])× V(B)
⇔ (using: q ≥ |w2| ⇒ (w1

⌢w2)[p : q] = w1[p−|w2| : q−|w2|])
V((0⌢(w1[0]•B))[N : 0]) = Bv(w1[0])× V(B)
⇔
V((w1[0]•B)[N−1 : 0]) = Bv(w1[0])× V(B)
⇔ (Using the assumption that B is an N-bit word)
V(w1[0]•B) = Bv(w1[0])× V(B)
⇔
Bv(w1[0])× V(B) = Bv(w1[0])× V(B)

If I > 0 then as N > 0 it follows that 2N−1 ≥ N−1 and N−I−1 < N−1. Recall:

p ≥ |w2| ∧ q < |w2| ⇒ (w1
⌢w2)[p : q] = w1[p−|w2| : 0]⌢w2[|w2|−1 : q]

hence, assuming I1 and I2:

V(((R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : 1])[2N−1 : N−I−1])
= V((R[0]•B ⊎ R[2N−1 : N])[N : 0]⌢R[N−1 : 1][N−2 : N−I−1])
= V((R[0]•B ⊎ R[2N−1 : N])[N : 0]⌢R[N−1 : N−I])
= V((R[0]•B ⊎ R[2N−1 : N])⌢R[N−1 : N−I])

= 2I×V(R[0]•B ⊎ R[2N−1 : N]) + V(R[N−1 : N−I])

= 2I×V(R[0]•B) + V(R[2N−1 : N]) + V(R[N−1 : N−I])

= 2I×V(R[0]•B) + (V(R[2N−1 : N]) + V(R[N−1 : N−I]))
= 2I×V(R[0]•B) + V(R[2N−1 : N−I])

= 2I×V(R[0]•B) + V(w1[I−1 : 0])× V(B) (by I2)

= 2I×V(w1[I]•B) + V(w1[I−1 : 0])× V(B) (by I1)

= (2I×Bv(w1[I]) + V(w1[I−1 : 0]))× V(B)
= V(w1[I : 0])× V(B)

This establishes VC4.2.

1.9 From programs to hardware

In the previous sections a number of programs that did hardware-like things were verified.

However, programs are not hardware. We now consider how programs can be interpreted

as hardware.
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One possible interpretation is to ‘unroll’ a program into combinational logic.

Consider the ripple-carry adder, for example.

FOR I := 0 UNTIL N-1 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

If a particular value of N is fixed, then the program can be unrolled into the normal circuit

for an adder. For example take N = 3 to get:

FOR I := 0 UNTIL 2 DO

BEGIN

SUM[I]:=A[I]⊕B[I]⊕CARRY;
CARRY:=(A[I]∧B[I])∨(CARRY∧(A[I]⊕B[I]));

END

Assuming initially CARRY = F, the FOR-command unrolls to:

SUM[0]:=A[0]⊕B[0]⊕F;

CARRY:=(A[0]∧B[0])∨(F∧(A[0]⊕B[0]));
SUM[1]:=A[1]⊕B[1]⊕CARRY;
CARRY:=(A[1]∧B[1])∨(CARRY∧(A[1]⊕B[1]));
SUM[2]:=A[2]⊕B[2]⊕CARRY;
CARRY:=(A[2]∧B[2])∨(CARRY∧(A[2]⊕B[2]));

Symbolically executing this (and doing some Boolean algebra simplification) yields:

SUM[0]:=A[0]⊕B[0];
SUM[1]:=A[1]⊕B[1]⊕(A[0]∧B[0]);
SUM[2]:=A[2]⊕B[2]⊕((A[1]∧B[1])∨((A[0]∧B[0])∧(A[1]⊕B[1])));
CARRY :=(A[2]∧B[2])

∨
(((A[1]∧B[1])∨((A[0]∧B[0])∧(A[1]⊕B[1])))∧(A[2]⊕B[2]));

These are now independent assignments that give explicit Boolean expressions for com-

puting the values of SUM and CARRY directly in terms of the A[0], A[1], A[2], B[0], B[1]

and B[2].

Clearly this process can be used to get the logic equations for adders of arbitrary bit-

widths. The verification done earlier shows that any adder generated this way is correct. 3

3This assumes that the original program is equivalent to the unrolled version. I hope this is intuitively
clear. We will not attempt a more formal justification.
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This interpretation of commands as hardware is sensible for the adder, but less so for the

multipliers we considered. It is straightforward to unroll a multiplier into combinational

logic, but the resulting Boolean expressions will be huge. Trying to evaluate them in one

clock cycle is likely to make the cycle time too slow. The usual approach is to implement

multipliers as sequential machines that compute the product over a number of cycles.

For example, one might do the add and shift in a single cycle which would take N cycles.

Alternatively, one might add and shift on separate cycles, taking 2N, presumably shorter,

cycles. The decision of whether to implement a particular function as combinational or

sequential logic, and if sequential, how much to do each cycle, is a decision which depends

on engineering issues.

The view of a multiplier as computing a single state change from the initial values of the

registers to the final values is quite abstract, but adequate for showing pure functional

correctness (i.e. it does multiplication). Less abstract views are needed for timing analysis

and other kinds of issues.

Modern HDLs like Verilog allow the designer to indicate how operations are scheduled

into clock cycles. To illustrate this, we allow statements to be prefixed by @ , which is

called an event control . The multiplier that takes N cycles is:

FOR I := 0 UNTIL N-1 DO

@R := (R[0]•B ⊎ R[2N-1:N])⌢R[N-1:1]

and a multiplier that takes 2N cycles is:

FOR I := 0 UNTIL N-1 DO

BEGIN

@SUM := R[0]•B ⊎ R[2N-1:N];
@R := SUM⌢R[N-1:1]

END

Note that SUM here needs to be 2N+1 bits wide.

In Verilog, for example, event controls can be more detailed, specifying that the subsequent

commands are only triggered by particular kinds of events (e.g. rising edges or falling

edges). However, at least for the time being, our toy HDL only has an abstract ‘clock

tick’ events @ .

It is clear that programs with added event controls can still be reasoned about using Floyd

Hoare logic, since the transformation from initial to final state is unchanged. The @ ’s

merely serve to determine the intermediate states that occur at clock ticks. However, there

are properties that one might want to hold but which cannot be expressed using Hoare-

style correctness specifications, for example the fact that the variable B is not changed

during the computation. Consider this silly program:
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FOR I := 0 UNTIL N-1 DO

BEGIN

@SUM := R[0]•B ⊎ R[2N-1:N];
B := ¬B;
@R := SUM⌢R[N-1:1];

B := ¬B;
END

Here ¬B denotes the negation of every bit of B. This program takes 2N cycles and (as

¬¬B = B) it has the same overall effect. However, B keeps changing throughout the

computation and this cannot be expressed using Hoare triples {P}C{Q}. Often, e.g.

in connection with handshake protocols, one wants to ensure variables stay constant

throughout parts of the computation, and this cannot be verified using Floyd-Hoare logic.

Later in this course we will meet temporal logic which enables properties of intermediate

states to be specified.

HDL synthesis tools can compile imperative programs to state machines that can be

directly implemented in hardware. One can thus verify hardware by verifying HDL code

segments using Floyd-Hoare logic prior to synthesis. Of course, this assumes hardware

synthesis is correct!

In the next chapter we look at describing hardware structure and behaviour directly in

higher order logic. We will look at the ripple-carry adder and add-shift multiplier again

and compare their verification as source HDL with their verification as directly modelled

hardware.



Chapter 2

Describing Hardware Directly in
Higher Order Logic

It is shown how higher order logic can be used both as a hardware description

language and as a formalism for proving that designs meet their specifications.

Examples are given which illustrate various specification and verification tech-

niques. These include a CMOS inverter, a CMOS full adder, an n-bit ripple-

carry adder, a sequential multiplier and an edge-triggered Dtype register.

2.1 Representing behaviour with predicates

A device is a ‘black box’ with a specified behaviour; for example:

Dev

.

.

.

.

.

.

an

a2

a1

bn

b2

b1

This device is called Dev and has external lines a1, a2, . . . , am, b1, b2, . . . , bn. These

lines correspond to the ‘pins’ of an integrated circuit. When the device is in operation

each line has a value drawn from some set of possible values. Different kinds of device are

modelled with different sets of values. The behaviour of device Dev is specified by defining

a predicate Dev (with m+n arguments) such that Dev(a1, a2, . . . , am, b1, b2, . . . , bn) holds

if and only if a1, a2, . . . , am, b1, b2, . . . , bn are allowable values on the corresponding

lines of Dev.

The following font conventions will be used:

• Physical objects like devices and lines will be written in typewriter font.

23
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• Mathematical variables will be written in italic font.

• Mathematical constants, (e.g. predicate and function constants) will be written in

sans serif font.

The same letter will be used for a physical object and its mathematical representation.

Thus, for example, l will range over the values allowed at line l, and Dev denotes the

predicate describing the behaviour of device Dev.

We now describe two examples that illustrate the use of predicates to specify behaviour.

In the first of these examples the values on lines are modelled with truth-values. In the

second example the values on lines are modelled with functions, and consequently the

predicate used to specify the behaviour of the device is higher-order.

2.1.1 A delayless switch

Zero-delay combinational devices can be modelled by taking the boolean values T and F

as the allowed values on their lines. An example is a switch:

a b

g

The intended behaviour of this is that a is connected to b if g has the value T and a

and b are not connected if g has the value F. This behaviour can be represented by the

predicate Switch defined by:

Switch(g, a, b) ≡ (g ⇒ (a = b))

The condition Switch(g, a, b) holds if and only if whenever g is true then a and b are equal.

For example, Switch(T, F, F) holds because T ⇒ (F=F) is true, and Switch(F, T, F) holds

because F⇒ (T=F) is true, but Switch(T, T, F) does not hold because T⇒ (T=F) is false.

2.1.2 An inverter with delay

The values occurring on the lines of devices may vary over time. When this happens, their

behaviour must be represented by predicates whose arguments are ‘time varying values’.

Such values correspond to ‘waveforms’ and can be modelled by functions of time. For

example, the behaviour of an inverter with a delay of δ units of time can be specified with

a predicate Invert defined by:

Invert(i, o) ≡ ∀t. o(t+δ) = ¬i(t)
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Here the values on lines i and o are functions i and o which map times (represented by

numbers) to values (represented by booleans). These functions are in the Invert relation

if and only if for all times t, the value of o at time t+δ equals the negation of the value

of i at time t.

2.2 Representing circuit structure with predicates

Consider the following structure (called D):

D1

D2

D3

a

b

c

d

p

q

•

•

This device is built by connecting together three component devices D1, D2 and D3. The

external lines of D are a, b, c and d. The lines p and q are internal and are not connected to

the ‘outside world’. (External lines might correspond to the pins of an integrated circuit,

and internal lines to tracks.)

Suppose the behaviours of D1, D2 and D3 are specified by predicates D1, D2 and D3

respectively. How can we derive the behaviour of the system D shown above? Each device

constrains the values on its lines. If a, b and p denote the values on the lines a, b and p,

then D1 constrains these values so that D1(a, b, p) holds. To get the constraint imposed

by the whole device D we just conjoin (i.e. ∧-together) the constraints imposed by D1, D2

and D3; the combined constraint is thus:

D1(a, b, p) ∧ D2(p, d, c, q) ∧ D3(q, b, d)

This expression constrains the values on both the external lines a, b, c and d and the

internal lines p and q. If we regard D as a ‘black box’ with the internal lines invisible,

then we are really only interested in what constraints are imposed on its external lines.

The variables a, b, c and d will denote possible values at the external lines a, b, c and d if

and only if the conjunction above holds for some values p and q. We can therefore define

a predicate D representing the behaviour of D by:

D(a, b, c, d) ≡ ∃p q. D1(a, b, p) ∧ D2(p, d, c, q) ∧ D3(q, b, d)



26 Chapter 2. Describing Hardware Directly in Higher Order Logic

Thus we see that the behaviour corresponding to a circuit is got by conjoining the con-

straints corresponding to the components, and then existentially quantifying the variables

corresponding to the internal lines. This technique of representing circuit diagrams in

logic is fairly well known. Other ways of representing structure in logic are also possible.

There is a nice paper on this by William Clocksin entitled Logic Programming and the

Specification of Circuits (Computer Laboratory Technical Report No. 72, 1985).

2.3 A CMOS inverter

The standard CMOS implementation of an inverter is:

Gnd

Pwr

i o

p1

p2

• •

◦

2.3.1 Specification of the components

The inverter shown above can be viewed as a structure built out of four components: a

power source, a ground, an n-transistor and a p-transistor.

2.3.1.1 Power

Pwr

p
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This is a power source (sometimes called Vdd) and can be modelled by a predicate Pwr

that constrains the value on the line p to be T.

Pwr(p) ≡ (p = T)

2.3.1.2 Ground

Gnd

p

This represents ‘ground’ and can be modelled by a predicate Gnd that constrains the value

on the line p to be F.

Gnd(p) ≡ (p = F)

2.3.1.3 n-transistor

g

a

b

This represents an n-transistor. It can be modelled as a switch.

Ntran(g, a, b) ≡ (g ⇒ (a = b))

2.3.1.4 p-transistor

g

a

b

◦

This represents a p-transistor. It can be modelled as a switch which conducts when its

gate (i.e. line g) is low.

Ptran(g, a, b) ≡ (¬g ⇒ (a = b))
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2.3.2 Logic representation of the inverter circuit

Conjoining together the constraints from the four components and existentially quantify-

ing the internal line variables yields the following definition of a predicate Inv:

Inv(i, o) ≡ ∃p1 p2. Pwr(p1) ∧ Ptran(i, p1, o) ∧ Ntran(i, o, p2) ∧ Gnd(p2)

If Inv(i, o) holds then the values i and o are constrained to be in the relation determined

by the inverter circuit above.

2.3.3 Verification by proof

It follows by standard logical reasoning that if Inv is defined as above, then

Inv(i, o) ≡ (o = ¬i)

This shows that the constraint on i and o imposed by the inverter circuit is exactly what

we want: o is the inverse of i.

An outline of the formal proof of this is as follows:

1. By definition of Inv:

Inv(i, o) ≡ ∃p1 p2. Pwr(p1) ∧

Ptran(i, p1, o) ∧

Ntran(i, o, p2) ∧

Gnd(p2)
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2. Substituting in the definitions of Pwr and Gnd yields:

Inv(i, o) ≡ ∃p1 p2. (p1 = T) ∧

Ptran(i, p1, o) ∧

Ntran(i, o, p2) ∧

(p2 = F)

3. Substituting with the equations p1=T and p2=F yields:

Inv(i, o) ≡ ∃p1 p2. (p1 = T) ∧

Ptran(i, T, o) ∧

Ntran(i, o, F) ∧

(p2 = F)

4. In general, if t1 and t2 are any terms such that t2 doesn’t contain x then:

(∃x. t1 ∧ t2) = ((∃x. t1) ∧ t2)

and

(∃x. t2 ∧ t1) = (t2 ∧ (∃x. t1))

are both true. Using these properties we can move the existential quantifiers inwards

to derive:

Inv(i, o) ≡ (∃p1. p1 = T) ∧

Ptran(i, T, o) ∧

Ntran(i, o, F) ∧

(∃p2. p2 = F)

5. Both (∃p1. p1=T) and (∃p2. p2=F) are logical truths and so can be deleted from

conjunctions; hence:

Inv(i, o) ≡ Ptran(i, T, o) ∧ Ntran(i, o, F)

6. Next we substitute in the definitions of Ptran and Ntran to get:

Inv(i, o) ≡ ((i = F)⇒ (T = o)) ∧ ((i = T)⇒ (o = F))

7. From this we can derive

Inv(T, o) ≡ (o = F)

and

Inv(F, o) ≡ (o = T)

from which it follows by case analysis that:

Inv(i, o) ≡ (o = ¬i)
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2.4 A 1-bit CMOS full adder

The full adder described in this section illustrates the use of bidirectional transistors in

CMOS1. The transistor models Ptran and Ntran can be used to prove the circuit correct.

Such a proof would be difficult with the usual representation of combinational circuits as

boolean functions. Relations rather than functions are needed to model bidirectionality.

2.4.1 Specification

Here is a diagram of a full adder:

Add1cout cin

sum

a b

The lines a, b, cin, sum and cout carry the boolean values T or F. The specification of

the adder is:

Add1(a, b, cin, sum, cout) ≡ (2×Bv(cout) + Bv(sum) = Bv(a) + Bv(b) + Bv(cin))

A correct implementation of this specification is a circuit with lines a, b, cin, sum and

cout such that the constraints imposed on the values a, b, cin, sum and, cout that can

exist on these lines imply that Add1(a, b, cin, sum, cout) always holds.

2.4.2 Implementation

A CMOS implementation of the adder is given below. Lines with the same name are

connected. The lines p0, . . . , p11 are internal. The two transistors drawn horizontally

function bidirectionally.

1I got the example from Inder Dhingra.
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Pwr

Gnd

p1

a

a

p1

p2

p4

p5

b

b

p0

p11

cin

p1

p1

cin

sum cout

b

b

a

b

b

a

p3

p6

p7

p9

p8

p10

p1

a

cin

cin

a

• • • • •

• •

•

•

• • • • • • • •

• ••

• • • • •

•

•

◦

◦ ◦

◦

◦ ◦

◦
◦

◦

◦ ◦

◦

This circuit can be represented in logic by defining:

Add1 Imp(a, b, cin, sum, cout) ≡

∃p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11.

Ptran(p1, p0, p2) ∧ Ptran(cin, p0, p3) ∧ Ptran(b, p2, p3) ∧ Ptran(a, p2, p4)∧

Ptran(p1, p3, p4) ∧ Ntran(a, p4, p5) ∧ Ntran(p1, p4, p6) ∧ Ntran(b, p5, p6)∧

Ntran(p1, p5, p11) ∧ Ntran(cin, p6, p11) ∧ Ptran(a, p0, p7) ∧ Ptran(b, p0, p7)∧

Ptran(a, p0, p8) ∧ Ptran(cin, p7, p1) ∧ Ptran(b, p8, p1) ∧ Ntran(cin, p1, p9)∧

Ntran(b, p1, p10) ∧ Ntran(a, p9, p11) ∧ Ntran(b, p9, p11) ∧ Ntran(a, p10, p11)∧

Pwr(p0) ∧ Ptran(p4, p0, sum) ∧ Ntran(p4, sum, p11)∧

Gnd(p11) ∧ Ptran(p1, p0, cout) ∧ Ntran(p1, cout, p11)

2.4.3 Verification

To verify that the implementation Add1 Imp correctly implements the specification Add1,

it can be shown that:

Add1 Imp(a, b, cin, sum, cout) ≡ Add1(a, b, cin, sum, cout)

The most straightforward way to prove this implication is to consider separately the eight
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possible input combinations.

Manipulations like those given for the inverter yield the following eight facts:

Add1 Imp(T, T, T, sum, cout) ≡ (sum=T) ∧ (cout=T)
Add1 Imp(T, T, F, sum, cout) ≡ (sum=F) ∧ (cout=T)
Add1 Imp(T, F, T, sum, cout) ≡ (sum=F) ∧ (cout=T)
Add1 Imp(T, F, F, sum, cout) ≡ (sum=T) ∧ (cout=F)
Add1 Imp(F, T, T, sum, cout) ≡ (sum=F) ∧ (cout=T)
Add1 Imp(F, T, F, sum, cout) ≡ (sum=T) ∧ (cout=F)
Add1 Imp(F, F, T, sum, cout) ≡ (sum=T) ∧ (cout=F)
Add1 Imp(F, F, F, sum, cout) ≡ (sum=F) ∧ (cout=F)

Deriving these equations is equivalent to exhaustive simulation for all input values and is

best done by computer. It follows from these eight equations that:

Add1 Imp(a, b, cin, sum, cout) ≡ Add1(a, b, cin, sum, cout)

2.5 An n-bit adder

The example in this section is intended to illustrate the use of higher-order logic to

represent parameterized systems. An n-bit adder computes an n-bit sum and 1-bit carry-

out from two n-bit inputs and a 1-bit carry-in.

2.5.1 Specification

Here is a diagram of an n-bit adder:

Addercout cin

sum

a b

The lines cin and cout carry single bits, i.e. Booleans, and the lines a, b and sum carry

n-bit words.

A function Adder is defined which when applied to the number n yields a predicate spec-

ifying an n+1-bit adder. Thus, for example, Adder(3) is a predicate specifying a 4-bit

adder. The definition of Adder is:
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Adder(n)(a, b, cin, sum, cout) ≡

(2n+1×Bv(cout) + V(sum[n : 0]) = V(a[n : 0]) + V(b[n : 0]) + Bv(cin))

2.5.2 Implementation

An n-bit adder can be built by connecting together n full adders. The diagram below

shows an (n+1)-bit adder. The inputs are a single bit carry-in cin and two (n+1)-bit

words a and b. The outputs are an (n+1)-bit sum sum and a 1-bit carry-out cout.

Add1 Add1 Add1cout cin

a[n] b[n] a[n-1] b[n-1] a[0] b[0]

sum[n] sum[n-1] sum[0]

. . .

To express this diagram in logic we define Adder Imp(n)(a, b, cin, out, cout) which uses a

higher order function Adder Imp which when applied to a number n yields the predicate

specifying the implementation of an n+1-bit adder.

A primitive-recursive definition of Adder Imp corresponding to the above diagram has the

following basis:

Adder Imp(0)(a, b, cin, sum, cout) ≡ Add1(a[0], b[0], cin, sum[0], cout)

The recursive part of the definition says that an (n+2)-bit adder is built by first building

an n+1-bit adder and then connecting its carry-out to the carry-in of a 1-bit adder.

Adder Imp(n+1)(a, b, cin, sum, cout) ≡

∃c. Adder Imp(n)(a, b, cin, sum, c) ∧

Add1(a[n+1], b[n+1], c, sum[n+1], cout)

To verify the adder one proves by induction on n that:

Adder Imp(n)(a, b, cin, sum, cout)⇒ Adder(n)(a, b, cin, sum, cout)

The basis of the induction is:

Adder Imp(0)(a, b, cin, sum, cout)⇒ Adder(0)(a, b, cin, sum, cout)

This is proved by substituting the definitions of Adder Imp and Adder into the above

implication and showing the result is true. This is easy using V(w[0 : 0]) = Bv(w[0]).

The induction step is:

(Adder Imp(n)(a, b, cin, sum, cout)⇒ Adder(n)(a, b, cin, sum, cout))
⇒
(Adder Imp(n+1)(a, b, cin, sum, cout)⇒ Adder(n+1)(a, b, cin, sum, cout))
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This can be proved by simple arithmetical reasoning. Assume:

(Adder Imp(n)(a, b, cin, sum, cout)⇒ Adder(n)(a, b, cin, sum, cout))

Then

Adder Imp(n+1)(a, b, cin, sum, cout)

= ∃c. Adder Imp(n)(a, b, cin, sum, c) ∧
Add1(a[n+1], b[n+1], c, sum[n+1], cout)

⇒ ∃c. Adder(n)(a, b, cin, sum, c) ∧
Add1(a[n+1], b[n+1], c, sum[n+1], cout)

= ∃c. (2n+1Bv(c) + V(sum[n : 0]) = V(a[n : 0]) + V(b[n : 0]) + Bv(cin))
∧

(2Bv(cout) + Bv(sum[n+1]) = Bv(a[n+1]) + Bv(b[n+1]) + Bv(c))

If (A = B) ∧ (C = D) then it follows that (A + 2n+1C) = (B + 2n+1D). Hence:

∃c. (2n+1Bv(c) + V(sum[n : 0]) = V(a[n : 0]) + V(b[n : 0]) + Bv(cin))
∧

(2Bv(cout) + Bv(sum[n+1]) = Bv(a[n+1]) + Bv(b[n+1]) + Bv(c))

⇒ ∃c. (2n+1Bv(c) + V(sum[n : 0])
+ 2n+12Bv(cout) + 2n+1Bv(sum[n+1])

= V(a[n : 0]) + V(b[n : 0]) + Bv(cin)
+ 2n+1Bv(a[n+1]) + 2n+1Bv(b[n+1]) + 2n+1Bv(c))

= ∃c. (V(sum[n+1 : 0]) + 2n+2Bv(cout)
= V(a[n+1 : 0]) + V(b[n+1 : 0]) + Bv(cin))

= (V(sum[n+1 : 0]) + 2n+2Bv(cout)
= V(a[n+1 : 0]) + V(b[n+1 : 0]) + Bv(cin))

= Adder(n+1)(a, b, cin, sum, cout))

2.6 Sequential Devices

All of the examples so far have been combinational; i.e. the values on the outputs have

only depended (via combinational logic) on the current input values, not on values stored

in registers (which might be input values latched at previous clock cycles). Sequential

devices can be modelled by taking the values on lines to be sequences of values (modelled

by functions of time, where time measures number of elapsed clock cycles). For example,

a unit-delay element Del, with input line i and output line o, is modelled by specifying

that the value output at time t+1 (i.e. on cycle t+1) equals the value input at time t

(i.e. on cycle t). This is expressed in higher-order logic by:

Del(i, o) ≡ ∀t. o(t+1) = i(t)



2.7. The add-shift multiplier 35

Combinational devices can be modelled as sequential devices having no delay.2 To illus-

trate this, recall the specification of the adder:

Adder(n)(a, b, cin, sum, cout) ≡

(2n+1×Bv(cout) + V(sum[n : 0]) = V(a[n : 0]) + V(b[n : 0]) + Bv(cin))

Here the variables a, b and sum range over words and the variables cin and cout range

over bits (Booleans). To model the adder as a zero-delay sequential device we must

represent its behaviour with a predicate whose arguments are functions of time. In the

definition below, the variables a, b and sum range over functions from time to words, and

the variables cin and cout range over functions from time to bits. Thus, for example,

out(7)[5] is bit 5 of the word output at time 7.

Combinational Adder(n)(a, b, cin, sum, cout) ≡

∀t. Adder(n)(a(t), b(t), cin(t), sum(t), cout(t))

If we wanted to specify the adder as having a unit-delay then we could define:

Unit Delay Adder(n)(a, b, cin, sum, cout) ≡

∀t. Adder(n)(a(t), b(t), cin(t), sum(t+1), cout(t+1))

2.7 The add-shift multiplier

Recall the add-shift multiplier:

Shift

P A

B

n

n

n

C
A

R
R

Y

+

&

As in Section 1.8 we will model CARRY, P and A as a single register device PA. We assume

PA has an n+1-bit input in and a 2n-bit outputs r. On each cycle PA first shifts the n

2In reality all devices have some physical delay. Modelling combinational devices with ‘zero-delay’ is
an abstraction that only works if the physical delays of all combinational logic is small compared to the
time between clock ticks.
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least significant bits of r to the right (losing the rightmost bit) and then reads in n+1

bits into the n+1 most significant bits of r.

For simplicity, we ignore (fudge) the details of the loading in of the values to be multiplied,

w1 and w2 say.

The atomic components of the multiplier are.

1. The 2n-bit autoshifting register PA, which we parameterise on n and the initial value

w of its n least significant bits.

PA(n,w)(in, r) ≡
(r(0) = (W n 0)⌢w[n−1 : 0]) ∧
(∀t. r(t+1) = in(t) ⌢ (r(t)[n−1 : 1]))

2. A component Seg to select a subword of a word..

Seg(m,n)(in, out) ≡ ∀t. out(t) = in(t)[m : n]

3. A component Lsb to select the least significant bit of a word.

Lsb(in, out) ≡ ∀t. out(t) = in(t)[0]

4. A combinational n-bit adder.

Add(n)(in1, in2, sum) ≡ ∀t. sum(t) = in1(t) ⊎ in2(t)

Note that instead of the separate sum and carry-out shown in the diagram, we have

a single n+1-bit output sum.

5. A constant register B parameterised on the value it stores.

B(w)(b) ≡ ∀t. b(t) = w

6. A combinational device And that has a 1-bit input bin and an n-bit input win and

outputs the word obtained by ∧-ing together bin with each bit of win.

And(bin, win, out) ≡ ∀t. out(t) = bin(t)•win(t)

With these components, the multiplier is represented by:

AddShift(n,w1, w2)(r) ≡
∃sum a0 b p q.

PA(n,w1)(sum, r) ∧ Seg(2n−1, n)(r, p) ∧ Lsb(r, a0) ∧
Add(n)(p, q, sum) ∧ B(w2)(b) ∧ And(a0, b, q)
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Previously, we specified the multiplier by the Hoare triple of the form:

{R = (W N 0)⌢w1 ∧ B = w2 ∧ |w1| ≤ N ∧ |w2| ≤ N ∧ N>0}
...
{V(R[2N-1 : 0]) = V(w1)×V(w2)}

A corresponding specification directly in higher order logic is:

AddShift(n,w1, w2)(r) ∧ |w1| ≤ n ∧ |w2| ≤ n ⇒ V(r(n)) = V(w1)×V(w2)

To prove this we show by induction on t that:

AddShift(n,w1, w2)(r) ∧ |w1| ≤ n ∧ |w2| ≤ n
⇒
∀t. t ≤ n ⇒ |r(t)| ≤ 2n

∧
w1[n−1 : t] = r(t)[n−1−t : 0]
∧
V(r(t)[2n−1 : n−t]) = V(w1[t−1 : 0])×V(w2)

This clearly entails the desired specification (take t = n). The first step is to expand

the definitions of the components of AddShift(n,w1, w2)(r) and then unwind the resulting

equations.

AddShift(n,w1, w2)(r)

= ∃sum a0 b p q.
PA(n,w1)(sum, r) ∧
Seg(2n−1, n)(r, p) ∧
Lsb(r, a0) ∧
Add(n)(p, q, sum) ∧
B(w2)(b) ∧
And(a0, b, q)

= ∃sum a0 b p q.
(r(0) = (W n 0)⌢w1[n−1 : 0]) ∧
(∀t. r(t+1) = sum(t) ⌢ (r(t)[n−1 : 1])) ∧
(∀t. p(t) = r(t)[2n−1 : n]) ∧
(∀t. a0(t) = r(t)[0])
(∀t. sum(t) = p(t) ⊎ q(t)) ∧
(∀t. b(t) = w2) ∧
(∀t. q(t) = a0(t)•b(t))

= (r(0) = (W n 0)⌢w1[n−1 : 0]) ∧
(∀t. r(t+1) = (r(t)[2n−1 : n] ⊎ r(t)[0]•w2) ⌢ (r(t)[n−1 : 1]))

= (r(0) = (W n 0)⌢w1) ∧
(∀t. r(t+1) = (r(t)[0]•w2 ⊎ r(t)[2n−1 : n]) ⌢ (r(t)[n−1 : 1]))
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Let

P (t) = t ≤ n ⇒ |r(t)| ≤ 2n
∧
w1[n−1 : t] = r(t)[n−1−t : 0]
∧
V(r(t)[2n−1 : n−t]) = V(w1[t−1 : 0])×V(w2)

then we need to show :

AddShift(n,w1, w2)(r) ∧ |w1| ≤ n ∧ |w2| ≤ n ⇒ ∀t. P (t)

Assume AddShift(n,w1, w2)(r) ∧ |w1| ≤ n ∧ |w2| ≤ n, i.e.:

(r(0) = (W n 0)⌢w1[n−1 : 0]) ∧
(∀t. r(t+1) = (r(t)[0]•w2 ⊎ r(t)[2n−1 : n]) ⌢ (r(t)[n−1 : 1])) ∧
|w1| ≤ n ∧ |w2| ≤ n

We show ∀t. P (t) by induction on t.

Basis: P (0)

Clearly 0 ≤ n. Need to show:

|r(0)| ≤ 2n
∧
w1[n−1 : 0] = r(0)[n−1 : 0]
∧
V(r(0)[2n−1 : n]) = V(w1[−1 : 0])×V(w2)

The first conjunct follows from r(0) = (W n 0)⌢w1[n−1 : 0]. The second conjunct

follows from this also. The third conjunct is 0 = 0, because r(0) = (W n 0)⌢w1[n−1 : 0].

Step: P (t) ⊢ P (t+1)

Note that t+1 ≤ n ⇒ t ≤ n. Assume A1–A6, where:

A1: (∀t. r(t+1) = (r(t)[0]•w2 ⊎ r(t)[2n−1 : n]) ⌢ (r(t)[n−1 : 1]))

A2: |w1| ≤ n

A3: |w2| ≤ n

A4: t+1 ≤ n

A5: w1[n−1 : t] = r(t)[n−1−t : 0]

A6: V(r(t)[2n−1 : n−t]) = V(w1[t−1 : 0])×V(w2)

Must show:

w1[n−1 : t+1] = r(t+1)[n−1−(t+1) : 0]
∧
V(r(t+1)[2n−1 : n−(t+1)]) = V(w1[(t+1)−1 : 0])×V(w2)
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i.e.:

w1[n−1 : t+1] = r(t+1)[n−t−2 : 0]
∧
V(r(t+1)[2n−1 : n−t−1]) = V(w1[t : 0])×V(w2)

i.e. by A1:

w1[n−1 : t+1] = ((r(t)[0]•w2 ⊎ r(t)[2n−1 : n]) ⌢ (r(t)[n−1 : 1]))[n−t−2 : 0]
∧
V(((r(t)[0]•w2 ⊎ r(t)[2n−1 : n]) ⌢ (r(t)[n−1 : 1]))[2n−1 : n−t−1])

= V(w1[t : 0])×V(w2)

Recall VC4.1 and VC4.2 on page 18: take R=r(t) and I=t, then the two conjuncts above

follow from the same reasoning used to show VC4.1 and VC4,2, respectively. Thus the

proof by induction on t is essentially the same as the proof using verification conditions!

2.8 Another multiplier

The multiplier that follows is not a realistic hardware implementation, but is designed to

further illustrate the use of higher order logic.

Exercise

Devise a proof rule for a command

REPEAT command UNTIL statement

The meaning of REPEAT C UNTIL S is that C is executed and then S is tested; if the result

is true, then nothing more is done, otherwise the whole REPEAT command is repeated.

Thus REPEAT C UNTIL S is equivalent to C; WHILE ¬S DO C.

Assume that variables I1, I2, O1 and O2 range over natural numbers (i.e. integers ≥ 0)

and DONE is a Boolean. Assume also that if m ≤ n then m−n = 0 (this ensures that if

m ≥ 0 and n ≥ 0 then m−n ≥ 0). Verify the following partial correctness specification:

{DONE = T}

REPEAT

BEGIN

IF DONE THEN O1 := I1 ELSE O1 := O1-1;

IF I1=0 THEN O2 := 0 ELSE (IF DONE THEN O2 := I2 ELSE O2 := I2+O2);

IF DONE THEN DONE := (I1-1=0 ∨ I2=0) ELSE DONE := (O1-2=0 ∨ I2=0)

END

UNTIL DONE

{O2 = I1×I2}

End of exercise
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This program corresponds to the algorithm embodied in the following multiplier circuit:

Flipflop

Dec

Dec

Reg

Mux

Zero Test

Mux

Dec

Or Gate

Zero Test

Zero Test

Adder

Reg

Mux

Mux

Zero

done

i1 i2

o

•

•

•

•
•

•

•

l1

l10

l2

l3

l5

l4

l8 l6 l7

l9

b1 b2

b3

b4

where the various components are defined by:

Mux(ctl, i1, i2, o) ≡ ∀t. o(t) = (ctl(t)→ i1(t) | i2(t))

Reg(i, o) ≡ ∀t. o(t+1) = i(t)

Flipflop(i, o) ≡ ∀t. o(t+1) = i(t)

Dec(i, o) ≡ ∀t. o(t) = i(t)−1

Add(i1, i2, o) ≡ ∀t. o(t) = i1(t) + i2(t)

Zero Test(i, o) ≡ ∀t. o(t) = (i(t)=0)

Or Gate(i1, i2, o) ≡ ∀t. o(t) = i1(t) ∨ i2(t)

Zero(o) ≡ ∀t. o(t) = 0

However, there is more that can be said about this circuit than that it just does multi-

plication. Specifically:
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If

• done has value T at time t1, and

• t2 is the first time after t1 that done again has value T, and

• the values at i1 and i2 are stable from t1 to t2,

then

• the value at o at t2 is the product of the values at i1 and i2 at t1.

In order to formalize this in logic various temporal notions like “the first time after” and

“stable” must be represented.

2.8.1 Some temporal predicates

The predicate Stable is defined so that Stable(t1, t2)(f) is true if and only if the value of

f is constant from t1 until just before time t2. Formally:

Stable(t1, t2)(f) ≡ ∀t. t1 ≤ t ∧ t < t2 ⇒ (f(t)=f(t1))

The predicate Next is defined so that Next(t1, t2)(f) is true if and only if t2 is the first

time after t1 that f(t2)=T. Formally:

Next(t1, t2)(f) ≡ t1 < t2 ∧ f(t2) ∧ (∀t. t1 < t ∧ t < t2 ⇒ ¬f(t))

Using Stable and Next, the specification of Mult can be represented with the predicate

Mult defined by:

Mult(i1, i2, o, done) ≡

done(t1) ∧

Next(t1, t2)(done) ∧

Stable(t1, t2)(i1) ∧

Stable(t1, t2)(i2) ∧

⇒

(o(t2) = i1(t1)× i2(t1))
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2.8.2 Verification

The circuit diagram above is captured in logic as follows:

Mult Imp(i1, i2, o, done) ≡

∃b1 b2 b3 b4 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10.

Mux(done, l8, l7, l6) ∧ Reg(l6, o) ∧ Add(l8, o, l7) ∧ Dec(i1, l5) ∧

Mux(done, l5, l3, l4) ∧ Mux(done, i1, l2, l1) ∧ Reg(l1, l10) ∧

Dec(l10, l2) ∧ Dec(l2, l3) ∧ Zero(l9) ∧ Mux(b4, l9, i2, l8) ∧

Zero Test(i1, b4) ∧ Zero Test(l4, b1) ∧ Zero Test(i2, b2) ∧

Or Gate(b1, b2, b3) ∧ Flipflop(b3, done)

The correctness of the multiplier implementation is established by proving that for all

values of i1, i2, o and done:

Mult Imp(i1, i2, o, done)⇒ Mult(i1, i2, o, done)

Expanding the definition of Mult and then slightly rearranging the result yields:

∀t1 t2. Mult Imp(i1, i2, o, done) ∧

done(t1) ∧

Next(t1, t2)(done) ∧

Stable(t1, t2)(i1) ∧

Stable(t1, t2)(i2) ∧

⇒

(o(t2) = i1(t1)× i2(t1))

This can be proved by mathematical induction on t2−t1. The proof is mostly routine,

but there are a few slightly tricky bits. Some elementary results concerning + and × are

required, together with the following lemmas about time:

f(t+1)⇒ Next(t, t+1)(f)

Next(t1, t2)(f) ∧ ¬f(t1+1)⇒ Next(t1+1, t2)(f)

Next(t1, t2)(f) ∧ Next(t1, t3)(f)⇒ (t2=t3)

Next(t, (t+1)+d)(f) ∧ ¬f(t+1)⇒ ¬(d=0)

Stable(t1, t2)(f)⇒ Stable(t1+1, t2)(f)

Stable(t, (t+1) + d)(f) ∧ ¬(d=0)⇒ (f(t) = f(t+1))

We do not give details of the proof here.

2.9 An edge-triggered Dtype

The implementation of the multiplier described in the preceding section was described

at the register-transfer level. This is an abstract level in which devices are viewed as
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sequential machines. At this level registers are modelled as unit-delay elements without

explicit clock lines. To implement such a register using actual hardware, something like

a Dtype device must be used:

Dtype
d

ck

q

2.9.1 Specification

An informal behavioural specification of Dtype is:

If

• the clock ck has a rising edge at time t1, and

• the next rising edge of ck is at t2, and

• the value at d is stable for c1 units of time before t1
(c1 is the setup time), and

• there are at least c2 units of time between t1 and t2
(c2 is the minimum clock period)

then

• the value at q will be stable from c3 units of time after t1 (c3 is the start

time) until c4 units of time after t2 (c4 is the finish time), and

• the value at q between the start and finish times will equal the value held

stable at d during the setup time.

To formalize this we need to define what a “rising edge” is. We will continue to use a

discrete model of time, but the grain of time will be finer than before. A function from

time to truth-values is defined to rise at time t if it is F at time t−1 and T at t. Formally:

Rise(f)(t) ≡ (f(t−1) = F) ∧ (f(t) = T)

If the function Rise is applied to a single argument f , then the resulting expression Rise(f)

denotes a predicate that is true of t if and only if f rises at t. The specification of the

Dtype below illustrates the use of this kind of ‘partial application’.
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The informal behavioural specification of a Dtype can now be formalized in logic by:

Dtype(c1, c2, c3, c4)(d, ck, q) ≡

∀t1 t2. Rise(ck)(t1) ∧

Next(t1, t2)(Rise(ck)) ∧

(t2−t1 > c2) ∧

Stable(t1−c1, t1+1)(d)

⇒

(Stable(t1+c3, t2+c4)(q) ∧ (q(t2) = d(t1)))

The parameters c1, c2, c3 and c4 are the timing constants of the Dtype; their value depends

on how the device is fabricated. Note that Next(t1, t2)(Rise(ck)) is an expression formed

by applying Next(t1, t2) to the predicate Rise(ck).

A Dtype becomes a unit-delay if we abstract signals to the sequence of values occurring

at rising edges of the clock. For more details of this kind of example, see the technical

report Formal Verification of Basic Memory Devices by John Herbert, which is available

from the Computer Laboratory (e.g. in the library).

2.9.2 Implementation

A common implementation of a Dtype uses NAND-gates:

NAND

NAND3

NAND

NAND

NAND

NAND

d

ck

p1

p2

p3

p4

p5

q

•

••

•
•
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2.9.3 Verification

To show that this implementation works we must use a model in which the NAND-gates

have delay, since it is the delay in feedback loops that provides memory. The simplest

such model is one in which each gate has unit-delay:

NAND(i1, i2, o) ≡ ∀t. o(t+1) = ¬(i1(t) ∧ i2(t))

NAND3(i1, i2, i3, o) ≡ ∀t. o(t+1) = ¬(i1(t) ∧ i2(t) ∧ i3(t))

The Dtype implementation can be represented in logic by defining:

Dtype Imp(d, ck, q) ≡

∃p1 p2 p3 p4 p5.

NAND(p2, d, p1) ∧ NAND3(p3, ck, p1, p2) ∧

NAND(p4, ck, p3) ∧ NAND(p1, p3, p4) ∧

NAND(p3, p5, q) ∧ NAND(q, p2, p5)

One can then attempt to prove for suitable timing constants δ1, δ2, δ3 and δ4 that:

Dtype Imp(d, ck, q)⇒ Dtype(δ1, δ2, δ3, δ4)(d, ck, q)

This would show that if each NAND-gate has unit-delay then the Dtype has a setup time

of δ1, a minimum clock period of δ2, a start time of δ3 and a finish time of δ4. Formal

proofs of this sort of result are fairly complicated and are not considered here. They are

hard to get right: for example, my formulation and proof of a correctness statement was

originally wrong. A recent automatic theorem proving tool called Mona3 discovered a

counterexample to this proof!

2.10 The simple switch model of transistors

This model was described in Section 2.3. It represents the two binary digital values with

the logical truth values T and F. An N-type transistor is modelled with a predicate Ntran

that asserts that if the value on the gate is T then the values at the source and drain are

equal; a P-type transistor is modelled by a predicate Ptran that asserts that if the value

on the gate is F then the values at the source and drain are equal. The formal definitions

are:
Ntran(g, a, b) = (g ⇒ (a = b))

Ptran(g, a, b) = (¬g ⇒ (a = b))

3http://www.brics.dk/∼mona/
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Then, for example, the behaviour of the circuit:

b

a

i o

◦

would be represented by defining the predicate Circ representing this circuit by:

Circ(i, o, a, b) = Ptran(i, a, o) ∧ Ntran(i, o, b)

From this definition it follows by standard logical deductions (See Sections 2.4.3) that:

Circ(i, o, T, F) = (o = ¬i)

which shows that if a is connected to power and b to ground, then the circuit behaves like

an inverter.

2.10.1 Inadequacies of the Simple Switch Model

Unfortunately, many analog features of circuits are missing in the simple switch model.

As Tony Hoare has pointed out, it also can suggest behaviour that is not found in reality.

For example:

Circ(i, o, T, F) = (i = ¬o)

which suggests that if the circuit can also be used ‘backwards’ (i.e. with o as input and i

as output). This is certainly not the case in practice.

Another problem with the model is that it assumes transistors conduct T and F equally

well. For example, consider the following pull-up circuit:
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T

o

In the simple switch model, it follows that the output at o is always T, but in reality the

value at o will be weakened by the N-type transistor.

In the simple switch model, transistors are modelled as ideal switches which are controlled

by the boolean logic level present on their gates. For example, the formal specification

for an N-type transistor in this model describes this device as an ideal switch which is

closed when its gate has the value T and open when its gate has the value F. Although

this very simple switch model of transistor behaviour can be useful for some purposes, it

clearly fails to capture many important aspects of the way real CMOS devices behave.

One of these aspects is the fact that the switching behaviour of a real CMOS transistor

does not depend simply on the ‘logic level’ present on its gate, but on the magnitude of the

gate-to-source voltage Vgs, compared to some non-zero threshold voltage Vt. This means

that a transistor does not behave like an ideal switch which can transmit both logic levels

equally well. An N-type transistor, for example, transmits logic low well, but transmits

logic high poorly. In the switch model, however, the specifications for N-type and P-type

transistors do not reflect this important aspect of transistor behaviour—transistors are

modelled as if they can transmit both logic levels equally well.

This simplification makes it possible to prove, using the switch model, the ‘correctness’

of certain CMOS circuits which do not work in practice. An example is the simple device

shown below, where the value on the input in is transmitted through an N-type transistor

to drive a capacitative load at the output out:

f

-in out

p
⊢ (∃p. Pwr p ∧ Ntran(p, in, out)) = (out = in)

This circuit is simply an N-type transistor with its gate connected directly to power. In

the switch model, this circuit is equivalent to a wire which connects the output directly to

the input. This is stated formally by the correctness theorem shown on the right, which

asserts that a formal model of this circuit, constructed using the switch model primitives,

is logically equivalent to the specification ‘out = in’. In reality, however, the circuit shown

above does not behave like a direct connection between out and in. If the output drives
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a capacitative load, and the input is at logic level high, then the voltage at out will only

reach a level which is the threshold voltage Vt less than VDD. This voltage may be too

low to drive the gate of another transistor, so it must be treated as distinct from the logic

level high. The switch model correctness statement shown above is therefore misleading,

for it asserts that an N-type transistor with its gate wired to VDD provides a completely

transparent connection between out and in.

This threshold problem can also be illustrated with Circ:

Circ(i, o, F, T) = (o = i)

Circ(i, o, T, T) = (o = T)

In the first case, the actual value at o will in reality be ‘weak’ due to lack of thresholds.

In the second case, the output will be strong when i is F but the output will be weak

when i is T (as in that case there will be no switching threshold); this behaviour is not

represented at all in the simple switch model.

2.11 Fourman’s switch model

The transistor model discussed in this section is based on a suggestion made by M.

Fourman at the workshop on Theoretical Aspects of VLSI Architectures at the University

of Leeds in 1986.

The fundamental problem with the switch model is that it specifies the behaviour of

transistors using a logical type with only two values. In this very simple model, each wire

in a circuit must have either the value high (modelled by T) or the value low (modelled

by F). The physical phenomenon of a ‘degraded’ logic level—a logic level which is distinct

from both these values, and which cannot be used to drive the gate of a transistor—is not

even a possibility in this model.

To overcome this problem, a type with more than two values is needed. The simplest

solution is to use a defined logical type with exactly three distinct values.

tri :: = Hi | Lo | X

This informal definition of the type tri states that it denotes a set which contains exactly

three distinct values—namely Hi, Lo, and X. This three-valued logical type can be used

as the basis for a transistor model which at least partly captures the threshold switching

behaviour of real CMOS devices. The basic idea of this model is to represent the strongly-

driven logic levels high and low by the values Hi and Lo, and to represent all degraded

logic levels, which cannot reliably drive the gates of transistors, by the value X.
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c

s d

g
⊢ Ptran(g, s, d) = ((g = Lo)⇒ ((d = Hi) = (s = Hi)))

s d

g
⊢ Ntran(g, s, d) = ((g = Hi)⇒ ((d = Lo) = (s = Lo)))

g
⊢ Gnd g = (g = Lo)

p

f

⊢ Pwr p = (p = Hi)

Figure 2.1: A Threshold Switching Model.

The formal specifications shown in Figure 2.1 constitute a threshold switching model of

CMOS transistor behaviour based on this representation of logic levels. The specifications

Pwr p and Gnd g model VDD and VSS as constant sources of Hi and Lo respectively. The

specifications for N-type and P-type transistors are intended to reflect the fact that these

devices do not transmit both logic levels equally well. For example, it follows from the

specification for an N-type transistor Ntran(g, s, d) that when the gate g has the value Hi

and the source s has the value Lo (i.e. when the gate-to-source voltage is large) then the

drain d must also have value Lo. This reflects the fact that the logic level modelled by Lo

is transmitted unchanged through an N-type transistor. But when both g and s have the

value Hi, then the value of d may be either Hi or X. The specification ‘Ntran(g, s, d)’ is

satisfied in both cases. This reflects the fact that the value Hi can be degraded to X when

it is transmitted through an N-type transistor. The specification for a P-type transistor

is similar. In this case, when g and s are both Lo the value of d can be either Lo or

X, reflecting the fact that the logic level modelled by Lo is only imperfectly transmitted

through a P-type transistor.

With Fourman’s model, the undesirable symmetry between inputs and outputs in Circ

disappears because, for example, it can be shown that:

Circ(i, o, Hi, Lo) = ((i = Hi)⇒ (o = Lo)) ∧ ((i = Lo)⇒ (o = Hi))

but not that:

Circ(i, o, Hi, Lo) = ((o = Hi)⇒ (i = Lo)) ∧ ((o = Lo)⇒ (i = Hi))

The threshhold problem disappears, because all that follows about the output o of the

pull-up circuit is that ¬(o = Lo). It does not follow that o = Hi. Also:
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Circ(i, o, Lo, Hi) = ((i = Hi)⇒ ¬(o = Lo)) ∧ ((i = Lo)⇒ ¬(o = Hi))
Circ(i, o, Hi, Hi) = ((i = Hi)⇒ ¬(o = Lo)) ∧ ((i = Lo)⇒ (o = Hi))

It does not , however, follow that:

Circ(i, o, Lo, Hi) = ((i = Hi)⇒ (o = Hi)) ∧ ((i = Lo)⇒ (o = Lo))
Circ(i, o, Hi, Hi) = ((i = Hi)⇒ (o = Hi)) ∧ ((i = Lo)⇒ (o = Hi))

2.12 Hoare’s switch model

Hoare has proposed another approach to incorporating ‘weak values’ into a logical switch

model. His idea is that each point p in a circuit be associated with both a value p, which

is T or F as in the simple switch model, and a strength δp. Strengths are also represented

by truth values: T represents a driven value and F a weak one. This idea is related to

Bryant’s model in which values-strength pairs are also used, but Bryant deals with the

case where there may be more than two values and/or strengths, and his strengths model

capacitive drive rather than transistor attenuation. In Hoare’s model, the behaviour of

transistors is defined by combining the simple switch model with rules that determine

whether a point is driven.

Ntran((g, δg), (s, δs), (d, δd)) = (g ⇒ (s = d)) ∧ (g ∧ ¬s ∧ ¬d⇒ (δs = δd))

Ptran((g, δg), (s, δs), (d, δd)) = (¬g ⇒ (s = d)) ∧ (¬g ∧ s ∧ d⇒ (δs = δd))

These definitions are slightly different from the ones Hoare gives, but they are closely

based on his ideas. The main difference is that Hoare makes the conservative assumption

that the gates of transistors must be strongly driven for them to conduct.

With these definitions, it follows that o = T in the pull-up circuit on page 47, but not

that δo = T, i.e. it can be proved that the output o has the value high, but not that this

value is driven. This is an improvement over Fourman’s model in which all that follows

is that o is ‘not low’. Applying Hoare’s model to Circ results in:

Circ((i, δi), (o, δo), (T, T), (F, T)) = (i = ¬o) ∧ δo

which says that i and o are inverses of each other and that the output is always driven.

It does not follow that driving the output will drive the input, so the model is correctly

asymmetrical. It also follows that:

Circ((i, δi), (o, δo), (F, T), (T, T)) = (o = i)
Circ((i, δi), (o, δo), (T, T), (T, T)) = (o = T) ∧ ((i = F)⇒ δo)
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The first of these equations shows that when a and b are driven low and high respectively

(i.e. with the opposite values used in an inverter), then i and o will be equal, but neither

will be driven. The second shows that when a and b are both driven high, then the output

is always high, but it is only driven when the input is low.

The extra δ-variables make Hoare’s switch model more complex than Fourman’s, but it

appears to approximate the electrical intuition of circuits a little better. It also nicely

separates the purely logical relations between values from considerations as to whether

these values are driven. Hoare’s model retains the logical purity of the simple switch

model and handles threshhold effects by a separate additional mechanism. Thus a proof

in the simple switch model can be extended to a proof in Hoare’s model just by doing

some extra calculations about δ-variables.

A much-discussed problem with all three switch models is that they can assert that two

values are equal when in practice they cannot possibly be. This means that the assertions

derived from circuits by ∧-ing together the individual transistor predicates may be false.

For example, taking the simple switch model, if i and o are driven T and b is driven F

in Circ, then it will follow from the simple switch model that T = F, which is just not

true. The switch models are useful only when there are no shorts; this must be proved

separately.

2.13 Summary

The examples presented here demonstrate that higher-order logic is a formalism in which

a wide variety of behaviour and structure can be specified.

Hardware verification requires various kinds of reasoning.

• The adder example shows the need for mathematical induction (both to deal with

iterated structures and for proving arithmetic lemmas).

• The multiplier example shows the need for reasoning about temporal concepts (Next,

Stable etc.).

• The Dtype and unit-delay show the need for reasoning about abstractions between

different time scales.

All these kinds of reasoning can be done using the standard inference rules of logic.
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Chapter 3

Temporal Abstraction

c©Thomas F. Melham

This chapter is condensed by Mike Gordon from Tom Melham’s PhD The-

sis, which was subsequently revised and published as the book “Higher Order

Logic and Hardware Verification” by Thomas F Melham, Cambridge Tracts in

Theoretical Computer Science 31, Cambridge University Press, 1993.

The formal specification of required behaviour for a large device—a microprocessor, for

example—is unlikely to include as much information about how the device behaves over

time as will be given by a detailed model of its design. A realistic model of a microproces-

sor might, for example, describe its behaviour at a level of temporal detail which includes

information about system timing and propagation delay. But an abstract specification for

this device is more likely to describe it as a finite state machine, in which the emphasis

is on the sequence of operations carried out by the device, rather than the exact times

at which these operations occur. This specification would then represent a temporal ab-

straction of the more detailed behaviour given by the model. It may, for example, state

the behaviour a device is expected to exhibit at only certain significant or ‘interesting’

points of time, and leave unspecified the details of any intermediate states through which

the device must pass to realize this behaviour. In this case, the specification will employ

a more abstract notion of time than would be used in a more detailed design model—i.e.

a model that does describe the device’s behaviour at these intermediate states. A cor-

rectness condition based on temporal abstraction must therefore establish a relationship

between two different formal representations of time: an ‘abstract’ representation of time

in the specification, and a ‘concrete’ representation of time in the model.

In the general case, each unit of discrete time in the specification corresponds to an

interval of discrete time in the more detailed design model. In this case, the specification

describes the values that appear on the external wires of the device at fewer points of ‘real’

time than the model does. Each point of ‘abstract time’ in the specification corresponds

to a particular point of ‘concrete time’ in the model. And, at these corresponding points

in time, the model and the specification impose the same constraint on the values that

can appear on the external wires of the device. But the model also constrains these values

at points of concrete time which lie between what are considered to be adjacent points of

53
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time at the more abstract level of the specification. A correctness statement that relates

this model to the more abstract specification must therefore establish a correspondence

between two different time-scales: a ‘fine-grained’ time-scale in the model and a ‘coarse-

grained’ time-scale in the specification.

This correspondence can be described formally by a function that maps each point of

abstract time in the specification to a corresponding point of concrete time in the model.

Such a function is a time mapping that describes the precise relationship between the

abstract time-scale used in the specification and the concrete time-scale used in the more

detailed model. A simple example is shown in Figure 3.1. The solid lines in this diagram

represent continuous or real time. The dots represent the points of real time which

constitute the two discrete time-scales involved: the concrete time-scale tc used in the

model, and the abstract time-scale ta used in the specification. The mapping f describes

the relationship between these two time-scales. To every point of time t on the abstract

time-scale, the function f assigns a corresponding point of concrete time ‘f t’ such that

the order of time is preserved:

⊢ ∀ t1 t2. (t1 < t2)⇒ (f t1 < f t2)

This establishes a correspondence between units of time on the abstract time-scale and

intervals of time on the concrete time-scale by mapping successive points of abstract time

to selected points of concrete time.

Any correspondence between successive units of abstract time and contiguous intervals

of concrete time can be described formally in logic by a time mapping of this kind. The

particular point of concrete time assigned by such a function to each point of abstract

time will, of course, depend on the exact relationship between the model and the specifi-

cation involved. For example, each unit of abstract time in the specification for a clocked

synchronous device might correspond to an interval of concrete time between two rising

edges of a clock signal in the model. In this case, the function f would map points of

time on the abstract time-scale to the points of concrete time at which these rising edges

of the clock occur. A detailed account of how such a function can be defined is given in

Section 3.2.
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concrete time tc:
0 1 2 3 4 5 6 7

abstract time ta:
0 1 2

Figure 3.1: A Mapping between Time-scales.
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Given an appropriately-defined mapping f from abstract time to concrete time, a cor-

rectness statement that relates a model to a specification at a higher level of temporal

abstraction can be formulated in logic as follows. Suppose that the two logical terms

M [c1, . . . , cn] and S[a1, . . . , an]

are the model of a device and an abstract specification of required behaviour, respectively.

To simplify matters, assume that the free variables in both the model and the specification

are functions of type num→bool, and that ci corresponds to ai for 1 ≤ i ≤ n. If the

specification is a temporal abstraction of the model (in the sense discussed above) and if

the device is correct, then each sequence of values ai in the specification will correspond to

a subsequence of the values given by the variable ci in the model. Each function ai in the

specification will represent a sequence of values which could be obtained by ‘sampling’ the

function ci at only those points of concrete time which are significant at the abstract level

of the specification, and therefore correspond to points of discrete time on the abstract

time-scale used in the specification.

Given a function f that describes this correspondence, a correctness statement that relates

the model to the specification can be formulated as shown below.1

⊢ ∀c1 · · · cn. M [c1, . . . , cn]⇒ S[c1 ◦ f, . . . , cn ◦ f]

This theorem states that if the functions c1, . . . , cn satisfy the temporally detailed con-

straint imposed by the model, then the functions c1◦f, . . . , cn◦f will satisfy the temporally

abstract specification of required behaviour. Here, the model describes the values that

appear on each external wire ci at points of fine-grained or concrete time. The function

f specifies which of these points of concrete time correspond to points of time on the

abstract time-scale. Composition on the right with f constructs an abstract sequence of

values ‘ci ◦ f’ from each detailed sequence of values ci by sampling the function ci at these

selected points of concrete time. The combination of abstract sequences obtained in this

way must satisfy the abstract specification of required behaviour.

The resulting correctness statement asserts that the combinations of values present on the

external wires of the device satisfy the specification of required behaviour at each point in

time that is regarded as significant or important at the abstract level of description. That

is, the behaviour of the device when observed at only those selected points of concrete time

specified by the function f satisfies the temporally abstract specification of its required

behaviour.

The advantage of temporal abstraction is that it hides irrelevant details about intermediate

state transitions from the abstract specification of required behaviour for a device. Points

1f ◦ g denotes the functional composition of f and g, i.e. (f ◦ g) x = f(g x).
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of time on the abstract time-scale in a correctness theorem based on temporal abstraction

correspond to selected points of time on the more detailed concrete time-scale, and it

is only at these selected points of time that the device’s behaviour is stipulated by the

abstract specification. Furthermore, the use of a time mapping to relate abstract and

concrete time-scales not only allows the behaviour of the device at other points of time to

be left unconstrained by the specification, but also makes intermediate states transitions

completely invisible to the specification. Intermediate states represented by points of

time on the concrete time-scale used in the model simply do not exist on the abstract

time-scale used in the specification. This allows the specification to describe the required

behaviour of a device at only significant points of time, without also having to indicate

precisely which points of time are in fact of interest.

3.1 Two Problems

Correctness is stated by an implication having the form M ⇒ S, in which the model is

the antecedent and a substitution instance of the specification is the consequent. There

are two problems that can arise when correctness is stated by an implication of this form.

These are discussed briefly in the two sections that follow.

3.1.1 Underspecification

Whenever the behaviour which a device is required to exhibit is stated formally by a partial

specification, there is the possibility that this partial specification in fact underspecifies

the intended behaviour of the device. That is, a partial specification may inadvertently

fail to stipulate some important aspect of the device’s intended behaviour, and therefore

be satisfied by a wider range of values than is actually intended by the designer. In this

case, the constraint expressed by the specification will be satisfied by some combinations

of values which in fact ought not to appear on the external wires of the device. But

when correctness is formulated as logical implication, a model which is satisfied by these

undesirable combinations of values (and therefore represents an incorrect design) will,

according to this formal notion of correctness, be considered correct with respect to this

specification.

This is much less likely to happen when correctness is stated formally by logical equiva-

lence. If the specification and the model are required to express the same constraint on

the free variables which they contain, then any weakness in the specification must either:

(1) be matched exactly by a corresponding degree of ‘nondeterminism’ in the model, or

(2) make it impossible to complete the proof of correctness. But if the criterion of correct-

ness is relaxed to logical implication, then the specification is allowed to express a strictly

weaker constraint than the model. An inadequate specification is therefore less likely to be
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detected during the course of a proof, since the behaviour given by the model is required

only to lie somewhere within the range of behaviour stipulated by the specification.

There is no complete solution to this problem, since it is a problem of inaccuracy in the

specification of intended behaviour for a device. It is not possible to prove that a par-

tial specification in fact covers all the essential aspects of a device’s intended behaviour.

Whenever it is possible to leave something unspecified, it is also possible to leave some-

thing essential unspecified.

3.1.2 Inconsistent Models

A second problem with using logical implication to express correctness is that an incon-

sistent model then trivially satisfies any specification. An inconsistent model is one which

cannot be satisfied by any assignment of values to its free variables. A simple example

is the term ‘Pwr x ∧ Gnd x’, where Pwr x and Gnd x are instances of the specifications

for power and ground defined in Section 2.3. This term is logically equivalent to F (i.e.

falsity), since no boolean value x can satisfy both Pwr x and Gnd x. If satisfaction is

formulated as logical implication, then this inconsistent model satisfies (i.e. implies) any

specification. In general, if the model on the left hand side of the implication:

M [v1, . . . , vn]⇒ S[v1, . . . , vn]

is false for all values of the variables v1, . . . , vn, then this implication is a theorem, no

matter what constraint is imposed on these variables by the term on the right hand side

of the implication. This is clearly unsatisfactory, since a formal theorem of this kind

provides no meaningful assurance of functional correctness.

The ideal solution to this problem would be to have a collection of specifications for the

primitive components used in designs that always yields a consistent model, no matter

how this model is constructed from these primitives using the syntactic operations of

composition (‘∧’) and hiding (‘∃’). This, however, may require the specifications for

primitive components to be of considerable complexity. A more pragmatic solution is

to check the consistency of the particular design model on which proof of correctness is

based. This can be done by proving a consistency theorem of the form:

⊢ ∃v1 . . . vn. M [v1, . . . , vn]

in addition to proving a correctness statement of the general form illustrated by the

implication shown above. Proving this extra consistency theorem ensures that the model

shown above can be satisfied by at least one combination of values for the variables

v1, . . . , vn. It therefore shows that this model does not satisfy a specification merely

because it is inconsistent. If none of the external wires of a device are bidirectional (i.e.
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every wire of the device is either an input or an output), then a stronger consistency

theorem can be formulated:

⊢ ∀i1 . . . in. ∃o1 . . . om. M [i1, . . . , in, o1, . . . , om]

This theorem states that for any collection of input values i1, . . . , in, there are output

values o1, . . . , om which, according to the model, are consistent with them. Again, this

shows that the model does not satisfy a specification of required behaviour merely because

it is inconsistent.

In general, it is necessary to prove a consistency theorem of one of these two kinds, in

addition to a correctness theorem, whenever a satisfaction relation based on implication

is used. Consistency theorems are usually not proved in most of the examples presented

in the literature, since the models which are used are generally simple enough to be easily

seen to be consistent. But when formal verification is applied to much larger examples,

it may be necessary to consider more explicitly the possibility that the models involved

might be inconsistent.

3.2 More on Temporal Abstraction

With temporal abstraction, the abstract specification for a device simply describes its

externally observable behaviour at fewer points of time than the formal model of its

design. The grain of discrete time used in the specification is ‘coarser’ than the grain of

discrete time used in the model, and each unit of discrete time at the abstract level of

description corresponds to an interval of time at the more detailed level of description.

To express this abstraction relationship formally in logic, the idea of a mapping between

time-scales was introduced. A mapping of this kind specifies a correspondence between

successive points of time on an abstract time-scale and selected points of time on a con-

crete time-scale. Given an appropriate time mapping f, a correctness statement based on

temporal abstraction by sampling is formulated in logic as shown below:

⊢M [c1, . . . , cn]⇒ S[c1 ◦ f, . . . , cn ◦ f]

The model M [c1, . . . , cn] in this correctness theorem describes the values that appear on

each external wire ci at points of fine-grained or concrete time. The abstract specification

is a constraint of the form S[a1, . . . , an], and specifies the desired behaviour in terms of the

values allowed on its external wires at points of coarse-grained or abstract time. The time

mapping f defines the intervals of concrete time that correspond to each unit of abstract

time. The correctness theorem states that whenever a sequences of values denoted by ci

satisfies the temporally detailed model, the subsequence ci ◦ f, obtained by sampling ci at
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the points of concrete time specified by f, will satisfy the temporally abstract specification

of required behaviour. Proving a correctness statement of this form involves showing that

if the sequences c1, . . . , cn take on the intermediate values defined by model, then the

values of these sequences the selected points of time specified by the time mapping f will

satisfy the abstract specification.

This correctness relationship is formulated as an implication, rather than an equivalence,

because there may be several non-equivalent ways of implementing behaviour specified by

the abstract constraint S[a1, . . . , an]. The implementation in which the sequences c1, . . . ,

cn take on the intermediate values defined by the model M [c1, . . . , cn] is only one such

method. In the example given above, every sequence ci in the model (every ‘signal ’) is

sampled using the same time mapping f. In general, however, it is not necessary that the

same time mapping be used for every signal. For example, some signals may be sampled

at points of time corresponding to the rising edges of a clock, while others are sampled at

points of time corresponding to the falling edges of a clock.

Any correspondence between successive units of abstract time and contiguous intervals

of concrete time can be specified formally in logic by a time mapping of the kind used

in the correctness statement shown above. Such a mapping is just a function f of type

num→num that assigns a particular point of concrete time to each point of abstract time,

as shown in Figure 3.2. Not every function of logical type num→num, however, specifies

a valid correspondence between time-scales. A mapping from abstract to concrete time

must be a strictly increasing function on the natural numbers. This requirement on a

time mapping f can be expressed formally by the predicate Incr defined as follows.

⊢ Incr f = ∀ t1 t2. (t1 < t2)⇒ (f t1 < f t2)

This ensures that if time t1 comes before time t2 on the abstract time-scale, then this

relationship also holds between the corresponding points of time f t1 and f t2 on the

concrete time-scale.
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Figure 3.2: A Typical Mapping between Time-scales.
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3.2.1 Constructing Mappings between Time Scales

The first step in the formulation of a correctness statement that involves temporal ab-

straction by sampling is to define an appropriate mapping from the abstract time-scale

used in the specification to the concrete time-scale used in the model. In general, the

points of concrete time that correspond to points of abstract time may depend on the

behaviour of the device itself. In this case, a fixed mapping from abstract time to concrete

time—for example a function that maps successive points of abstract time to every tenth

point of concrete time—is not possible.

Consider, for example the correspondence between time-scales shown below in Figure 3.3.

Here, successive points of abstract time correspond to the points of concrete time at which

there is a rising edge of the clock signal ck. The precise correspondence between concrete

time and abstract time depends on the behaviour of this clock signal, and the mapping f

must be defined in such a way as to reflect this dependence. This can be done formally

by constructing the function f shown in Figure 3.3 from the predicate ‘Rise ck’, which

identifies those points of time on the concrete time-scale at which the rising edges of the

clock ck occur.

In general, any time mapping can be defined formally by means of a predicate that specifies

which points of time on the concrete time-scale are to correspond to points of time on the

abstract time-scale. The idea is to define this predicate such that it is true of precisely

those selected points of concrete time which are to be in the image of the mapping from

abstract time to concrete time. The free variables in the model can themselves be used

as parameters to this predicate. In synchronous systems, for example, the appropriate

points of concrete time can often be identified by the value of a clock signal ck. (In

asynchronous systems, handshaking signals might be used for the same purpose.) The

required time mapping can then be constructed from the values given by this predicate

on concrete time. This allows the mapping from abstract time to concrete time used in

a correctness statement to reflect the time-dependent behaviour of the device itself (as

described by the model). The time mapping does not assign a fixed point of concrete

-
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Figure 3.3: A Time Mapping which Depends on a Clock ck.
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Figure 3.4: Constructing a Time Mapping fp from a Predicate p.

time to each point of abstract time, but establishes a correspondence between time-scales

that covers the entire range of time-dependent behaviour described by the model.

To construct a time mapping in this way, it sufficient to define a predicate p:num→bool

that is true of precisely those points of concrete time which are to correspond to points

of abstract time. Given such a predicate p, it is possible to construct a mapping fp which

assigns each point of abstract time n to the nth point of concrete time at which p is

true, as shown in Figure 3.4 above. If for any predicate p and abstract time n the term

‘Timeof p n’ denotes the point of concrete time at which p is true for the nth time, then

the mapping between time-scales fp shown in this diagram can be defined by:

⊢ fp n = Timeof p n (i.e. ⊢ fp = Timeof p)

It remains to define the function Timeof formally in higher order logic.

3.2.2 Defining the Function Timeof

The term ‘Timeof p n’, as informally described above, may in fact be undefined for some

values of p and n. If the predicate p true at only a finite number of points of concrete

time, then there will be some number N such that for all n > N there is no concrete time

at which p is true for the nth time. The value of Timeof p n is therefore ‘undefined’ for

these values of n, and the function Timeof p is itself a partial function.

In higher order logic, however, all functions must be total functions. The higher order

function Timeof will therefore be defined to be a total function whose value is only partially

specified. This will be done by using the primitive constant ε to define Timeof such that

‘Timeof p’ denotes the required mapping between time-scales when the predicate p is true

infinitely often, and denotes a mapping about which nothing can be proved when p is true

only finitely often.



62 Chapter 3. Temporal Abstraction

3.2.2.1 The Relation Istimeof

The formal definition of Timeof is based on a relation Istimeof, defined such that the term

‘Istimeof p n t’ has the meaning ‘p is true for the nth time at time t’. The definition of

this relation is done by primitive recursion on the natural number n. When n is zero, the

defining equation is:

⊢ Istimeof p 0 t = p t ∧ ∀t′. t′ < t⇒ ¬(p t′)

That is, the predicate p is true for the first (i.e. the 0th) time at concrete time t if p is

true at time t and false at every point of time prior to time t. For the (n+1)th time at

which p is true, the defining equation is:

⊢ Istimeof p (Suc n) t = ∃t′. Istimeof p n t′ ∧ Next t′ t p

where the auxiliary predicate Next is defined by:

⊢ Next t1 t2 p = t1 < t2 ∧ p t2 ∧ ∀t. (t1 < t ∧ t < t2)⇒ ¬p t

In this case, the defining equation for Istimeof states that p is true for the (n+1)th time

at concrete time t if there exists a point of concrete time t′ prior to time t at which p is

true for the nth time, and t is the next time after t′ at which p is true. To summarize, the

primitive recursive definition of the relation Istimeof is given by the two theorems shown

below.

⊢ Istimeof p 0 t = p t ∧ ∀t′. t′ < t⇒ ¬p t′

⊢ Istimeof p (Suc n) t = ∃t′. Istimeof n p t′ ∧ Next t′ t p

3.2.2.2 A Theorem about Istimeof

This primitive recursive definition of Istimeof p n t captures the idea that the predicate

p is true for the nth time at concrete time t. There is no guarantee, however, that such

a time t exists for all values of p and n. In order to use the relation Istimeof to define

the function Timeof, it is necessary to show that if the predicate p is true infinitely often,

then for all n there is a unique time t at which p is true for the nth time. That is, if p

is true infinitely often, then the relation Istimeof p n t defines a unique value t for each

value of n, and therefore in fact represents well-defined total function that maps p and n

to t.

The condition that p must be true at an infinite number of points of concrete time is

stated formally by the predicate Inf defined below.

⊢ Inf p = ∀t. ∃ t′. t′ > t ∧ p t′
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Given this predicate, it is straightforward to show that if p is true infinitely often, then

for all n there exists a unique time t at which p is true for the nth time:

⊢ Inf p⇒ ∀n. ∃! t. Istimeof p n t (3.1)

The formal proof of this theorem proceeds by proving the existence and uniqueness parts

separately. The existence of t follows by induction on n, using the well ordering property

of natural numbers:

⊢ ∀p.∃t.p t⇒ ∃t. p t ∧ ∀t′.t′ < t⇒ ¬p t′

to infer from the assumption Inf p that there is always a smallest next time at which the

predicate p is true. The uniqueness of t also follows by induction on n.

3.2.2.3 Using Istimeof to Define Timeof

Given theorem (3.1), the relation Istimeof can be used to define the function Timeof as

follows. Using the primitive constant ε, the function Timeof can be defined formally by

the equation shown below.

⊢ Timeof p n = ε (Istimeof p n)

This equation defines the term Timeof p n to denote some time, t say, such that Istimeof p n t

is true. If no such time exists, then Timeof p n denotes an arbitrary natural number. Us-

ing the primitive constant ε, this definition makes the term ‘Timeof p’ always denote a

total function. The term ‘Timeof p n’ denotes some natural number for all values of n

and p, even when the predicate p is true at only a finite number of points of concrete

time.

If, however, the predicate p is true infinitely often, then for all n there will exist a unique

time t such that Istimeof p n t is true. Thus, if Inf p holds, then Timeof p n will in fact

denote the unique time at which p is true for the nth time, as desired. More formally, an

immediate consequence of the existence part of theorem (3.1) is:

⊢ Inf p⇒ Istimeof p n (Timeof p n)

from which it follows immediately that:

⊢ Inf p⇒ p(Timeof p n)

⊢ Inf p⇒ ∀t. (t < (Timeof p 0))⇒ ¬p t

That is, if the predicate p is true infinitely often, then Timeof p n always denotes a point

of concrete time at which p is in fact true, and Timeof p maps 0 to the first time at which
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p is true. From the uniqueness part of theorem (3.1) it also follows that Timeof p denotes

an increasing function from abstract to concrete time, and that this function does not

skip any points of concrete time identified by the predicate p:

⊢ Inf p⇒ ∀n. (Timeof p n) < (Timeof p (n+1))

⊢ Inf p⇒ ∀n t. (Timeof p n) < t ∧ t < (Timeof p (n+1))⇒ ¬p t

These lemmas about Timeof show that if the predicate p is true infinitely often, then the

term ‘Timeof p’ is a well defined total function and denotes the desired mapping from

abstract time to selected points of concrete time. The function Timeof p maps each point

of abstract time n to the point of concrete time at which p is true for the nth time, as

required.

3.2.3 Using Timeof to Formulate Correctness

Having formally defined the function Timeof, and shown that it constructs a well defined

time mapping for any predicate p that is true at an infinite number of points of concrete

time, it is possible to use Timeof to formulate correctness theorems based on temporal

abstraction by sampling. The time mapping required for such a correctness theorem just

an increasing function f of type num→num. Any such function can be defined using

Timeof and an appropriate predicate p which indicates the points of concrete time that

are to correspond to points of abstract time. Formally, the property that a function f is

strictly increasing is logically equivalent to the assertion that f can be constructed from

a predicate p for which Inf p holds:

⊢ ∀f. Incr f = ∃ p. Inf p ∧ f=Timeof p

This theorem follows from the definition of the constant Incr and the properties of Timeof

discussed above in Section 3.2.2.3.

If p is an appropriate predicate that indicates which points of concrete time correspond to

points of abstract time, then a correctness theorem that relates a detailed design model

M [c1, . . . , cn] to an abstract specification S[a1, . . . , an] can be formulated in logic as shown

below:

⊢M [c1, . . . , cn]⇒ S[c1 ◦ (Timeof p), . . . , cn ◦ (Timeof p)]

This correctness theorem states that whenever the signals c1 . . . , cn satisfy the model,

the abstract signals constructed by sampling c1, . . . , cn when the predicate p is true will

satisfy the temporally abstract specification. In the general case, the predicate p can be

defined in terms of the variables c1, . . . , cn, in order to make the times at which the values

in the model are sampled depend on the behaviour of the device itself.
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If when is an infix constant defined formally as follows:

⊢ s when p = s ◦ (Timeof p)

then this correctness statement can be written:

⊢M [c1, . . . , cn]⇒ S[c1 when p, . . . , cn when p]

Since every mapping from abstract to concrete time can be constructed using ‘Timeof’

from an appropriate predicate p, any correctness relationship based on temporal abstrac-

tion by sampling can be expressed in this form.

The example given in the next section shows how the when operator defined above can

be used to formulate the correctness of a D-type flip flop with respect to the abstract

specification of one-bit unit delay register.

3.3 A Simple Example

A commonly used register-transfer level device is the unit delay, described formally by

the specification shown below.

Del
i o ⊢ Del(i, o) = ∀t. o(t+1) = i t

This specification simply states that the value on the output o is equal to the value on

the input i delayed by one unit of discrete time.

The unit delay device described by this specification is an abstraction—there are many

circuits that can implement the abstract behaviour described by the specification Del(i, o).

An implementation is a simplification of the rising edge triggered D-type flip flop discussed

in Section 2.9. The sequential behaviour of this device is modelled in logic by the term

Dtype(ck, d, q) defined below:

Dtype

⊲
d

ck

q

⊢ Dtype(ck, d, q) = ∀t. q(t+1) = (Rise ck t→ d t | q t)

⊢ Rise ck t = ¬ck(t) ∧ ck(t+1)

Informally, the D-type device shown above implements a unit delay by sampling the input

value d when the clock rises and holding this value on the output q until the next rise

of the clock. In this way the D-type delays by one clock period the sequence of values
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consisting of the values present on the input d at successive rising edges of the clock

ck. This suggests that the time mapping used to relate the model Dtype(ck, d, q) to the

abstract specification Del(i, o) should map successive points of abstract time to the points

of concrete time at which the clock rises.

Using the constant Rise, the required time mapping is given by the term ‘Timeof (Rise ck)’.

Given the mapping between time-scales denoted by this term, a correctness statement that

relates the D-type model to the unit delay specification can then formulated as shown

below:

⊢ Inf(Rise ck)⇒ (Dtype(ck, d, q)⇒ Del(d when (Rise ck), q when (Rise ck)))

This correctness theorem states that if the sequences given by the variables ck, d, and q

satisfy the model, then the abstract sequences obtained by sampling d and q at successive

rising edges of the clock ck will satisfy the abstract specification for a unit delay device.

Here, there is a family of sampling functions used to relate the model to the abstract

specification. For each value of the clock ck, the term Rise ck denotes an appropriate

predicate that identifies the points of concrete time which at which the clock rises. The

infix when operator is then used to sample the sequences d and q whenever this predicate

is true.

The assumption that the clock rises infinitely often is a validity condition on the abstrac-

tion relationship expressed by this correctness statement. The theorem asserts that the

specification represents a valid abstract view of the behaviour of a D-type device only if

the validity condition ‘Inf(Rise ck)’ is satisfied. This validity condition on the clock must

be met by the environment in which the D-type flip flop is placed. The condition itself is

as unrestrictive as possible: the clock ck is not required to be regular or have a minimum

period. The liveness condition on the clock input expressed by Inf(Rise ck) is sufficient

for the D-type device to function correctly as specified by Del(i, o)

The proof of this correctness theorem is straightforward. The main step is an induction

on the number of time steps between adjacent rises of the clock, showing that the value

on the input d that is sampled at each rising edge of the clock ck is held on the output

q until the next rising edge. The correctness theorem then follows easily from this result

and the properties of Timeof proved above in Section 3.2.2.3.

This proof provides a very simple example of a common type of temporal abstraction,

where contiguous intervals of concrete time correspond to successive units of abstract

time. Examples involving detailed timing information or several different time mappings

in the same correctness statement are typically much more complex than the simple

example given here. But—as far as the abstraction relationship itself is concerned—more

complex examples of temporal abstraction by sampling involve the same general approach

as illustrated by this example.
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Model checking

Temporal logic has already been introduced as a way of extending Floyd-Hoare

logic to deal with continuously-running programs and hardware specified in

an HDL. Temporal logic can also be used to reason directly about hardware

structures. An important technique is Model checking, that allows certain

properties to be established completely automatically. Particularly efficient

model checking algorithms exist for branching-time logics, as opposed to the

linear time logics introduced earlier.

4.1 Transition systems

Consider the following circuit (which could be used to generate acknowledgements from

a handshake request):1

dackdreq
q0

q0bar
a0

or0
a1

This is represented in higher order logic by a formula like:

1This example was supplied by John Herbert.

67
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∀dreq dack.

RECEIVER(dreq,dack) =

(∃q0 qbar0 a0 or0 a1.

DTYPE_BAR(dreq,q0,qbar0) ∧

AND(qbar0,dack,a0) ∧

OR(q0,a0,or0) ∧

AND(dreq,or0,a1) ∧

DTYPE(a1,dack))

Using the usual methods, this simplifies to:

∀dreq dack.

RECEIVER(dreq,dack) =

(∃q0.

(∀t. q0(t + 1) = dreq t) ∧

(∀t. dack(t + 1) =

dreq t ∧ (q0 t ∨ (¬q0 t ∧ dack t))))

If the state is represented by a triple (dreq,q0,dack) consisting of the value being input

and the values stored in the two registers, then the implementation RECEIVER(dreq,dack)

defines a transition system:

(dreq, q0, dack) ---> (dreq’, dreq, dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

For some temporal logics there are relatively efficient algorithms for automaticaly checking

whether certain kinds of temporal formulae hold of a transition system. This is a very

active and rapidly-changing research area, and it probably provides the most successful

applications of formal methods for hardware to real world problems.

General principles tell us that fully automatic methods are not applicable to all problems,

so attempts are in progress to combine human-guided formal verification with model

checking and other decision procedure based techniques.

4.2 Computation Tree Logic (CTL)

Model checking was introduced by Clarke and Emerson in the early 1980s. The logic they

proposed, which is still widely used, is called Computation Tree Logic (CTL). This has

the following well-formed formulae (wffs):
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wff ::= constant (Constant)
| ¬wff (Negation)
| wff 1 ∧ wff 2 (Conjunction)
| wff 1 ∨ wff 2 (Disjunction)
| wff 1 ⇒ wff 2 (Implication)
| AXwff (All successors)
| EXwff (Some successors)
| A[wff 1 U wff 2] (Until – along all paths)
| E[wff 1 U wff 2] (Until – along some path)

CTL is a branching time logic: it allows one to specify that a property hold along all paths

(A) through a transition system or just some paths (E). Time may branch as a result of

non-determinism in the model. This can arise in several ways: for example as a result

of a partially specified environment (different ‘futures’ resulting from different inputs) or

due to ‘internal’ non-determinism in the system (e.g. the next-state of the system is not

fully specified).

If R : α × α→bool then an R-path is an infinite sequence of states represented as a

function σ : num→α such that: ∀t. R(σ(t), σ(t+1)) (i.e. successive state are related by

R).

Let Path(R, s)σ be true if σ is an R-path starting from s, i.e.:

Path(R, s)σ = (σ(0)=s) ∧ ∀t. R(σ(t), σ(t+1))

CTL wffs denote predicates on pairs (R, s), where R is a transition relation and s a state.

Thus define:

¬P = λ(R, s). ¬(P (R, s))
P ∧ Q = λ(R, s). P (R, s) ∧ Q(R, s)
P ∨ Q = λ(R, s). P (R, s) ∨ Q(R, s)
P ⇒ Q = λ(R, s). P (R, s) ⇒ Q(R, s)
AXP = λ(R, s). ∀s′. R(s, s′) ⇒ P (R, s′)
EXP = λ(R, s). ∃s′. R(s, s′) ∧ P (R, s′)
A[P U Q] = λ(R, s). ∀σ. Path(R, s)σ ⇒ ∃i. Q(R, σ(i)) ∧ ∀j. j < i ⇒ P (R, σ(j))
E[P U Q] = λ(R, s). ∃σ. Path(R, s)σ ∧ ∃i. Q(R, σ(i)) ∧ ∀j. j < i ⇒ P (R, σ(j))

4.3 Using CTL

Operators AF and EF (“F” is mnemonic for “Future”) are defined using the constant T

(‘true’) by:

AFP = A[T U P]

EFP = E[T U P]

AFP is true if P holds somewhere along every R-path – P is inevitable.
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AFP = A[T U P]

= λ(R, s). ∀σ. Path(R, s)σ ⇒ ∃i. P (R, σ(i)) ∧ ∀j. j < i ⇒ T(R, σ(j))
= λ(R, s). ∀σ. Path(R, s)σ ⇒ ∃i. P (R, σ(i))

EFP is true if P holds somewhere along some R-path – P potentially holds.

EFP = E[T U P]

= λ(R, s). ∃σ. Path(R, s)σ ∧ ∃i. P (R, σ(i)) ∧ ∀j. j < i ⇒ T(R, σ(j))
= λ(R, s). ∃σ. Path(R, s)σ ∧ ∃i. P (R, σ(i))

Operators AG and EG (“G” is mnemonic for “Global”) are defined by:

AGP = ¬EF(¬P )

EGP = ¬AF(¬P )

AGP is true if P holds everywhere along every R-path.

AGP = ¬EF(¬P )
= λ(R, s). (¬EF(¬P ))(R, s)
= λ(R, s). ¬(∃σ. Path(R, s)σ ∧ ∃i. (¬P )(R, σ(i)))
= λ(R, s). ¬(∃σ. Path(R, s)σ ∧ ∃i. ¬P (R, σ(i)))
= λ(R, s). ∀σ. ¬(Path(R, s)σ ∧ ∃i. ¬P (R, σ(i)))
= λ(R, s). ∀σ. ¬Path(R, s)σ ∨ ¬(∃i. ¬P (R, σ(i)))
= λ(R, s). ∀σ. ¬Path(R, s)σ ∨ ∀i. ¬¬P (R, σ(i))
= λ(R, s). ∀σ. ¬Path(R, s)σ ∨ ∀i. P (R, σ(i))
= λ(R, s). ∀σ. Path(R, s)σ ⇒ ∀i. P (R, σ(i))

EGP is true if P holds everywhere along some R-path.

EGP = ¬AF(¬P )
= λ(R, s). (¬AF(¬P ))(R, s)
= λ(R, s). ¬(∀σ. Path(R, s)σ ⇒ ∃i. (¬P )(R, σ(i)))
= λ(R, s). ¬(∀σ. Path(R, s)σ ⇒ ∃i. ¬P (R, σ(i)))
= λ(R, s). ∃σ. ¬(Path(R, s)σ ⇒ ∃i. ¬P (R, σ(i)))
= λ(R, s). ∃σ. Path(R, s)σ ∧ ¬(∃i. ¬P (R, σ(i)))
= λ(R, s). ∃σ. Path(R, s)σ ∧ ∀i. ¬¬P (R, σ(i))
= λ(R, s). ∃σ. Path(R, s)σ ∧ ∀i. P (R, σ(i))

A[PWQ] is true if along every path either P always holds, or Q holds sometime, and

until it does P holds.2

2The notation A[PWQ] is not standard.
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A[PWQ] = ¬E[(P∧¬Q)U(¬P∧¬Q)]
= λ(R, s). (¬E[(P∧¬Q)U(¬P∧¬Q)])(R, s)
= λ(R, s). ¬(E[(P∧¬Q)U(¬P∧¬Q)])(R, s)
= λ(R, s).
¬(∃σ. Path(R, s)σ

∧
∃i. (¬P∧¬Q)(R, σ(i))
∧
∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. ¬(Path(R, s)σ

∧
∃i. (¬P∧¬Q)(R, σ(i))
∧
∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
¬(∃i. (¬P∧¬Q)(R, σ(i))

∧
∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. ¬(¬P∧¬Q)(R, σ(i))
∨
¬(∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. ¬(∀j. j < i ⇒ (P∧¬Q)(R, σ(j)))
∨
¬(¬P∧¬Q)(R, σ(i))

= λ(R, s).
∀σ. Path(R, s)σ

⇒
∀i. (∀j. j < i ⇒ P (R, σ(j)) ∧ ¬Q(R, σ(j))
⇒
P (R, σ(i)) ∨Q(R, σ(i))

E[PWQ] is true if along some path either P always holds, or Q holds sometime, and

until it does P holds.3

3The notation E[PWQ] is not standard.
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E[PWQ] = ¬A[(P∧¬Q)U(¬P∧¬Q)]
= λ(R, s).
∃σ. Path(R, s)σ

⇒
∀i. (∀j. j < i ⇒ P (R, σ(j)) ∧ ¬Q(R, σ(j))
⇒
P (R, σ(i)) ∨Q(R, σ(i))

4.4 Examples of CTL formulae

Here are some typical CTL formulae:

• EF(Started ∧ ¬Ready)

It is possible to get to a state where Started holds but Ready does not

hold.

• AG(Req ⇒ AFAck)

If a request Req occurs, then it will eventually be acknowledged by Ack.

• AG(¬Req ⇒ AX¬Ack)

No acknowledgement Ack if no request Req on previous cycle.

• AG(AFDeviceEnabled)

DeviceEnabled holds infinitely often.

• AG(EFRestart)

From any state it is possible to get to a state for which Restart holds.

• AG(Req ⇒ A[Req U Ack])

If a request Req occurs, then it continues to hold, until it is eventually

acknowledged.

• AG(Req ⇒ AX(A[¬Req U Ack]))

Whenever Req is true either it must become false on the next cycle and

remains false until Ack, or Ack must become true on the next cycle.
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• AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack])))

Whenever Req is true and Ack is false then Ack will eventually become

true and until it does Req will remain true.

• AG[Enabled⇒ AG[Start⇒ A[¬Waiting U Ack]]]

If Enabled is ever true then if Start is true in any subsequent state then

Ack will eventually become true, and until it does Waiting will be false.

• AG[¬Req1 ∧ ¬Req2 ⇒ A[¬Req1 ∧ ¬Req2 U (Start ∧ ¬Req2)]]

Whenever Req1 and Req2 are false, they remain false until Start becomes

true with Req2 still false.

• AG[Req ⇒ AX(Ack ⇒ AF ¬Req)]

If Req is true and Ack becomes true one cycle later, then eventually Req

will become false.

• AXi P ≡ AX(AX(· · · (AX P ) · · ·))
︸ ︷︷ ︸

i instances of AX

P is true on all paths i units of time later.

• ABFi..j P ≡ AXi (P ∨ AX(P ∨ · · · AX(P ∨ AX P ) · · ·))
︸ ︷︷ ︸

j − i instances of AX

P is true on all paths sometime between i units of time later and j units

of time later.

• AG[Req ⇒ AX[Ack1 ∧ ABF1..6(Ack2 ∧ A[Waiting U Respond])]]

One cycle after Req, Ack1 should become true, and then Ack2 becomes

true 1 to 6 cycles later and then eventually Respond becomes true, but

until it does Waiting holds from the time of Ack2.
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4.5 CTL model checking algorithm

Call R computable if for any particular s the set of successor states {s′ | R(s, s′)} is finite

and computable.

Call P checkable for R if for any particular state s it is decidable whether P (R, s) is true.

Clearly if P and Q are checkable for R, then so are ¬P , P ∧ Q, P ∨ Q and P ⇒ Q. If

R is computable then AXP and EXP are also checkable for R.

If the set of states is finite, R is computable and P and Q are checkable for R, then

Clarke and Emerson showed that A[P U Q] and E[P U Q] are also checkable for R.

Consider first A[P U Q]. Define A[P U Q]i inductively by:

A[P U Q]0 = Q
A[P U Q]i+1 = A[P U Q]i ∨ (P ∧ AX(A[P U Q]i))

then A[P U Q]i(R, s) is true if along all R-paths of length i+1 or less there is a point

at which Q is true and at all earlier points of the path P is true.

Thus A[P U Q](R, s) = ∃i. A[P U Q]i(R, s).

If Q is is checkable forR, then {s | A[P U Q]0(R, s)} = {s | Q(R, s)} can be computed.

Suppose {s | A[P U Q]i(R, s)} has been computed, then {s | A[P U Q]i+1(R, s)}

consists of all states s in {s | A[P U Q]i(R, s)} plus all states s such that P (R, s) and

all of whose successors are in {s | A[P U Q]i(R, s)}. This set can be computed if P is

checkable for R and R is computable.

Thus an increasing sequence of sets of states can be computed:

{s | A[P U Q]0(R, s)} ⊆ {s | A[P U Q]1(R, s)} ⊆ {s | A[P U Q]2(R, s)} ⊆ · · ·

If the set of all states is finite then this sequence cannot continue to increase indefinitely.

Thus there is some i such that {s | A[P U Q]i(R, s)} = {s | A[P U Q]i+1(R, s)},

and then:
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{s | A[P U Q]i+2(R, s)}

= {s | (A[P U Q]i+1 ∨ (P ∧ AX(A[P U Q]i+1))(R, s))}

= {s | A[P U Q]i+1(R, s) ∨ (P (R, s) ∧ AX(A[P U Q]i+1)(R, s))}

= {s | A[P U Q]i+1(R, s)} ∪ ({s | P (R, s)} ∩ {s | AX(A[P U Q]i+1)(R, s)}

= {s | A[P U Q]i+1(R, s)}
∪ ({s | P (R, s)} ∩ {s | ∀s′. R(s, s′) ⇒ A[P U Q]i+1(R, s′)}

= {s | A[P U Q]i+1(R, s)}
∪ ({s | P (R, s)} ∩ {s | ∀s′. R(s, s′) ⇒ s′ ∈ {s | A[P U Q]i+1(R, s)}}

= {s | A[P U Q]i(R, s)}
∪ ({s | P (R, s)} ∩ {s | ∀s′. R(s, s′) ⇒ s′ ∈ {s | A[P U Q]i(R, s)}}

= {s | (A[P U Q]i ∨ (P ∧ AX(A[P U Q]i))(R, s))}

and hence {s | A[P U Q]j(R, s)} = {s | A[P U Q]i(R, s)} for all j ≥ i.

Thus

{s | A[P U Q](R, s)} = {s | A[P U Q]i(R, s)}

hence A[P U Q] is checkable for R.

A similar argument shows that E[P U Q] is checkable for R too. Define:

E[P U Q]0 = Q
E[P U Q]i+1 = E[P U Q]i ∨ (P ∧ EX(E[P U Q]i))

and proceed as before.

4.6 An example

Recall that:

∀dreq dack.

RECEIVER(dreq,dack) =

(∃q0.

(∀t. q0(t + 1) = dreq t) ∧

(∀t. dack(t + 1) =

dreq t ∧ (q0 t ∨ (¬q0 t ∧ dack t))))

This corresponds to the transition system:

(dreq, q0, dack) ---> (dreq’, dreq, dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

The transition relation, RRECEIVER say, corresponding to this transition system is:
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RRECEIVER((dreq,q0,dack),(dreq’,q0’,dack’)) =

(q0’ ⇔ dreq) ∧ (dack’ ⇔ dreq ∧ (q0 ∨ (¬q0 ∧ dack)))

which is equivalent to:

RRECEIVER((dreq,q0,dack),(dreq’,q0’,dack’)) =

(q0’ ⇔ dreq) ∧ (dack’ ⇔ dreq ∧ (q0 ∨ dack))

The vector of primed variables (dreq’,q0’,dack’) represent the ‘next state’. Note that

this relation is non-deterministic, because the value of dreq’ is not specified.

As an example formula to check consider EF(dreq∧ q0∧ dack) with respect toRRECEIVER.

First recall that in general:

EFP = E[T U P]

so {s | EFP (R, s)} is computed by iteratively generating:

S0 = {s | P (R, s)}

Si+1 = Si ∪ {s | ∃s
′. R(s, s′) ∧ s′ ∈ Si}

For the RECEIVER example the set of possible states is:

{000, 001, 010, 011, 100, 101, 110, 111}

where b2b1b0 denotes the state dreq = b2 ∧ q0 = b1 ∧ dack = b0.

The graph of the transition relation is:

000 100 110 111

101

011

001

010

0

1

123

3

3

3

A number i above a state indicates that the state is in the set Si defined below.
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To check EF(dreq ∧ q0 ∧ dack) take

P (RRECEIVER, b2b1b0) = b2 ∧ b1 ∧ b0

and hence:

S0 = {b2b1b0 | P (RRECEIVER, b2b1b0)}

Si+1 = Si ∪ {s | ∃b
′
2b

′
1b

′
0. R(b2b1b0, b

′
2b

′
1b

′
0) ∧ b′2b

′
1b

′
0 ∈ Si}

= Si ∪ {b2b1b0 | ∃b
′
2b

′
1b

′
0. (b′1 = b2) ∧ (b′0 = b2 ∧ (b1 ∨ b0)) ∧ b′2b

′
1b

′
0 ∈ Si}

Thus:

S0 = {111}

S1 = {111} ∪ {101, 110}

= {111, 101, 110}

S2 = {111, 101, 110} ∪ {100}

= {111, 101, 110, 110}

S3 = {111, 101, 110, 100} ∪ {000, 001, 010, 011}

= {111, 101, 110, 100, 000, 001, 010, 011}

Si = S3 (i > 3)

This shows that ∀s. EF(dreq ∧ q0 ∧ dack)(RRECEIVER, s).

4.7 Implementing model checking

The algorithm outlined in Section 4.5 computes the set of states for which a CTL wff

holds.

A good representation for this set is a BDD. For example, a set of states

{(x0, y0, z0), (x1, y1, z1), . . . , (xn, yn, zn)}

of RECEIVER would be represented as the BDD of the formula:

(dreq = x0 ∧ q0 = y0 ∧ dack = z0) ∨
(dreq = x1 ∧ q0 = y1 ∧ dack = z1) ∨

...
(dreq = xn ∧ q0 = yn ∧ dack = zn)

where dreq, q0 and dack are the three state variables and xi, yi and zi (i = 0, 1, . . . , n)

are truth value constants (i.e. T or F).

The transition relation RRECEIVER is:
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RRECEIVER((dreq,q0,dack),(dreq’,q0’,dack’)) =

(q0’ ⇔ dreq) ∧ (dack’ ⇔ dreq ∧ (q0 ∨ dack))

This formula can be represented by a BDD containing variables dreq, q0, dack, dreq’,

q0’, dack’. In general, if there are n state variables, then the transition relation is

represented as the BDD of a formula with 2n variables (each variable occurs primed and

unprimed).

Suppose B is a BDD representing a set of states for RECEIVER, then the formula repre-

senting the set of states satisfying AX B is:

∀dreq’ q0’ dack’. RRECEIVER ⇒ B[dreq’, q0’, dack’/dreq, q0, dack]

The BDD corresponding to RRECEIVER ⇒ B[dreq’, q0’, dack’/dreq, q0, dack] is com-

puted using standard BDD methods. Call this B1.

The BDD corresponding to ∀dack’. B1 is the BDD of

B1[T/dack’] ∧ B1[F/dack’]

This is also computed by standard methods. Call this B2. Similarly the BDD, B3 say,

corresponding to ∀q0’. B2 and then the BDD, B4 say, corresponding to ∀dreq’. B3 can

be computed. B4 is then the BDD representing AX B.

The formula representing the set of states satisfying EX B is:

∃dreq’ q0’ dack’. RRECEIVER ∧ B[dreq’, q0’, dack’/dreq, q0, dack]

The BDD corresponding toRRECEIVER ∧ B[dreq’, q0’, dack’/dreq, q0, dack] is computed

using standard BDD methods. Call this B1.

The BDD corresponding to ∃dack’. B1 is the BDD of

B1[T/dack’] ∨ B1[F/dack’]

This is also computed by standard methods. Call this B2. Similarly the BDD, B3 say,

corresponding to ∃q0’. B2 and then the BDD, B4 say, corresponding to ∃dreq’. B3 can

be computed. B4 is then the BDD representing EX B.

This method is easily generalised from this example to provide a way of computing the

BDDs of AX P and EX P from the BDDs of P for an arbitrary finite set of states and

transition relation R.

The BDD of A[P U Q] is computed by computing the BDDs for A[P U Q]i for

i = 0, 1, 2, . . .. The equality of BDDs is efficient to check (constant time using a hash

table), so it can be detected when {s | A[P U Q]i(R, s)} = {s | A[P U Q]i+1(R, s)}.

The BDD of E[P U Q] is computed analogously.

This method of using BDDs to represent and compute sets of states is called symbolic

model checking and was independently discovered by several people. The widely used

system SMV (by Ken McMillan) uses it.

Note also that BDDs have other uses for hardware verification. They can be used for
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efficient Boolean equivalence checking of circuits (much more efficient than naive brute-

force enumeration). BDDs can also be used to represent transition relations and compute

the next state in cycle-based simulation.

4.8 State transition systems and reachability

Assume a type of states: type states and an initial set of states given by a predicate B:

• B : states→bool

• B s means s is an initial state

A state transition relation R is such that

• R : states × states→bool

• R(s, s′) means s′ a successor to s

An example of a state transition system is a single machine:

• State transition function: δ

δ : states × inputs→states

• Define state transition relation:

R(s, s′) = ∃inp. s′ = δ(s, inp)

Note that a deterministic machine gives rise to non-deterministic transition relation via

existential quantification over inputs.

A more interesting class of state transition systems corresponds to n machines running in

parallel.

Assume n state variables:

• states = states1 × · · · × statesn

• ~v = (v1, . . . , vn)

Assume n transition functions:

δi : states × inputs→statesi (1 ≤ i ≤ n)

The transition relation of the asynchronous parallel composition of the n machines is

defined by:
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R(~v,~v ′) =
∃inp.
v′

1 = δ1(~v, inp) ∧ v′
2 = v2 ∧ · · · ∧ v′

n = vn

∨
v′

1 = v1 ∧ v′
2 = δ2(~v, inp) ∧ · · · ∧ v′

n = vn

∨
...
∨
v′

1 = v1 ∧ v′
2 = v2 ∧ · · · ∧ v′

n = δn(~v, inp)

Note that an R-step is one or more δi-steps.

The condition for a state s to be reachable in one R-step from a state in B is:

∃u. B u ∧ R(u, s)

The set of states reachable in at most n steps is defined by primitive recursion by:

⊢ ReachBy 0 R B s = B s

⊢ ReachBy (n+1) R B s =
ReachBy n R B s
∨
∃u. ReachBy n R B u ∧ R(u, s)

The set of reachable states is then defined as the set of states reachable in some number

of steps:

⊢ Reach R B s = ∃n. ReachBy n R B s

A key fixedpoint property is (equality between predicates represents set equality):

⊢ (ReachBy n R B = ReachBy (n+1) R B)
⇒
(Reach R B = ReachBy n R B)

Exercise: Sketch a proof of this fixedpoint property.

4.8.1 Using BDDs

Reduced ordered binary decision diagrams (ROBDDs or just BDDs) canonically represent

of boolean expressions (Bryant 1986).

Boolean formulae R(s, s′) and B s can be represented as BDDs.

Then one can then iteratively compute:
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S0 s = B s
S1 s = S0 s ∨ ∃u. S0 u ∧ R(u, s)
S2 s = S1 s ∨ ∃u. S1 u ∧ R(u, s)

...
Sn+1 s = Sn s ∨ ∃u. Sn u ∧ R(u, s)

Given BDDs for Si s and R(s, s′) the BDD of ∃u. Si u ∧ R(u, s) is computed by:

∃u. (Si s)[s←u] ∧ R(s, s′)[s, s′←u, s]

this can be done efficiently using standard BDD algorithms for substitution, conjunction

and existential quantification.

By the fixedpoint property, when Sn+1 s = Sn s it follows that:

Reach R B s = Sn s

hence one can compute the BDD of Reach R B s

A typical verification problem is to show some property Q is true in all reachable states.

This can be verified by building the BDD of Reach R B s ⇒ Q s and seeing if it is T.

Suppose Reach R B s ⇒ Q s is false. Then BDDs can be used to find a shortest sequence

of state transitions that lead to a reachable state in which Q fails to hold. This can be

very useful for debugging. Perhaps even more useful than verification.

The first step is to find a shortest path to a counterexample. One successively generates

BDDs of ReachBy i R B s (i = 0, 1, . . .) checking for each i whether Q s holds, i.e. whether

the BDD of ReachBy i R B s ⇒ Q s is true.

Eventually one will find a smallest n such that ReachBy n R B s ⇒ Q s is not true.

Using standard BDD algorithms one can then find a state sn such that ReachBy nRB sn ⇒ Q sn

is false, i.e. ReachBy n R B sn ∧ ¬(Q sn) is true.

To get a path to sn we can trace backwards. Define:

Pre R Q s = ∃s′. R(s, s′) ∧ Q s′

Eq s1 s2 = (s1 = s2)

then use BDD algorithms to get a sequence of states sn, . . . , s0, where, given si, the state

si−1 is obtained by using a BDD algorithm to find an s such that:

ReachBy (i−1) R B s ∧ Pre R (Eq si) s

Note that we have already computed the BDDs for ReachBy i R B s (for i = 0, 1, . . . , n)

when searching for sn, so they are already available.

The BDD for Pre R (Eq si) s is easily computed from the BDDs for R and Eq using the

BDD algorithms for substitution, conjunction and existential quantification.
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4.8.2 Early quantification

The BDD of the Boolean formula representing a transition relation R(s, s′) can be very

big. It is sometimes possible to construct the BDD of the set of reachable states without

having to ever construct the BDD of the transition relation.

In such circumstances, finding paths to counterexamples can also sometimes be done

without having to compute the BDD of the transition relation.

Consider three machines running asynchronously in parallel:

E

E

E

x

y

z

x

y

z

This can be modelled by:

R(x, y, z), (x′, y′, z′)) =
(x′ = Ex(x, y, z) ∧ y′ = y ∧ z′ = z) ∨
(x′ = x ∧ y′ = Ey(x, y, z) ∧ z′ = z) ∨
(x′ = x ∧ y′ = y ∧ z′ = Ez(x, y, z))

Let S(x, y, z) abbreviate ReachBy n R B(x, y, z) then:

∃x y z. ReachBy n R B(x, y, z) ∧ R((x, y, z), (x, y, z))

= ∃x y z. S(x, y, z) ∧ R((x, y, z), (x, y, z))

= ∃x y z. S(x, y, z) ∧ ((x = Ex(x, y, z) ∧ y = y ∧ z = z) ∨
(x = x ∧ y = Ey(x, y, z) ∧ z = z) ∨
(x = x ∧ y = y ∧ z = Ez(x, y, z)))

= (∃x y z. S(x, y, z) ∧ x = Ex(x, y, z) ∧ y = y ∧ z = z) ∨
(∃x y z. S(x, y, z) ∧ x = x ∧ y = Ey(x, y, z) ∧ z = z) ∨
(∃x y z. S(x, y, z) ∧ x = x ∧ y = y ∧ z = Ez(x, y, z))

= ((∃x. S(x, y, z) ∧ x=Ex(x, y, z)) ∧ (∃y. y=y) ∧ (∃z. z=z)) ∨
((∃x. x=x) ∧ (∃y. S(x, y, z) ∧ y=Ey(x, y, z)) ∧ (∃z. z=z)) ∨
((∃x. x=x) ∧ (∃y. y=y) ∧ (∃z. S(x, y, z) ∧ z=Ez(x, y, z)))

= (∃x. S(x, y, z) ∧ x = Ex(x, y, z)) ∨
(∃y. S(x, y, z) ∧ y = Ey(x, y, z)) ∨
(∃z. S(x, y, z) ∧ z = Ez(x, y, z))
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Thus the BDD of ∃x y z. ReachBy n R B(x, y, z) ∧ R((x, y, z), (x, y, z)) can be com-

puted without ever computing the BDD of R((x, y, z), (x, y, z)). This technique is called

disjunctive partitioning and is an example of early quantification.

Disjunctive partitioning can also be used to find paths to counterexamples: Pre R Q s can

be deductively simplified, so that its BDD can be computed without having to compute

the BDD of the transition relation R.

4.8.3 Example

The example here is from:

Trevor W. S. Lee, Mark R. Greenstreet, Carl-Johan Seger, Automatic Verifi-

cation of Asynchronous Circuits, UBC TR 93-40, November 1993.

This is an asynchronous circuit for mutual exclusion and illustrates the kind of transition

relation that benefits from disjunctive partitioning.

It can be in the following states:
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ri = gi = di Client i Idle

¬ri = gi = di Client i Requesting

¬ri = ¬gi = di Client i Privileged

ri = ¬gi = di Client i PendingDone

The circuit is intended to prevent both clients from being simultaneously Privileged.

Lee/Greenstreet/Seger give two circuits: one correct (mutual exclusion is verified) and

one incorrect (a counterexample is generated). I forget whether the circuit above is the

correct or incorrect one!

The arbiter can be modelled as parallel compostion of 22 machines. The state (incorrect

machine, I think) has 22 components:

(r1, g1, d1, s1, t1, u1, v1, w1, x1, y1, z1,

r2, g2, d2, s2, t2, u2, v2, w2, x2, y2, z2)

Representative models of some of the component machines are:

• XOR machine: inputs s1, g1; output t1
(r′

1
= r1) ∧ (g′

1
= g1) ∧ (d′

1
= d1) ∧ (s′

1
= s1)∧

(t′
1

= ¬(s1 = g1)) ∧ (u′

1
= u1) ∧ (v′

1
= v1) ∧ (w′

1
= w1)∧

(x′

1
= x1) ∧ (r′

2
= r2) ∧ (g′

2
= g2) ∧ (d′

2
= d2) ∧ (s′

2
= s2)

∧(t′
2

= t2) ∧ (u′

2
= u2) ∧ (v′

2
= v2) ∧ (w′

2
= w2) ∧ (x′

2
= x2)

• LATCH machine: inputs w1, s1; output x1

· · · ∧ (x′

1
= IF w1 THEN s1 ELSE x1) ∧ · · ·

• MULLER machine: inputs x1, z1; output g1

· · · ∧ (g′
1

= IF x1 = z1 THEN x1 ELSE g1) ∧ · · ·

The arbiter is 22 machines ∨-ed together.
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4.9 Expressibility of CTL

Consider the property

on every path there is a point after which p is always true

This cannot be expressed in CTL. We would need something like AF P where P is

something like “ property p true from now on” but P must start with a path quantifier

A or E so cannot talk about current path, only about all or some paths. Consider the

following model:

p ~p p

s0 s1 s2

s0

s0

s0

s0

s1

s1

s1

s1

s2

s2

s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2 s2 s2

s2

The property is true, but AF AG p is false!

4.9.1 Linear Temporal Logic (LTL)

A CTL property is a predicate on a tree: P (R, s), but an LTL property is a predicate on

a path: P (σ).

The syntax of LTL well-formed formulae is:
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wff ::= Atom(p) (Atomic formula)
| ¬wff (Negation)
| wff 1 ∨ wff 2 (Disjunction)
| Xwff (successor)
| Fwff (sometimes)
| Gwff (always)
| [wff 1 U wff 2] (Until)

Define

Tail m (σ) = λn. σ(n+m)

then a semantics of LTL via a shallow embedding in higher order logic is given by.

Atom(p) = λσ. p(σ(0))

¬P = λσ. ¬(P σ)

P ∨ Q = λσ. P σ ∨ Q σ

XP = λσ. P (Tail 1 (σ))

FP = λσ. ∃m. P (Tail m σ)

GP = λσ. ∀m. P (Tail m σ)

[P U Q] = λσ. ∃i. Q(Tail i σ) ∧ ∀j. j < i ⇒ P (Tail j σ)

Example:

X(Atom(p))(σ) = Atom(p)(Tail 1 σ) = p(Tail 1 σ 0) = p(σ(0+1)) = p(σ 1)

The formula FGP is true if there is a point after which P is always true

FGP (σ)

= F(G(P ))(σ)

= ∃m1. (G(P ))(Tail m1 σ)

= ∃m1. ∀m2. P (Tail m2 (Tail m1 σ))

= ∃m1. ∀m2. P (Tail (m1+m2) σ)

Thus FGP holds for our example, and hence LTL can express things that CTL can’t

express. However, CTL can express things that LTL can’t express. For example,

AG(EF P ) says:

from every state it is possible to get to a state for which P holds

but we can’t say this in LTL.
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Consider disjunction like FGP ∨ AG(EF P ), for example:

along every path there is a state from which P will hold forever or from every

state it is possible to get to a state for which P holds

One can’t express this in either CTL or LTL! The temporal logic CTL* combines CTL

and LTL and can express this property. CTL* has two kinds of formulas: state formulas

(swff) and path formulas (pwff): state formulas are true of a tree (R, s) and path formulas

are true of a path σ.

The following syntax is mutually recursive

swff ::= Atom(p) (Atomic formula)
| ¬swff (Negation)
| swff 1 ∨ swff 2 (Disjunction)
| Apwff (All paths)
| Epwff (Some paths)

pwff ::= PathForm(swff ) (Every state formula is a path formula)
| ¬pwff (Negation)
| pwff 1 ∨ pwff 2 (Disjunction)
| Xpwff (Successor)
| Fpwff (Sometimes)
| Gpwff (Always)
| [pwff 1 U pwff 2] (Until)

CTL is CTL* restricted with X, F, G, [–U–] preceded by A or E.

LTL consists of CTL* formulas of form Apwff , where the only state formulas in pwff are

atomic. The selection of primitives above is arbitrary: ∨, ¬, X, U, E would be enough.

The semantics of CTL* combines the state semantics of CTL with the path semantics of

LTL:

Atom(p) = λ(R, s). p(s)
¬S = λ(R, s). ¬(S(R, s))
S1 ∨ S2 = λ(R, s). S1(R, s) ∨ S2(R, s)
AP = λ(R, s). ∀σ. Path(R, s)σ ⇒ P (R, σ)
EP = λ(R, s). ∃σ. Path(R, s)σ ∧ P (R, σ)

PathForm(S) = λ(R, σ). S(R, σ(0))
¬P = λ(R, σ). ¬(P (R, σ))
P1 ∨ P2 = λ(R, σ). P1(R, σ) ∨ P2(R, σ)
XP = λ(R, σ). P (R, Tail 1 σ)
FP = λ(R, σ). ∃m. P (R, Tail m σ)
GP = λ(R, σ). ∀m. P (R, Tail m σ)
[P1 U P2] = λ(R, σ). ∃i. P2(R, Tail i σ) ∧ ∀j. j < i ⇒ P1(R, Tail j σ)

Note that the semantics of state and path formulas have different types.
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The semantics is more readable if we assumeR fixed. Let Path s σ abbreviate Path(R, s)σ,

then:

Atom(p) = λs. p(s)
¬S = λs. ¬(S s)
S1 ∨ S2 = λs. S1 s ∨ S2 s
AP = λs. ∀σ. Path s σ ⇒ P σ
EP = λs. ∃σ. Path s σ ∧ P σ

PathForm(S) = λσ. S(p(0))
¬P = λσ. ¬(Pσ)
P1 ∨ P2 = λσ. P1 σ ∨ P2 σ
XP = λσ. P (Tail 1 σ)
FP = λσ. ∃m. P (Tail m σ)
GP = λσ. ∀m. P (Tail m σ)
[P1 U P2] = λσ. ∃i. P2(Tail i σ) ∧ ∀j. j < i ⇒ P1(Tail j σ)

Fairness: Often one wants to assume a component or the environment is ‘fair’.

Example 1: A fair arbiter

• the arbiter doesn’t ignore one of its requests forever;

• not every request need be granted, but we don’t want an infinite number of requests

from one source and no grant to that source.

Example 2: A reliable channel

• no message continuously transmitted but never received;

• not every message need be received, but we don’t want an infinite number of sends

and no receive.

To ensure fairness we may want to require, for example, that on all paths if a property,

say P , holds infinitely often then some other property, say Q, also holds infinitely often

on the path. In LTL (or CTL*) this is expressible as A(G(F P ) ⇒ G(F Q)), but we

can’t say this in CTL (why not – what’s wrong with AG(AF P ) ⇒ AG(AF Q) ?).

Fair CTL model checking is implemented in the model checking algorithm, but with LTL

fairness can be expressed in the logic. This is an argument in favour of LTL. Fairness is a

tricky and subtle subject: there are several notions or fairness: ‘weak fairness’, ‘strong fair-

ness’ etc. There are whole books on fairness (www.amazon.com/exec/obidos/ISBN=0387962352/)!
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4.10 Propositional modal µ-calculus

The µ-calculus has fixed-point operators for both maximal and minimal fixed points.

Model checking consists of calculating fixed points, as we have seen with CTL. Many

logics (e.g. CTL*) can be translated into the µ-calculus, however the µ-calculus is very

non-intuitive to use! It is used as ‘intermediate code’ rather than as a practical property

language.

The µ-calculus is strictly stronger than CTL*: to represent CTL* in it one needs fixed

point operators nested two deep. However, the expressibility of the µ-calculus strictly

increases as allowed nesting increases.

4.11 Interval Temporal Logic (ITL)

Interval Temporal Logic (ITL) specifies properties of intervals, where an interval is a

sequence of states with a beginning and an end. Intervals are useful for talking about

‘transactions’. ITL has an executable subset called Tempura suitable for simulation.

It was developed by Ben Moszkowski and others at Stanford then here at Cambridge.

Moszkowski is now at De Montford University.

The syntax of ITL (simplified and with expressions omitted) is:

wff ::= Atom(p) (Atomic formula)
| true (Truth)
| ¬wff (Negation)
| wff 1 ∨ wff 2 (Disjunction)
| skip (interval with exactly two states)
| wff 1 ; wff 2 (Chop)
| wff ∗ (Repeat)

The semantics is:

Atom(p) = λ〈s0 · · · sn〉. p(s0) ∧ n = 0
true = λ〈s0 · · · sn〉. T
¬P = λ〈s0 · · · sn〉. ¬(P 〈s0 · · · sn〉)
P ∨ Q = λ〈s0 · · · sn〉. P 〈s0 · · · sn〉 ∨ Q〈s0 · · · sn〉
skip = λ〈s0 · · · sn〉. n = 1
P ; Q = λ〈s0 · · · sn〉. ∃k. k ≤ n ∧ P 〈s0 · · · sk〉 ∧ Q〈sk · · · sn〉
P∗ = λ〈s0 · · · sn〉.

∃w1 · · · wl. 〈s0 · · · sn〉 = w1 · · ·wl ∧ P w1 ∧ · · · ∧ P wl

Here are some examples of ITL.
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Formula Meaning

P1;P2 P1 holds then P2 holds (overlapping state)
P1;skip;P2 P1 holds then P2 holds (no overlapping state)
skip;P P true on the next state
true;P P sometimes true
¬(true;¬P) P always true

4.12 Accellera Property Specification Language (PSL)

Sugar 1 is the property language of IBM’s RuleBase model checker. It is CTL plus Sugar

Extended Regular Expressions (SEREs). SEREs are ITL-like constructs. The Accellera

organisation ran a competition to select a ‘standard’ property language. The finalists

were IBM’s Sugar 2 and Motorola’s CBV. Sugar 2 won. It is based on LTL rather than

CTL but has (optional) CTL constructs and clocking constructs for temporal abstraction.

Recently Sugar was renamed by Accellera to PSL (Property Specification Language).

Here is some PSL/Sugar notation and the corresponding standard notation.

Standard notation PSL/Sugar notation

P ∧ Q P & Q
P ⇒ Q P -> Q
¬P !P (exclamation mark is negation)

XP next P
FP eventually! P (exclamation mark not negation)

GP always P
[P U Q] P until! Q
[P W Q] P until Q

skip true

R* R[*]

R1 ; R2 R1 : R2

R1 ;skip; R2 R1 ; R2

Other SERE operators include

R1 | R2 either R1 or R2 holds
R1 && R2 both R1 and R2 hold for same number of cycles
R1 & R2 both R1 and R2 hold, but one may finish before the other

The main innovation of Sugar is the Sugar Extended Regular Expressions (SEREs). These

provide facilities similar to to ITL – but weaker (FSM decidable).

Following a ‘deIBMisation’ of Sugar by the Accellera organisation, “SERE” now stands
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for “Sequential Extended Regular Expression”.

PSL/Sugar provides a rich set of notations for expressing properties compactly. Here is

an example taken from an IBM document on Sugar. Compare:

always(reqin -> next(ackout -> next(!abortin -> (ackin & next ackin))))

with the following that uses “r1 |-> r2” which means that “whenever SERE r1 is

matched then, starting on the last state that matched r1, the SERE r2 should match”.

always {reqin;ackout;!abortin} |-> {ackin;ackin}

The following shows two ways to modify this so that the two cycles of ackin start the

cycle after !abortin.

always {reqin;ackout;!abortin} |-> {true;ackin;ackin}

always {reqin;ackout;!abortin} |=> {ackin;ackin}

PSL/Sugar has many definitional extensions, for example:

r[+] = {r;r[*]}

( false[*] if i=0

r[*i] = (

( {r;r;...;r} otherwise (i repetitions of r)

r{*i..j} = {r[*i]} | {r[*(i+1)]} | ... | {r[*j]}

[+] = true[+]

[*] = true[*]

Example

Whenever we have a sequence of req followed by ack, we should see a full

transaction starting the following cycle. A full transaction starts with an as-

sertion of the signal start trans, followed by one to eight consecutive data

transfers, followed by the assertion of signal end trans. A data transfer is

indicated by the assertion of signal data
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always{req;ack} |=> {start_trans;data[*1..8];end_trans}

Here is a version of this example with a fixed number of non-consecutive repetitions:

Whenever we have a sequence of req followed by ack, we should see a full trans-

action starting the following cycle. A full transaction starts with an assertion

of the signal start trans, followed by eight not necessarily consecutive data

transfers, followed by the assertion of signal end trans. A data transfer is

indicated by the assertion of signal data

always{req;ack} |=> {start_trans;{!data[*];data;!data[*]}[*8];end_trans}

With another extension:

b[= i] = {!b[*];b}[*i];!b[*]

we can write a nicer representation:

always{req;ack} |=> {start_trans;data[= 8];end_trans}

Here’s a version of our example with a variable number of non-consecutive repetitions:

Whenever we have a sequence of req followed by ack, we should see a full

transaction starting the following cycle. A full transaction starts with an as-

sertion of the signal start trans, followed by one to eight not necessarily

consecutive data transfers, followed by the assertion of signal end trans. A

data transfer is indicated by the assertion of signal data

With yet another extension:

b[= i..j] = {b[= i]} | {b[= (i+1)]} | ... | {b[= j]}

this becomes:

always{req;ack} |=> {start_trans;data[= 1..8];end_trans}

The syntax of core SEREs is:

r ::= Atom(p) (Atomic formula)
| r1 | r2 (Disjunction)
| r1 ; r2 (Concatenation)
| r1 : r2 (Fusion: ITL’s chop)
| r1 && r2 (Length matching conjunction)
| r1 & r2 (Flexible matching conjunction)
| r [∗] (Repeat)
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The numerous extensions are ”syntactic sugar” (i.e. definitional extensions) of the core.

The semantics is straightforward (s ranges over states; w ranges over finite lists of states;

“head” denotes head of a list; |w| denotes the length; infix “.” denotes concatenation).

Atom(p) = λw. p(head w) ∧ |w| = 1
r1 | r2 = λw. r1 w ∨ r2 w
r1 ; r2 = λw. ∃w1 w2. w = w1.w2 ∧ r1 w1 ∧ r2 w2

r1 : r2 = λw. ∃w1 s w2. w = w1.s.w2 ∧ r1(w1.s) ∧ r2(s.w2)
r1 && r2 = λw. r1 w ∧ r2 w
r1 & r2 = λw. ∃w1 w2. w = w1.w2 ∧ (r1 w ∧ r2 w1) ∨ (r2 w ∧ r1 w1)
r[∗] = λw. w = 〈〉 ∨ ∃w1 · · · wl. w = w1. · · · .wl ∧ r w1 ∧ · · · ∧ r wl

SEREs can be combined with LTL formulas in various ways. For example, formula {r}f

means LTL formula f true after SERE r. Here’s an example:

After a sequence in which req is asserted, followed four cycles later by an

assertion of grant, followed by a cycle in which abortin is not asserted, we

expect to see an assertion of ack some time in the future.

always {req;[*3];grant;!abortin}(eventually! ack)

The syntax of PSL/Sugar formulas is below:

f ::= Atom(p) (Atomic formula)
| ¬f (Negation)
| f1 ∨ f2 (Disjunction)
| nextf (successor)
| {r}(f ) (Suffix implication)
| {r1} |-> {r2}! (Strong suffix next implication)
| [f1 until f2] (Until)

The semantics (simplified by omitting clocking) is:

Atom(p) = λσ. p(σ(0))
¬f = λσ. ¬(f σ)
f1 ∨ f2 = λσ. f1 σ ∨ f2 σ
nextf = λσ. f(Tail 1 (σ))
{r}(f) = λσ. ∃w σ′. σ = w.σ′ ∧ r w ∧ f σ′

{r1} |-> {r2}! = λσ. ∃w1 σ′. σ = w1.σ
′ ∧ r1 w1 ⇒ ∃w2 σ′′. σ′ = w2.σ

′′ ∧ r2 w2

[f1 until f2] = λσ. ∃i. f2(Tail i σ) ∧ ∀j. j < i ⇒ f1(Tail j σ)

There is also an Optional Branching Extension (OBE), which is completely standard CTL:

EX, E[–U–], EG

PSL/Sugar allows SEREs and formulas to be ‘clocked’. The basic idea is that r@clk,

f@clk abstracts r, f on rising edges of clk, respectively. There can be several clocks.

The official semantics is complex due to clocking, and is still evolving. There is an
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alternative equivalent semantics that ‘translates away’ clocks by pushing @clk inwards,

e.g. b@clk = {!clk[*];clk & b}. Thus one really only need consider unclocked PSL.

PSL/Sugar is intended for both model checking (static verification) and use in simulation

(dynamic verification).

For both these SEREs are checked by generating finite automata called “satellites”.

For model checking, standard LTL and CTL methods can be used, linked to the satellite

automata (details omitted). For dynamic checking, HDL checkers are generated and

added to the model being simulated. IBM have a product called FoCs that does this.

4.13 Examples of CTL formulae revisited

The CTL examples in Section 4.4 can be formulated in PSL/Sugar. Some examples

are essentially branching time properties and can’t be reformulated in linear time LTL,

however, PSL/Sugar has CTL in its Optional Branching Extension (OBE) and includes

the usual operators like EF.

• “It is possible to get to a state where Started holds but Ready does not hold.”

CTL: EF(Started ∧ ¬Ready)

PSL: EF(Started∧¬Ready)

• “If a request Req occurs, then it will eventually be acknowledged by Ack.”

CTL: AG(Req ⇒ AFAck)

PSL: always(Req -> eventually! Ack)

• “No acknowledgement Ack if no request Req on previous cycle.”

CTL: AG(¬Req ⇒ AX¬Ack)

PSL: always(!Req -> next(!Ack))

• “DeviceEnabled holds infinitely often.”

CTL: AG(AF DeviceEnabled)

PSL: always(eventually! DeviceEnabled)

• “From any state it is possible to get to a state for which Restart holds.”

CTL: AG(EFRestart)

PSL: AG(EFRestart)
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• “If a request Req occurs, then it continues to hold, until it is eventually acknowl-

edged.”

CTL: AG(Req ⇒ A[Req U Ack])

PSL: always(Req -> (Req until! Ack))

• “Whenever Req is true either it must become false on the next cycle and remains

false until Ack, or Ack must become true on the next cycle.”

CTL: AG(Req ⇒ AX(A[¬Req U Ack]))

PSL: always(Req -> next(!Req until! Ack))

• “Whenever Req is true and Ack is false then Ack will eventually become true and

until it does Req will remain true.”

CTL: AG(Req ⇒ (¬Ack ⇒ AX(A[Req U Ack])))

PSL: always(Req -> (!Ack -> next(!Req until! Ack)))

• “If Enabled is ever true then if Start is true in any subsequent state then Ack will

eventually become true, and until it does Waiting will be false.”

CTL: AG[Enabled⇒ AG[Start⇒ A[¬Waiting U Ack]]]

PSL: always(Enabled -> always(Start -> (!Waiting until! Ack)))

• “Whenever Req1 and Req2 are false, they remain false until Start becomes true with

Req2 still false.”

CTL: AG[¬Req1 ∧ ¬Req2 ⇒ A[¬Req1 ∧ ¬Req2 U (Start ∧ ¬Req2)]]

PSL: always(!Req1 & !Req2 -> ((!Req1 & !Req2) until! (Start & !Req2)))

• “If Req is true and Ack becomes true one cycle later, then eventually Req will

become false.”

CTL: AG[Req ⇒ AX(Ack ⇒ AF ¬Req)]

PSL: always(Req -> next(Ack -> eventually! !Req))

PSL: always({Req;Ack} |-> eventually! !Req))

• “P is true on all paths i units of time later.”

CTL: AXi P ≡ AX(AX(· · · (AX P ) · · ·))
︸ ︷︷ ︸

i instances of AX
PSL: next[i]P
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• “P is true on all paths sometime between i units of time later and j units of time

later.”

CTL: ABFi..j P ≡ AXi (P ∨ AX(P ∨ · · · AX(P ∨ AX P ) · · ·))
︸ ︷︷ ︸

j − i instances of AX
PSL: next e[i..j]P

• “One cycle after Req, Ack1 should become true, and then Ack2 becomes true 1 to 6

cycles later and then eventually Respond becomes true, but until it does Waiting

holds from the time of Ack2.”

CTL: AG[Req ⇒ AX[Ack1 ∧ ABF1..6(Ack2 ∧ A[Waiting U Respond])]]

PSL: always
(Req -> next(Ack1 & next e[1..6](Ack2 & (Waiting until! Respond))))

When I asked one of the PSL/Sugar designers to ‘sanity check’ a first version of these

examples, I got back some errors (corrected above) and also the comment:

... these examples don’t really illustrate the strengths of PSL all that

well. To do so, you can invite your students to think about how you

would say the following in CTL:

always (a -> next_event(b)(c))

always {a;b[*];c} -> {d;e[*];f}

always (a -> next b)@(posedge clk)
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HDLs Semantics

Hardware description languages (HDLs) are used to specify hardware. HDL

programs can be simulated, compiled to circuits and input to formal verifiers.

These different activities use different semantics and it is a current research

area to try to relate them. In this chapter, which is close to the current research

frontier, an approach to formalising and relating different HDL semantics is

described.

I am not sure how much of the detail that follows will make it into the lectures.

As always, only material covered in the lectures is examinable!

5.1 Introduction

Hardware description languages (HDLs) like VHDL and Verilog have a simulation oriented

semantics based on events, i.e. changes to the values of wires and registers. This event

semantics can accurately model detailed asynchronous behavour, but is very fine-grained

and does not easily support formal verification.

Most practical formal methods (e.g. model checking and theorem proving) are oriented

towards descriptions of systems in terms of their execution traces, which are sequences of

states. One might characterise simulation semantics as ‘edge-oriented’ and trace semantics

as ‘level-oriented’. The relationship between the two views is obtained by accumulating

the changes (events) during a simulation cycle to obtain the state holding at the end of the

cycle. The sequence of states that the simulation cycle quiesces to at successive instants

of simulation time is an abstraction called the trace semantics . If there are race condi-

tions, then there may be several possible successor states to a given state (i.e. branching

time). Trace semantics has the same timescale as event (simulation) semantics – namely

simulation time – but abstracts away from the individual events within a single simulation

cycle (delta-time).

Clocked sequential systems can also be viewed more abstractly in terms of the sequence

of states held in registers during successive clock cycles. This view is called the cycle

semantics . Certain kinds of hardware (e.g. transparent level sensitive latches) are rather

badly approximated if only the states latched at clock edges are considered, so equivalences

between such hardware is best done with trace semantics.

97
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A cycle semantics determines the exact clock cycle that each register transfer occurs on.

A more abstract view is the behavioural semantics in which certain state transitions are

regarded as not observable. With respect to behavioural semantics, functional equivalence

is preserved by moving operations across certain sequences of clock cyles (e.g. within the

same ‘super state’).

5.2 Syntax

The language described below is intended to embody the essence of the core of synthesis-

able Verilog, but with a lighter syntax.

A program consists of an initialising assignment to all the variable together with a set of

concurrently executing non-terminating threads:

initial V 1, . . . , V m := E1, . . . , Em

always S1

always S2
...

always Sn

where V 1, V 2, . . . , V m are variables , E1, E2, . . . , Em are expressions and S1, S2, . . . ,

Sn are statements . Statements are built out of variables, expressions and event controls.

Each thread models a piece of hardware, with interconnection specified by coincidence of

variable names.

If the variables represent registers, then an initialising assignment can be used to specify

the ‘power up’ values of the registers. In practice, one often uses an ‘unknown’ value. In

Verilog each register variable has x as its initial value (which can be overwritten by an

explicit initial-statement).

5.2.1 Expressions

Expressions are built up from variables and constants using operators (unary, binary,

conditional etc.). The metatavariables V and E will range over variables and expressions,

respectively.

The structure of expressions is not specified in detail here. It is assumed that there are

two Boolean constants T (alternatively 1) and and F (alternatively 0), an infixed binary

equality operator = and a conditional E?E1:E2 (if E then E1 else E2). In examples, a

mixture of standard logical notation and the C-like expression syntax of Verilog will be

used.
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It is assumed that each E expression has a value with respect to an assignment of values

to each variable occurring in it. If s is such an assignment of values to variables, then the

value of E is denoted by [[E]]s.

5.2.2 Event expressions

Event expressions T only occur as components of event controls @(T). They can be used

both to delimit cycle boundaries and to specify combinational logic.

T ::= V (Change of value)
| posedge V (Positive edge)
| negedge V (Negative edge)
| T 1 or · · · or T n (Compound sensitivity list)

5.2.3 Statements

The syntax of statements S is given by the BNF below.

S ::= V 1, . . . , V n := E1, . . . , En (Assignment)
| S1; · · · ; Sn (Sequencing block)
| if E then S1 {else S2} (Conditional)
| @(T) S (Event control)

In an assignment V 1, . . . , V n := E1, . . . , En, the variables V 1, . . . , V n must be distinct.

Each pair (V i, Ei) is called an update. The assignment is executed by updating in parallel

each V i with the value of Ei.

Sometimes the notation V will be used for the vector of variables V 1, . . . , V n and E for

the vector of expressions E1, . . . , En. An important special case is a single assignment

V := E. Note that in Verilog all assignments are single assignments with “=” (or “⇐”)

being used instead of “:=”.

Parallel assignments in Verilog are achieved using non-blocking assignment, i.e.:

V 1, . . . , V n := E1, . . . , En

is written as:

begin V 1 ⇐ E1; · · · V n ⇐ En; end

Note also that in Verilog “;” is a terminator (not a separator), sequences have to be

surrounded by “begin” and “end” and “if E then” is written “if(E)”.

5.2.4 Abbreviations

The following constructs are derived in terms of the syntax given above.
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5.2.4.1 Case statements

case (E)
E1: S1

E2: S2
...

En: Sn

default: Sn+1

endcase

abbreviates

if (E=E1) S1 else if (E=E2) S2 · · · else if (E=En) Sn else Sn+1

5.2.4.2 Continuous assignments

assign V = E

abbreviates

always @(V 1 or · · · or V r) V := E

where V 1, . . . , V r are the variables occurring in any component expression of the vector

E.

Note there there is a subtle difference between these continuous assignments in the ide-

alised Verilog presented here and the ones in real Verilog. However, the HDL used here

is not rich enough for this difference to be significant.

5.3 Semantic Pseudo-Code

To simplify the presentation of the semantics, each thread is first compiled to a sequence

of assembler-like pseudo instructions.

5.3.1 Pseudo-code instructions

Statements are compiled to pseudo-code consisting of sequences of instructions from the

following instruction set:

V := E assignment
@(T) event control
go n unconditional jump to instruction n

ifnot E go n jump to instruction n if E is not true
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5.3.2 The size of a statement

The size function defined in this section is used in the translation algorithm described in

5.3.3. Let the size | S | of S be as defined below inductively on the structure of S. It will

turn out that | S | is the number of instructions that S is translated to.

| V := E | = 1

| S1; · · · ; Sn | = | S1 | + · · · + | Sn |

| if E then S | = | S | +1

| if E then S1 else S2 | = | S1 | + | S2 | +2

| @(T) | = 1

5.3.3 Translation algorithm

The sequence 〈i0, . . . , in〉 of instructions that statement S is translated to is denoted by

[[S]]p, where p is the position of the first instruction (e.g. go p jumps to the start of the

program).

To handle sequential blocks, it is convenient to define in parallel the translation of a

sequence 〈S1, . . . , SN〉 of statements (see the third and fourth clauses of the definition

below). The symbol ⌢ denotes sequence concatenation.

[[V := E ]]p = 〈V := E〉

[[S1; S2; . . . ;Sn]]p = [[S1]]p⌢[[S2; . . . ;Sn]](p+ | S1 |)

[[if E then S]]p = 〈ifnot E go p+ | S | +1〉⌢[[S]](p + 1)

[[if E then S1 else S2]]p = 〈ifnot E go p+ | S1 | +2〉
⌢[[S1]](p+1)
⌢〈go p+ | S1 | + | S2 | +2〉
⌢[[S2]](p+ | S1 | +2)

[[@(T) S]] p = 〈@(T)〉⌢[[S]](p+1)

A thread always S is translated into the infinite loop:

[[S]]0⌢〈go 0〉

5.3.4 Example translations

if E
then
a := b;
@(posedge clk) b := a;

else
a := b;
b := a;

0: ifnot E go 5
1: a := b
2: @(posedge clk)
3: b := a
4: go 7
5: a := b
6: b := a
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always
@(b or c) a := b + c;

0: @(b or c)
1: a := b + c
2: go 0

always
@(posedge clk)
total := data;

@(posedge clk)
total := total + data;

@(posedge clk)
total := total + data;

0: @(posedge clk)
1: total := data
2: @(posedge clk)
3: total := total + data
4: @(posedge clk)
5: total := total + data
6: go 0

always
@(posedge clk)
case state of
0:
total := data;
state := 1;

1:
total := total + data;
state := 2;

default:
total := total + data;
state := 0;

0: @(posedge clk)
1: ifnot state = 0 go 5
2: total := data
3: state := 1
4: go 11
5: ifnot state = 1 go 9
6: total := total + data
7: state := 2
8: go 11
9: total := total + data

10: state := 0
11: go 0

5.4 Event Semantics

The event semantics is specified via a simulation cycle that non-deterministically executes

threads according to the event controls present.

Consider the following program:

always S1

always S2
...

always Sn

An input is a variable that occurs in one of S1, . . . , Sn, but does not occur on the left

hand side of an assignment.

A state variable is a variable that occurs on the left hand side of an assignment. The

values of the state variables are the outputs of the program.
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It is assumed that each input is driven by the environment with a sequence of values – the

elements of the sequence being the values at successive instants of simulation time. When

time increases, the values being input at the new time may change from their previous

value. This change may cause an event expression T to ‘fire’ and any threads waiting on

@(T ) will then be enabled for execution. The simulation cycle (see 5.4.1 below) consists

of repeatedly choosing an enabled thread, executing it until an event control is reached

(an atomic step), and then enabling any new threads that fire. If several threads are

simultaneously enabled, then the choice of which thread to advance is non-deterministic.

If a state is reached in which there are no enabled threads, then the simulation cycle is

said to have quiesced . When this happens the simulation time is incremented, the next

set of inputs is assigned to the input variables and the whole process repeats.

Thus sequences of values on the inputs non-deterministically generate sequences of states

(and hence a sequence of outputs). Such a sequence is called a trace and has the form:

〈i0, s0〉〈i1, s1〉〈i2, s2〉 · · ·

where s0 is an initial state and i0i1i2 . . . are inputs.

5.4.1 Simulation algorithm

The state of a thread during simulation consists of:

• the simulation time (a non-negative integer);

• the values of all variables;

• the value of the program counter (denoted by pc).

It is assumed that the environment to the program supplies a value for each input at each

instant of simulation time.

The simulation algorithm can be succinctly described if some terminology is introduced.

The instruction pointed to by the program counter of a thread is called the current

instruction.

A thread is enabled if its current instruction is not an event control @(T). Enabled threads

can be executed immediately. Once a thread starts executing it continues until an event

control is reached. This execution is atomic and is called advancing the thread (see below)

A thread is listening if its current instruction is an event control @(T). Note that if a

thread is not enabled then it is listening.

When a variable or input changes, an event expression may be triggered :

• V is triggered if the new value of V differs from the previous one;
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• posedge V is triggered if the new value of V is 1 and the previous value was not 1;

• negedge V is triggered if the new value of V is 0 and the previous value was not 0;

• T 1 or · · · or T n is triggered if any of the T i are triggered (1 ≤ i ≤ n).

A thread is triggered if it is listening and the event control of the current instruction is

triggered. A triggered thread is fired by incrementing its program counter.

If a thread is not executing, but is enabled, then its current instruction cannot be an

unconditional jump, but must be an assignment or a conditional jump. This is because, by

the definition of [[S]], unconditional jumps cannot occur immediately after event controls,

so when a thread is triggered the current instruction cannot become an unconditional

jump.

Threads are executed concurrently. When an enabled thread is run it advances without

interruption until an event control is reached. Thus a thread never stops running at an

unconditional jump go n. To see the need for this consider:

Thread 1 Thread 2

always @(inp) w := !inp; always @(w or inp) outp := w & inp;

0: @(inp) 0: @(w or inp)
1: w := !inp 1: outp := w & inp
2: go 0 2: go 0

If Thread 2 could stop at instruction 2, then Thread 1 could interleave at that point and

update to w whilst Thread 2 is not listening. By forcing all jumps to be taken immediately,

this possibility is precluded.

The execution of a single instruction is performed as follows:

Instruction Execution

• V 1, . . . , V n := E1, . . . , En

For 1 ≤ i ≤ n change the V i component of the state to the value of Ei in
the current state, note all variables whose value changes, then increment the
program counter;

• go n
Set the program counter to n;

• ifnot E go n
If E is true in the current state then increment the program counter, otherwise
set it to n.
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When a thread fires these operations are repeated until an event control is reached and

then any triggered threads (including possibly the one just executed) are fired. This

process is called advancing a thread.

Advancing a Thread

• A thread is advanced by repeatedly executing the current instruction until an
event control is reached.

• This execution is considered to be an atomic step and is not interruptable.

• As a thread is advancing, the variables that are modified by assignments are
noted.

• When the thread stops advancing any listening threads that are guarded by
triggered event controls are fired.

Note that states at which threads stop advancing are those for which the current instruc-

tion is an event control. Such states are called stopping states . When reasoning about

the execution of programs, it is sufficient to just consider the transitions of threads be-

tween stopping states, since these are the uninterruptible atomic actions of the thread.

The decomposition of these actions into smaller ones, like unconditional jumps, is just an

artifact of the way the event semantics is presented.

Inititially simulation time is 0, each program counter is set to 0 and each variable has

some initial value (which is not specified here, but would typically be an ‘undefined’ value,

like x in Verilog). The simulation algorithm consists of iterating forever the simulation

step shown in the box below.

Simulation Step

• There is an enabled thread:

Non-deterministically choose an enabled thread and advance it.

• No enabled threads – i.e. all threads listening:

Increment the simulation time, read in new input values and fire any triggered
threads.
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5.5 Trace semantics

For each program, initial state and sequence of inputs, the simulation algorithm deter-

mines a set of traces. Each member of such a trace consists of the inputs at each time

together with a state the simulation cycle quiesces to. Note that since simulation is non-

determinishtic, there may be several possible quiescent states (or none). Thus time is

branching.

The simulation algorithm is hard to work with. In this section it is shown how the traces

of a number of common kinds of programs can be derived more directly.

5.5.1 Combinational programs

The idea of a combinational program is that it computes its outputs instantaneously

from its inputs. A syntactic condition that ensures this will be defined. In preparation,

consider a thread having the form always @(T)S, where S contains no event controls.

This translates to pseudo code of the form:

0: @(T)
...
n: go 0

where the pseudo instruction 1, 2, . . . , n−1 are assignments or jumps (i.e. not event

controls).

Since threads execute atomically from event control to event control, it is clear that such

a pseudo program is equivalent to one of the form:

0: @(T)
1: V := E
2: go 0

For example,

always @(y or z) x := 1;
if x>y then x,y := y,x else y,z := 3,y
z := x+y

translates to:

0: @(y or z)
1: x := 1
2: ifnot x>y go 5
3: x,y := y,x
4: go 6
5: y,z := 3,y
6: z := x+y
7: go 0
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which is equivalent to:

0: @(y or z)
1: x,y,z :=

x>y ? y : 1,
x>y ? 1 : 3,
(x>y ? y : 1) + (x>y ? 1 : 3)

2: go 0

A formal description of the straightforward conversion of combinational threads into a

single parallel assignment, as illustrated by this example, is not given here.

A weakly combinational program has the form:

always @(T 1) V1:=E1 · · · always @(T n) Vn:=En

and satisfies three conditions:

1. T i consists of all the variables occurring in E i or-ed together;

2. no variable occurs more than once on the left of an assignment (no clashing assign-

ments);

3. after performing any update (V ,E), the value of V in the resulting state equals the

value of E.

Updates satisfying condition 3 above are called idempotent. More formally, (V ,E) is

idempotent if

[[V ]](s[V ← [[E]]s]) = [[E]]s = [[E]](s[V ← [[E]]s])

A sufficient condition that (V ,E) be idempotent is that V not occur in E.

If the simulation cycle of a weakly combinational program quiesces then it does do with a

a unique value for all the variables. Showing quiescence requires an additional condition

(loop-free) which is defined later.

A weakly combinational program generates n threads:

Thread 1

0: @(T 1)

1: V1 := E1 · · ·
2: go 0

Thread n

0: @(T n)

1: Vn := En

2: go 0

Suppose thread i has program counter pci. Let Inv be the n-ary conjunction
∧n

i=1 Invi,

where Invi is the statement:

(pci = 0 ⇒ V i = E i) ∧ (V i 6= E i ⇒ pci = 1)
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Invi asserts two things: (i) if the i-th thread is at instruction 0 then the value of the

vector of variables V i equals the value of the vector of expressions E i and (ii) if any of

these values are not equal then the thread is at instruction 1.

Note that Inv is a predicate on states. This is made explicit by defining:

Inv(s) ≡Def

∧n
i=1 ([[pci]]s = 0 ⇒ [[V i]]s = [[E i]]s)

∧
([[V i]]s 6= [[E i]]s ⇒ [[pci]]s = 1)

However, where the state is clear from context the less formal implicit-state notation will

be used.

We want to show that Inv is an invariant of each simulation step, and that simulation

quiesces.

To show Inv is an invariant suppose Inv holds. There are two cases to consider: there are

some enabled threads, or there are no enabled threads.

1. If there are some enabled threads, then one of them, say thread i, is chosen and

executed. Since all updates are idempotent, the execution will cause the value of V i

to become equal the value of E i, hence Invi will hold immediately after the assignment

is executed. Next, other threads may be fired (including, possibly, thread i itself).

The following case analysis establishes Inv continues to hold after this.

(a) If thread j is enabled but not selected for execution, then pcj = 1, so Invj

remains vacuously true.

(b) If a thread j is triggered by the execution of thread i (the case j=i is possible),

then thread j becomes enabled with pcj = 1 and so Invj becomes vacuously

true.

(c) If a thread j is listening but not triggered then it must be the case that no

variable changed by executing thread i occurs in Ej, so the value of Ej is

unchanged. Also pcj remains equal to 0.

i. If j = i then as all updates are idempotent the execution of V i := E i makes

the value of each variable in V i equal to the value of the corresponding

expression in E i and hence Invi holds.

ii. If j 6= i, the variables in Vj are distinct from those in V i, so the value of

Vj is unchanged and thus Invj remains true.

2. If there are no enabled threads, then time will advance and if the inputs changes

some threads may be fired. If no threads are fired, then the values of all variables

occurring in any E i (1 ≤ i ≤ n) will be unchanged. Since the environment only

changes inputs, the value of V i is unchanged. Thus Inv continues to hold.

If thread i is fired then pci = 1 and Invi becomes vacuously true.
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Thus Inv is an invariant of each simulation step. If simulation quiesces, then all program

counters will be 0 and so for each i the value of V i will equal the value of E i.

To establish that the simulation of combinational programs always quiesces – i.e. doesn’t

go into an infinite loop without advancing time – it is sufficient to exhibit a ‘variant’

that decreases on each iteration of the simulation algorithm for which there is an enabled

thread. Such a variant shows that eventually a simulation state must be reached in

which there are no enabled threads, and hence time advances. A suitable variant uses

the ‘Dershowitz-Manna multiset ordering’. Under this ordering multiset M2 is less than

multiset M1 if M2 can be obtained from M1 by removing a finite number of elements and

replacing each of them by a finite number of strictly smaller elements. This ordering is

well-founded if the ordering on the elements is.

The idea of the termination proof is to show that each chain of events – one causing the

next – is finite. Define (V ,E)ր(V ′, E ′) to mean, roughly, that doing the update (V ,E)

will immediately trigger a thread containing the update (V ′, E ′).

(V ,E)ր(V ′, E ′) ≡Def ∃s. [[E ′]]s 6= [[E ′]](s[V ← [[E]]s])

where s[V ← [[E]]s] denotes the state optained from s by changing the value of variable

V to the value of E and leaving the values of all other variables unchanged.

The relation ր is defined semantically, but for weakly combinational programs it implies

a syntactic relation րր defined by:

(V ,E)րր(V ′, E ′) ≡Def V occurs in E ′ and V 6= V ′

If (V ,E)ր(V ′, E ′) then (V ,E)րր(V ′, E ′). Assume that (V ,E)րր(V ′, E ′) doesn’t hold,

then there are two cases:

Case 1: V does not occur in E ′.

In this case it is clear that for all s:

[[E ′]]s = [[E ′]](s[V ← [[E]]s])

which contradicts

∃s. [[E ′]]s 6= [[E ′]](s[V ← [[E]]s])

hence it can’t be the case that (V ,E)ր(V ′, E ′).

Case 2: V = V ′.

There are no clashing assignments, thus E = E ′, so if (V ,E)ր(V ′, E ′) then (V ,E)ր(V ,E),

i.e. ∃s. [[E]]s 6= [[E]](s[V ← [[E]]s]), which contradicts the requirement that (V ,E)

be idempotent.

In both cases it follows that it is not the case that (V ,E)ր(V ′, E ′).

Thus by contradiction (V ,E)ր(V ′, E ′) entails (V ,E)րր(V ′, E ′).

Define a ր-chain in a set of assignments to be a sequence (V 1, E1), . . . , (V l, El) of

updates such that for 1 ≤ p < l:
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(i) V p is updated to Ep by one of the assignments in the set;

(ii) (V p, Ep)ր(V p+1, Ep+1).

Call a set of assignments loop-free if the lengths of all ր-chains are bounded.

Define a program to be combinational if it is weakly combinational and loop free.

Note that since every ր-chain is also a րր-chain, if there is an infinite ր-chain then there

is also an infinite րր-chain. So checking that all րր-chains are finite ensures the program

is loop-free and hence combinational.

Define the height of V to be the length of the longest ր-chain in the assignments V1:=E1,

. . . , Vn:=En, whose first element is (V ,E), for some E.

To show each simulation cycle quiesces, consider the sequence of steps that happen after

the advance of simulation time. If no inputs change then the cycle is already quiescent

and there is nothing to show. If some inputs change, then some threads will fire and

become enabled with their program counters at 1.

The subsequent quiescence (termination) of the simulation algorithm can be verified by

taking as variant the multiset of the heights of those variables V such that the value of V

differs from the value of E. Note that by Inv all such updates must be part of an enabled

thread.

Suppose some threads are enabled and one of them, thread i say, is selected for execution.

All the variables in V i are updated with the corresponding variables in E i by the assignment

and the thread advances to instruction 0. Next, every thread j such that T j contains a

variable modified by executing thread i is fired and so becomes enabled.

If an update (V ,E) was done by executing thread i then, since it is idempotent, the value

of V will equal the value of E after the update and so the height of V will be removed

from the multiset. This deleted height will be replaced with the heights of other variables

V ′ such that there is an update (V ′, E ′) and the value of V ′ becomes different from the

value of E ′. Suppose s is the state in which (V ,E) was done. The height of V ′ will be

added if [[V ′]]s = [[E ′]]s but:

[[V ′]](s[V ← [[E]]s]) 6= [[E ′]](s[V ← [[E]]s])

There are two cases to consider:

Case 1: If V 6= V ′ this equation is:

[[V ′]]s 6= [[E ′]](s[V ← [[E]]s])

i.e.

[[E ′]]s 6= [[E ′]](s[V ← [[E]]s])

hence (V ,E)ր(V ′, E ′).
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Case 2: If V = V ′ then (as each variable can only be on the left of at most one update)

E = E ′ and hence:

[[V ]](s[V ← [[E]]s]) 6= [[E]](s[V ← [[E]]s])

i.e.

[[E]]s 6= [[E]](s[V ← [[E]]s])

but this is impossible as (V ,E) is assumed idempotent.

Thus each added height – i.e. the heights of each such V ′ – will be less than the height of

V , so the multiset decreases in the Dershowitz-Manna ordering.

Each step of the simulation algorithm decreases the multiset. As long as there are enabled

threads the simulation cycle continues, so by the invariant Inv and the well-foundedness

of the multiset ordering eventually there must be no enabled threads, i.e. the simulation

quiesces.

5.5.1.1 Transparent latches

Consider:

always @(clk or d) if clk then q := d

If this is converted to an equivalent assignment, the result is:

always @(clk or d) q := clk ? d : q

The update (q, clk ? d : q) is idempotent, since clearly:

∀s. [[clk ? d : q]]s = [[clk ? d : q]](s[q← [[clk ? d : q]]s])

It is not the case that:

(q, clk ? d : q)րր(q, clk ? d : q)

hence the latch is loop-free.

Define an update (V ,E) to be latch-like if E is either V or a nested conditional expression

in which the only occurrences of V are in the then or else part of conditionals. This is a

static (syntactically checkable) property that obviously implies simplicity.

Define a thread always @(T) V:=E to be latch-like if every update (V ,E) in the assign-

ment is either latch-like or has V not occurring in E. Note that all such updates will be

idempotent.

Consider a weakly combinational program:

always @(T 1) V1:=E1 · · · always @(T n) Vn:=En

where each thread is latch-like. A sufficient conditional for this to be combinational is

that every chain:
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(V 1, E1)րր(V 2, E2)րր(V 3, E3) . . .

is finite.

The fact that loop-free latch-like threads are combinational shows that the use here of

the term is a bit non-standard. One might expect that “combinational” would denote

circuits with no memory.

5.5.1.2 Summary

If S1, . . . , Sn contain no event controls then any program of the form:

always @(T 1) S1 · · · always @(T n) Sn

is equivalent to a program of the form:

always @(T 1) V1:=E1 · · · always @(T n) Vn:=En

Such a program is combinational if it is weakly combinational and loop-free. A sufficient

condition is that every thread is latch-like and there are no infinite րր-chains.

Each simulation step of a combinational program preserves the invariant:

∧n
i=1 (pci = 0 ⇒ V i = E i) ∧ (V i 6= E i ⇒ pci = 1)

and as long as inputs do not change, each step reduces the size of the variant and thus

the simulation cycle must quiesce with all threads listening at pseudo-instruction 0 and

hence with V i = E i.

Thus if s0 is an initial state and i0i1i2 . . . are the inputs, then the traces of this combina-

tional program are sequences:

〈i0, s0〉〈i1, s1〉〈i2, s2〉 · · ·

where the value of each variable in V i in state st+1 is the value of the corresponding

expression in E i evaluated with inputs it+1 and state st.

5.5.2 Flip-flops

A flip-flop is a single register with input d and output q that is clocked on the positive

edge of a clock clk (which is assumed distinct from d and q). This is modelled by:

always @(posedge clk) q := d
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It is clear that the effect of the simulation algorithm is to update the value of q with the

value input on d at each simulation time that triggers posedge clk (i.e. at each time that

clk is high, but was not high at the preceding time).

If f(t) denotes the value of input or variable f at simulation time t, then the trace

semantics of the register above is:

q(t+1) = if clk(t+1) = 1 ∧ clk(t) 6= 1 then d(t) else q(t)

Define:

(posedge clk)(t + 1) ≡Def if clk(t+1) = 1 ∧ clk(t) 6= 1

then the trace semantics can be written:

q(t+1) = if (posedge clk)(t + 1) then d(t) else q(t)

A bank of n registers can be represented by a single parallel assignment:

always @(posedge clk) q := d

where q = (q1, . . . , qn) and d = (q1, . . . , dn) and qi 6= qj if i 6= j. The trace semantics is:

∧n
i=1 qi(t+1) = if (posedge clk)(t + 1) then di(t) else q(t)

An alternative representation, with the same trace semantics, is to have n separate

threads; one for each individual register.

always @(posedge clk) q1 := d1
...

always @(posedge clk) qn := dn

The trace equivalence of the two representations is assumed clear.

Consider now some combinational logic, say an inverter, connected to the input of a

flip-flop. This could be represented with one thread by:

always @(posedge clk) q := !d

or with the inverter and flip-flop in different threads:

always @(d) a := !d
always @(posedge clk) q := a
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If d changes at the same time as a positive edge on clk then the second representation,

but not the first, might store the negation of the unchanged (i.e. previous) value of d.

This would happen if the flip-flop thread was executed first. The subsequent execution of

the inverter thread will set a to the negation of the new value of d, but since the flip-flop

is not sensitive to changes in a it won’t update the value of q.

Thus the single thread representation is more robust and generally to be preferred.

The trace semantics of the single thread version is:

q(t+1) = if (posedge clk)(t + 1) then !d(t) else q(t)

and of the two threads is:

(∀t. a(t) = !d(t))
∧
(∀t. q(t+1) = if (posedge clk)(t + 1) then a(t) else q(t))

If it is assumed that inputs never change on clock edges1 then the two representations are

produce the same signal trace on q.

If the combinational logic is connected to the output of the flip-flop the problem doesn’t

arise. Thus no matter what order the threads in:

always @(posedge clk) a := d
always @(a) q := !a

are executed, the final quiescent state will be the same – namely q will equal the negation

of the value of d.

(∀t. a(t+1) = if (posedge clk)(t + 1) then d(t) else q(t))
∧
(∀t. q(t) = !a(t))

However, with this example there is a hazard: if the inverter executes first then q will be

set to the negation of the old value of a. The subsequent execution of the flip-flop will

update a and might then change the value of q, since the inverter is sensitive to changes

in a. The hazard is only visible at the event semantics level; it is invisiable with trace

semantics.

1This assumption on the environment can be hard or impossible to enforce if the inputs are asyn-
chronous – however clever analogue engineering can make it true with high probablility.
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5.5.3 RTL programs

Register Transfer Level (RTL) hardware consists of combinational logic and flip-flops. An

HDL representation of this is a program that can be partitioned into a set of threads that

are a combinational program plus a set of flip-flops of the form:

always @(posedge clk) V := E

It is assumed that there is a single input clock clk and that the environment is such that

no other inputs change when clk has a positive edge. Also it is assumed no two distinct

flip-flops drive the same ourput (no clashing assignments). Thus an RTL program has

the form:

always @(T 1) V1 := E1
...

always @(Tm) Vm := Em

always @(posedge clk) Vm+1 := Em+1
...

always @(posedge clk) Vm+n := Em+n

where the first m threads constitute a combinational program and the last n threads are

flip-flops.

A simulation cycle that starts with a positive edge on clk will (by assumption) be one for

which none of the other inputs change. Thus the positive edge will enable all the flip-flops

and none of the other threads. After m simulation steps (i.e. one to execute each flip-flop)

the output variables will have been updated and the cycle will quiesce.

A simulation cycle that that doesn’t start with a positive edge on clk will not enable any

of the flip-flops. The rest of the threads will simulate as combinational logic and, by the

analysis in 5.5.1, will quiesce with each variable set to the value of the expression that

updates it.

Thus the trace semantics of the RTL program above is:

(∀t. V1(t) = E1(t))
∧
...
∧
(∀t. Vm(t) = Em(t))
∧
(∀t. Vm+1(t+1) = if (posedge clk)(t + 1) then Em+1(t) else Vm+1(t))
∧
...
∧
(∀t. Vm+n(t+1) = if (posedge clk)(t + 1) then Em+n(t) else Vm+n(t))
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5.6 Cycle semantics

As described in the previous chapter, the trace semantics of a program can be abstracted

at clock edges to get the sequence of values at clock edges. This is called the cycle

semantics and corresponds to the abstract state machine level.

Consider, for example, the program:

initial out := F

always @(posedge clk) out := in?¬out:out

This has one register out that’s initialized to F. On each rising edge of clk the value of

out is complemented.

The trace semantics is:

out(0) = F ∧
∀t. out(t+1) = if (posedge clk)(t+1) then (in(t)→ ¬out(t) | out(t)) else out(t)

Note that the inner conditional has been written using the “(b → e1 | e2)” notation

rather than using the equivalent “if b then e1 else e2” notation. This is just a matter of

style.

Expanding with the definition of (posedge clk)(t+1):

out(0) = F ∧
∀t. out(t+1) = if clk(t+1) ∧ ¬clk(t) then (in(t)→ ¬out(t) | out(t)) else out(t)

folding in the definition of Rise and switching to a uniform notation for conditionals:

out(0) = F ∧ ∀t. out(t+1) = (Rise clk t → (in(t)→ ¬out(t) | out(t)) | out(t))

Recall the definition of Dtype:

⊢ Dtype(ck, d, q) = ∀t. q(t+1) = (Rise ck t→ d t | q t)

The trace semantics of the program can thus be written:

out(0) = F ∧ Dtype(clk, (λt. (in(t)→ ¬out(t) | out(t))), out)

Define:

⊢ f↑c = f when (Rise c)

then

(f↑c) n = (f when (Rise c)) n = f(Timeof (Rise c) n)

so

((λt. (in(t)→ ¬out(t) | out(t)))↑clk) n
= (λt. (in(t)→ ¬out(t) | out(t)))(Timeof(Rise clk)n)
= (in(Timeof(Rise clk)n)→ ¬out(Timeof(Rise clk)n) | out(Timeof(Rise clk)n))
= ((in↑clk)n→ ¬((out↑clk) n) | (out↑clk) n)
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Thus if we define a ‘lifted’ conditional:

⊢ (f −→ e1 | e2) = λt. (f t → e1 t | e2 t)

then

(λt. (in(t)→ ¬out(t) | out(t)))↑clk = (in↑clk −→ ¬ ◦ out↑clk | out↑clk)

Instantiating the Dtype-theorem yields:

Inf(Rise clk) ∧
out(0) = F ∧
Dtype(clk, (λt. (in(t)→ ¬out(t) | out(t))), out)
⇒
Del((in↑clk −→ ¬ ◦ out↑clk | out↑clk), out↑clk)

Thus at the abstracted cycle level:

Del((in↑clk −→ ¬ ◦ out↑clk | out↑clk), out↑clk)

i.e.:

∀n. out↑clk(n+1) = (in↑clk n → ¬(out↑clk n) | out↑clk n)

This confirms the obvious – namely, that the cycle bahaviour of the program:

initial out := F

always @(posedge clk) out := in?¬out:out

is to conditionally complement the stored value depending on the value being input.


