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Abstract

We present a set of attacks against two recently-added API calls in the IBM 4758 CCA v2.5. We
show how the addition of these API calls effectively breaks the security policy of the 4758: the plaintexts
of secret keys and PINS are exposed, and the integrity of secure messages is compromised.

1 Introduction: 4758 Basics

The IBM 4758 CCA is used in secure banking communcations to provide methods for safely using secret
data to perform well-constrained operations. For example, a data encryption key can be stored in unsafe
memory if it is encrypted (by the 4758) using a Master Key (KM ). The operator can then perform a data
encryption using this wrapped key and the data to encrypt as inputs to the 4758:

{K1}KM⊕DATA ,m −→ {m}K1
(1)

The important concept to note is that the operator of the 4758 never sees K1 in the clear. We skip many
details about the 4758, but we note the following important and pertinent general concepts:

• Wrapped keys, like {K1}KM⊕DATA, are meant to be kept secret from the operator.

• Messages exported by the 4758, like {m}K1
, should be difficult to forge by someone who doesn’t

possess the relevant communications key K1 in the clear.

2 The Secure Messaging For Keys Command & Security Policy

The Secure Messaging For Keys API call is defined in v2.5 of the 4758 CCA. This new capability
exists for the purpose of setting up secure transmission of keys between the 4758 and an EMV1-compliant
smart card. In other words, the Secure Messaging For Keys capability is a special kind of key export.

Because this export functionality is specific to EMV smart cards, the API allows exporting only to-
wards specially-typed keys: in this case, a key typed as SECMSG . Such a key would be stored as
{K2}KM⊕SECMSG

In order to accomodate various manufacturer-specific message formats, the Secure Messaging For Keys
expects a message format template as well as an offset pointer into this template to indicate where the ex-
ported key data should be placed. This template is limited in size to 4096 bytes.

1Eurocard/Mastercard/Visa
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API call

offset

K2{ }KM⊕SECMSG { }K2K1

{ }KM⊕DATAK1

Figure 1: The API Call

We can now provide all details of this API call:

m, offset , {K1}KM⊕T , {K2}KM⊕SECMSG −→ {m[K1 : offset ]}K2
(2)

• m: the message template, a series of bytes to be used in preparing the plaintext.

• offset : the offset within m where the key material should be placed.

• {K1}KM⊕T : the wrapped key to export. Control vector T should indicate an exportable key.

• {K2}KM⊕SECMSG : the wrapped key under which to wrap the exported data.

• m[K1 : offset ]: the template plaintext m interpolated with key material K1 at offset offset .

• {m[K1 : offset ]}K2
: the wrapped interpolated template plaintext.

3 The Attacks

First we show how this API call effectively gives the operator access to an Encryption Oracle for any key
typed as SECMSG . Then, we show how to use this encryption oracle to spoof a transmission to a smart card.
In a coup de grace, we use the templating capability of the API call to expand this oracle into a partial-key
dictionary attack mechanism. We use this approach to rapidly crack any key marked as exportable.

3.1 Construction of an Encryption Oracle

The Secure Messaging For Keys performs encryptions in either CBC or ECB mode. These modes
both have the property that a ciphertext can be truncated to create a ciphertext of an identically truncated
plaintext – as long as the truncation is along a block limit.

Thus, one can use Secure Messaging For Keys as an encryption oracle using any key of type
SECMSG , as long as the plaintext is one block less than the maximal template length (4096 bytes). We
construct this encryption oracle on input m:

1. create a template t by extending m by a single block, e.g. the 0-block.
2. set the offset to |m|, where |m| does not include the newly added single block.
3. perform the call to Secure Messaging For Keys with any exportable key K1 under key K2 of

type SECMSG , obtaining a ciphertext c
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4. note that the 4758 will fill in the last block (indicated by offset) with K1, leaving the entire m com-
ponent of t untouched.

5. chop off the last block of c.
6. the result is {m}K2

.

m

offset

API call
K2{ }KM⊕SECMSG

m{ }K2

Figure 2: Construction of an Encryption Oracle. The last block is chopped off.

Note that this attack uses Secure Messaging For Keys in the strictest possible way, with offset a
block multiple, even though this isn’t required. Unless the documentation is severely flawed, this encryption
oracle attack should function.

3.2 Injecting Spoofed Export Messages

Given the encryption oracle above, it’s easy to create any export message of length no greater than 4088
bytes. Thus, taking any template t, one can “fill in” any known key material at the appropriate location, then
use the oracle to encrypt this fully-known message under a key of type SECMSG .

If the receiving smart card uses this key as a secure transmission key (the most likely use case for this
API call), the security of these later transmissions is compromised.

3.3 Cracking Any Exportable Key

This next attack assumes that a key can be interpolated into a template at an offset that is not a multiple of
block length. Certainly, the documentation makes no mention of such an alignment requirement, and one
could assume that the EMV message format does not confirm to block-alignment of keys.

The attack proceeds as follows:

1. set up 256 plaintext blocks of the form 0x00000000000000yy where yy varies from 00 to ff.
2. use the encryption oracle on all of 256 plaintext blocks to generate a dictionary of 256 ciphertexts.
3. perform an API call with a template of all 0’s and an offset of 7, exporting a key K1 that we wish to

attack.
4. compare the first output block to our dictionary of 256 attacks. This comparison yields aa, the first

byte of K1.
5. repeat the process with 256 plaintext blocks of the form 0x000000000000aayy, with an offset of

6. This will yield the 2nd byte bb of K1. By continually shifting the key over by one block, we can
extract the entire key. For a k-byte key, it takes 256k queries to extract the whole key.
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Figure 3: In the key-shifting attack, A 256-element dictionary is built up for each byte of the key that we
want to check.

4 The Secure Messaging For PINs Command

The same 4758 API specification includes the command Secure Messaging For PINs, which is sim-
ilar to Secure Messaging For Keys except that it is used for transmitting PINs instead of keys. This
API call exhibits the exact same template and offset construction.

Thus, the techniques described above for creating an Encryption Oracle can be used with Secure Messaging For PINs,
too. This allows a malicious operator to:

1. recover the plaintext of an encrypted PIN block, or
2. inject a known PIN block into a secure PIN message.

5 Conclusion

The 4758 documentation clearly implies that Secure Messaging For Keys and Secure Messaging For PINs
are meant to provide secure transmission of keys and PINs. We have shown how to:

1. Inject a known key or PIN into the smart card.
2. Extract a key or PIN exported from the 4758.

These attacks work in both CBC and ECB modes, with single- or double-size wrapper keys. The only
assumption for the second class of attack is that the offset can be non-block-aligned – an assumption that
seems credible, given that the documentation goes to great length to specify that the message block must be
a multiple of 8 bytes, but says nothing about the offset.

It seems the security policies of Secure Messaging For Keys and Secure Messaging For PINs
have been fully compromised.
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