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Abstract

We demonstrate how 1-of-n encoded speed-independent
circuits provide a good framework for constructing smart
card functions that are resistant to side channel attacks
and fault injection. A novel alarm propagation technique
is also introduced. These techniques have been used to
produce a prototype smart card chip: a 16-bit secure
processor with Montgomery modular exponentiator and
smart card UART.

1. Introduction

Smart cards are increasingly prevalent, particularly in
Europe, for authentication and payment mechanisms
(credit cards, pay-TV access control, public transport
payment, medical records, personal identity, mobile
phone SIMs, etc.). They present a harder target for the
criminal underworld than their magnetic strip counterparts.
None the less, there is sufficient economic gain in
cracking smart cards. Pay-TV is particularly vulnerable
since communication with the smart card is typically
unidirectional, from the broadcasting source to the set-top
box hosting the smart card. Since there is no back channel,
it is not possible to identify duplicate smart cards via
interactive protocols. Consequently, it is economically
attractive to reverse engineer a pay-TV smart card in
order to make a large number of duplicates. As smart
cards are used in more and more applications, many new
opportunities for theft and fraud open up to criminals
capable of reverse engineering cards or extracting key
material.

The next section introduces attack technologies which
determine the environment in which smart cards must
survive. We address a number of hardware level security
issues and how self-timed circuits can be used to build
more robust smart cards.

2. Attack Technologies

Hardware level attacks fall into two main categories:
invasive and non-invasive attacks.

2..1 Invasive attacks
Reverse engineering is the most extreme form of an invasive
attack where the smart card is depackaged and completely
analysed. Monitoring of bus signals is often sufficient to
extract data, and can be undertaken by dropping picoprobes
on bus lines. If bus signals are hidden (e.g. by a top level
metal defence grid), a focused ion beam (FIB) workstation
may be used to extract signals. There is also the ‘litigation
attack’; the attacker first obtains a patent that might possibly
have been infringed by a smart card designer, then abuse
the legal discovery process to obtain design details. Thus,
inline with Kerckhoffs’ principle1, one has to assume that
the design details of a smart card are in the public domain.

Another attack technique, used in the context of an
invasive microprobing attack, is to use a laser to shoot
away alarm circuitry, or protective circuitry such as access
control matrices which allow certain areas of memory
to be accessed only after the presentation of certain
passwords [1].

2..2 Non-invasive attacks
More recently non-invasive attacks (sometimes called
side channel attacks) have been investigated. An early
approach was to measure data dependent timing in order
to extract key information [2]. Another approach is
differential power analysis [3] where keys are extracted
from the differences between runs of data dependent
power emissions. A variation of this attack extracts keys
via electromagnetic analysis (EMA). The use of 40µm

antennas can easily pin-point individual power distribution
nets and can be used to build up a profile of on chip power
consumption [4] (see Figure 1).

Non-invasive attacks are of particular concern because
they leave no evidence of tampering can be undertaken
relatively quickly. Software techniques are used to
introduce randomness to the execution process to make
side channel attacks more difficult. However, to reduce
data dependent power leakage requires careful circuit

1Kerckhoffs’ principle: “The security of a cryptosystem must not
depend on keeping secret the crypto-algorithm. The security depends only
on keeping secret the key.” translated from La cryptographie militaire
(1883).



Figure 1: example of an EMA chip scan

design.
Another threat to smart card systems is fault induction.

Faults are induced in a number of ways, such as by
introducing transients (‘glitches’) on the power and clock
lines [5, 6] and illuminating one or more transistors with
a laser. These can cause the processor to malfunction in
a predictable and instructive way. For example, when a
processor executes a branch instruction, the write to the
program counter is often conditionally set late in the clock
cycle. An abnormally high clock frequency may result in
branches not being taken. Skipping a branch instruction
can result in a jump to some failure case being nulled,
thereby bypassing security checks.

This paper describes techniques for improving smart
card security by:

• eliminating data dependent power consumption

• defending against fault induction by using a redundant
encoding scheme

• diffusing data dependent timing

• propagating alarm signals as an integral part of the
data

Our emphasis is on making non-invasive attacks
impractical because this class of attack poses the greatest
economic threat.

3. Eliminating data dependent
power consumption

Simple binary encoding of data, where one wire is
used to propagate one bit, results in power consumption
proportional to the number of state changes. Data
transmission along a bus consumes considerable power
due to wire capacitance. Bus activity is observed as the
Hamming weight of the state changes.

One approach to reducing data dependent power
consumption is to use an alternative data encoding scheme.
For example, one-hot data encoding (1-of-n codes)
consume constant power to transmit data since just one
wire transitions for every symbol. 1-of-2 (dual-rail) and
1-of-4 data encodings are commonly used in self-timed
circuit design [7, 8].

1-of-n encoding is not sufficient to guarantee a data
independent power signature. Firstly, the path taken by
each wire is likely to vary, which can result in a difference
in wire load. This problem may be addressed by careful
layout of long buses and careful floor planning to keep
random wire lengths under control.

A second problem is the logic complexity variation
between each wire. Care has to be taken when choosing
standard cells to minimise this effect. Often this constraint
means that silicon area has to be sacrificed for greater
security. However, most smart card chips are dominated
by memory requirements so additional area for logic adds
little to the final size of the chip.

Data dependent control presents a third problem. For
example, a hardware multiplier implemented using a
shift-and-conditional-add algorithm uses data-dependent
power if the add operation is only undertaken when
required. A similar problem occurs if early completion
detection is used. Ensuring that the same operations occur
regardless of the data seems to be the best way to deal with
this problem. An alternative approach is to add random
noise to the power signature, but randomness can often be
removed by signal averaging over repeated runs.

4. Defending against fault induction

Self-timed designs are immune to clock glitch attacks.
Where the clock is required, for example in the clocked
serial smart card interface, it is easy to arrange that data
corruption should not result in sensitive data leakage.

A speed independent (SI) asynchronous circuit naturally
adapts to power supply voltage, thereby making power



supply glitch attacks less successful. However, self-timed
circuits cannot protect components like EEPROM which is
often used to store keys and error counters.

Dual-rail encoding is often used to construct SI circuits.
Two wires are used to encode three states: clear, logic-0
and logic-1 (see Figure 2). The unused fourth state (often
112) is typically not used by dual-rail circuits. However,
from the stand point of managing faults, the unused state
must be explicitly handled as an error condition which we
shall call alarm (more of how the alarm is used appears in
the next section).

A1 A0 meaning
0 0 clear
0 1 logical 0
1 0 logical 1
1 1 alarm

Figure 2: dual-rail encoding with alarm signal
defined

Single point fault induction results in one of three
behaviours:

1. Data can be suppressed which results in the circuit
deadlocking in the clear state.

2. A clear state is forced into a logic-0 or logic-1 state
which typically results in deadlock in the control
path because an extra data item has miraculously
appeared. Deadlock under these circumstances can be
guaranteed.

3. A logic state is forced into the alarm state resulting in
data corruption. The alarm signal can be propagated
rapidly resulting in data being deleted and a global
alarm raised.

The fact that SI circuits deadlock when a fault occurs
is very useful because it paralyses the chip until a hard
reset is performed. This is in contrast to clocked circuits
where induced faults are in the same league as pulses due
to static and dynamic hazards, which are considered normal
operating behaviour in many synchronous designs.

5. Alarm propagation and detection

There are many possible tamper sensors, including
over/under voltage, temperature and light level sensors
(to detect depackaging). All emit a signal when the
appropriate condition is violated. The alarm state, as
indicated in the previous section, can be activated by
ORing an alarm control signal from the tamper sensor
with the dual-rail data path (see an example fragment of
data-path in Figure 3). The alarm state is detected by an

AND–OR tree on the data. The amount of circuitry is
substantially reduced when it is known that setting the
alarm for one logical bit will result in the alarm being
propagated to other bits — see the worked example in
Section 7.

data input

dual-rail
combinational

circuit

attack
sensor

data-flow control
latch_data/clear_data

C

C data output

alarm detected

Figure 3: Alarm insertion and detection

6. Diffusing data dependent timing

Timing attacks on clocked processors are undertaken by
counting cycles between known events in order to derive
secret information [2]. An asynchronous processor is
more susceptible to leaking data in the time domain. For
example, an adder could be carefully designed to consume
constant energy per operation, but the duration of the
operation is dependent upon the propagation of the carry.
In this instance the adder must be designed to always
achieve worst case performance. This does not mean
that the adder must have bad performance. For example,
we have designed a SI carry select adder which operates
quickly and with constant timing properties.

Variation in wire and gate loads can also lead to data
dependent timing. Wire loads can be minimised by
applying suitable constraints during place and route. If
wire loads are to be made insignificant then the design
is partitioned into a number of small blocks. Wire load
balancing then only needs to be considered at interface
boundaries.

Gate loads are managed by using constant transistor
sizing. Fan-out in SI circuits is typically symmetric for
dual-rail wires, since as many conditions need to be tested
if the value is a logical-0 as they do when the value is a
logical-1. For example, see the full adder in Section 7.

Where there is concern over data dependent timing,
random delays may be inserted using the circuit in Figure 4
which is based upon a Seitz arbiter [9].

Data dependent cycling is also an issue. For example, an
iterative multiply might terminate early when only zero bits



random bit values

data or
control in

data or
control out

Figure 4: Random delay insertion

are left in the multiplicand. The multiply could be detuned
if necessary. However, the fact that a multiply is being
performed can often be detected, since the instruction
fetch might be stalled and there may be no data memory
activity (depending upon the CPU architecture of course).
This is a significant problem since memory accesses tend
to consume considerable power and so memory access
patterns show up easily. However, the attacker’s life can
be made harder by inserting dummy memory accesses in
situations where the memory interface would otherwise be
idle.

Data dependent software timing is a further issue. It is
imperative that application software for a smart card works
in collaboration with the hardware. One approach is to
ensure that the same work is undertaken regardless of the
data. However, this soon becomes difficult and results in
very slow code. An alternative approach is to introduce
nondeterminism at the software level (see the example in
Figure 5). Dynamic instruction scheduling in hardware
to produce nondeterministic instruction execution orders
is also possible [10, 11]. Instruction level nondeterminism
adds considerable complexity to an analysis of side channel
information from repeated runs. However, it is important to
note that this form of nondeterminism only adds complexity
if the side channel information is hard to analyse in the first
place.

if(random condition) {
f(); g();

} else {
g(); f();

}

where f() and g() are independent functions

Figure 5: Adding nondeterminism to software

7. Worked Example

This section describes the design of a dual-rail OR gate and
a dual-rail full-adder. To improve security data-independent
timing and power consumption is sought. We also wish to
be able to maximise propagation of alarm signals.

A simple dual-rail OR gate is show in Figure 6. If an
alarm signal is present on (a1, a0) or (b1, b0) inputs then the
output r1 will always be set. However, the r0 signal will not
be set if only one of the dual-rail inputs is at alarm. Also,
the OR gate takes a data dependent time to produce and
output. These two issues are resolved in Figure 7 by adding
additional logic to detect the alarm state, forcing r0 high
and at the same time making the delay data independent.
The C-elements in the alarm propagation circuit could be
replaced with AND gates if one was confident that the alarm
signal coming in was stable. However, under a glitch attack
we cannot be confident of this so the storage aspect of the
C-elements is desirable.

C

C

C

C

a1 a0 b1 b0

r0

r1

Figure 6: dual-rail SI OR gate
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Figure 7: dual-rail SI OR gate with alarm propagation

The OR gate example illustrates how path delays can
be balanced. However, this is not always necessary. For
example, let us consider a dual-rail full-adder. The dual-rail



inputs are (a1, a0), (b1, b0), (cin1, cin0) and the outputs
are (sum1, sum0) and (cout1, cout0). Since we require
several functions of the inputs it is worth expanding the
inputs into a 1-of-8 code vis:

i000 = C(a0, b0, cin0)
i001 = C(a0, b0, cin1)
i010 = C(a0, b1, cin0)
...
i110 = C(a1, b1, cin0)
i111 = C(a1, b1, cin1)

where C() represents a C-element function

Now we can define the outputs as an OR-plane of the
1-of-8 code:

sum0 = i000 + i011 + i101 + i110
sum1 = i001 + i010 + i100 + i111
cout0 = i000 + i001 + i010 + i100
cout1 = i011 + i101 + i110 + i111

This approach results in data independent timing but the
alarm signal is not guaranteed to propagate. The alarm
signal may be identified and added to there sum and cout

terms:
alarm = RS(globalReset, a0.a1 + b0.b1 + cin0.cin1)
sum0 = i000 + i011 + i101 + i110 + alarm

sum1 = i001 + i010 + i100 + i111 + alarm

cout0 = i000 + i001 + i010 + i100 + alarm

cout1 = i011 + i101 + i110 + i111 + alarm

where RS() is an RS flip-flop (reset dominant)

The SR flip-flop is used to keep alarm high causing
deadlock. Many dual-rail functions may be implemented
in this SI form: first expand the inputs to a 1-of-n code and
then have an OR plane to determine the outputs.
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Figure 8: Bus cryptography architecture

8. Case Study: Bus Cryptography

It is convenient to be able to use off the shelf memory
components when designing a secure system. Such parts
typically have a conventional binary encoded interface.
Consequently these devices, and the buses going to them,
consume data dependent power. This may be ameliorated
in two ways:

1. balance the power consumption

2. encrypt the data

Balancing the power may be achieved in a number of
ways. One approach is to write the true and complement
of the data at the same time. However, this doubles the
amount of storage required which is far from ideal. Power
consumption during writes may be balanced using dummy
circuitry, but this is not possible with reads since you do not
know what it is going to read, and hence what power needs
balancing, until the read operation has been performed.

An alternative strategy is to encrypt the data held in
the memory. We have developed the scheme depicted in
Figure 8. A dual-rail 16-bit processor (called a XAP) has
a memory protection unit which supplies a 64-bit key per
protection region. The hash of the key and address is used
to XOR with the data. On writes, the hash function is on the
critical path, but this performance impact can be amortised
by pipelining. On reads, the hash is computed in parallel
with the memory access. In our system, computation of the
hash is fractionally quicker than the memory access so there
is no performance degradation.

In our prototype chip, the hash is computed in four
rounds (in a production chip with a 32-bit bus, we would
have six rounds for cryptographic security). Each round
consists of an XOR of the input with part of the key
followed by a set of 4-input to 4-output S-boxes taken from
the Serpent block cypher [12]. There is then a further layer
of XOR. In our system the hash is computed using a 1-of-4
encoded data. We compute the XOR by extracting all 16
combinations of the two 1-of-4 inputs using 16 C-elements.
The 1-of-4 result is then computed by an OR plane (in
Figure 11 the C-element plane is inverting so a NAND
plane is then used). Next the S-boxes and transposition
have to be implemented. The S-boxes are a complex
function of the 4 logical bits of input. The two pairs of
1-of-4 inputs are first converted into a 1-of-16 code. Each
S-box and transposition is then just a transposition of
the 1-of-16 code, giving a 1-of-16 output. Given that the
final function required is a large XOR, having the data in
a 1-of-16 form is advantageous. As a result, the S-boxes
and transposition functions are reduced to wiring which is
almost for free. Thus, the computation is dominated by the
XOR functions. In our implementation, four rounds of the



keyed hash function takes 3.3ns which is comparable to the
3.5ns access time for the low power SRAMs used for data
storage (on a 0.18µm CMOS process). The 1-of-4 XOR
functions are perfectly balanced and propagate the alarm
signal without further modification.

While designing this unit, we observed a vulnerability
of some existing bus cryptography systems. This is that
multiple writes of the same data to the same address yield
the same enciphered data, as the key in such systems
remains unchanged. This means that coincidences in data
become apparent to an observer. With some algorithms this
is highly undesirable. For example, if the chip software
is implementing a common block cipher such as the Data
Encryption Standard, the observation of repeated identical
values of round keys may enable the cipher key in use
to be deduced with high probability. The solution we
implemented is to design the memory protection unit (with
which the bus cryptography unit is integrated) so that it
enables the operating system to treat segments of memory
as write-once. Thus each round of a block cipher can use a
different segment of memory, encrypted with a key that is
cleared after use.

9. Test Chip

We have recently received a test chip with five 16-bit XAP
processors, a Montgomery modular exponentiator (for fast
public key exchange using RSA with keys of up to 2048
bits), an I/O block which includes a smart card UART, and
a distributed 1-of-4 interconnect (see Figure 9). One of
the 16-bit processors has been specifically designed with
security in mind and has a memory protection unit with bus
cryptography attached.

Montgomery

modulo

exponentiator

I/OSC-XAP
MPU

DR-XAP

OF-XAP

BD-XAPS-XAP

Memory

8kB

Conf

Clk

gen

Figure 9: Test chip

10. Conclusions

Until now, the defence mechanisms reported against side
channel attacks have been ad-hoc and limited, including
clock jittering and random noise generation at the hardware
level, and various masking techniques at the software
level. None of these has been particularly satisfactory on
its own, and using them in combination imposes serious
dependencies and costs during both the development and
evaluation of systems. There have been no satisfactory
chip-level defence mechanisms at all against attackers who
induce transient faults using lasers.

This paper discusses many issues in the design of better
smart cards. We describe how 1-of-n data encoded SI
circuits may be used to make smart cards more resistant
to:

• Timing analysis by minimising data dependent gate
delays and adding random delay to mask residual
emissions.

• Power and electromagnetic emissions analysis by
ensuring that power consumption is data independent.

• Clock and power glitch attacks since SI circuits are
independent of the clock and adapt to power supply
variation.

• Fault injection since deadlock or alarm propagation
will result.
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Figure 10: Overview of the keyed hash function
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