ON FORTIFYING KEY NEGOTIATION SCHEMES
WITH POORLY CHOSEN PASSWORDS

Indexing term: Information Theory

Abstract: Key exchange schemes such as Diffie Hellman are vulnerable
to middleperson attacks, and thus are often augmented by means of shared se-
crets. Where these secrets must be memorised, they will usually be vulnerable
to guessing attacks. We show how collision rich hash functions can be used to
detect such attacks while they are in progress and thus frustrate them.

Introduction: In communications security design, one of the most impor-
tant questions is whether an opponent will ever have unsupervised access to
the equipment. If the answer is no, then we can greatly simplify the design by
storing long term secrets. However, the equipment will then have to be well
guarded at all times.

This may be feasible for military equipment, but in the commercial world,
physical security procedures are generally insufficient to stop an opponent from
getting occasional access. It follows that we must either use tamper resistant
hardware, or avoid using long term secrets. In the latter case, the well known
Diffie Hellman key negotiation scheme [1] is very useful, and has indeed been
used in secure telephone designs.

The problem with Diffie Hellman is of course the middleperson attack; Eve
interposes herself into the communications link between Alice and Bob, so that
when Alice and Bob try to set up a secure channel, they actually end up with
two: one between Alice and Eve, and another between Eve and Bob.

In some telephones, authentication is provided by the parties recognising
each others’ voices. There are applications, however, where more security is
needed. Of course, if the users have the capacity to remember secret keys, then
they can use Diffie Hellman followed by a challenge-response protocol to check
that there is no intruder in the circuit [2]; but this kind of solution is not always
feasible.

Remote login: Consider for example the problem of remote login to a
computer system, where a user U wishes to access a host system H. It is
well known that humans cannot in general remember good keys, and that the
passwords which they are able to remember are likely to succumb to guessing
attacks. We shall therefore assume that U and H share a password P with n
bits of entropy, while the eavesdropper E can perform 2" computations.

We shall also assume that although the user’s equipment cannot store long
term secrets safely, it will not usually have been subverted so as to capture his

password directly. This is often realistic, as the user may have a large choice of
workstations which he can use, and it will not be economic for the opponent to
tap a significant number of them; and the user can always load new software
from a commercial distribution diskette, or from an archive on the network (for
a secure way to do this see [3]).

However, it is sensible to assume that the network will be compromised.
Router information is easy to subvert [4], and the passage of time appears to
increase the number of people who are in a position to mount active attacks on
networks.

Proposed method: Let g be the generator of a group in which the Diffie
Hellman problem is believed to be hard, and let r; be a random number gener-
ated by participant I. Then in the Diffie Hellman scheme, user U would set up
a secure session with the host H by sending it ¢"V, the host would send ¢"#,
and they would use ¢g"U™H as a session key.

Now if Eve has managed to infiltrate the protocol, U’s session key will be
ky = ¢g"U"F, and H’s will be kg = ¢"F"H#. Thus the attack can be detected if
U and H have some means of comparing session keys. However, as all their
communications pass through Eve, who can modify their messages at will, the
problem of authentication is not straightforward.

This is especially the case if the user only shares a password with the host.
If this password is P, and he simply sends the host A(P, ky) (where h is a
suitable one-way hash function), then Eve can find P by a dictionary search,
and pass h(P, k) on to the host.

This problem has already been the motivation for other protocols which use
passwords to augment Diffie Hellman key exchange, most notably EKE [5]. We
propose instead to use collision rich hash functions [3]. Let the function q(k, z)
be defined by

q(k,z) = h(h(k |) mod 2™) | x) (1)

where h is a suitable one-way collision-free hash function and | denotes
concatenation. This function has the feature that it has many collisions on the
first variable k, while having no collisions on the second variable .

The point of this is that U and H can now use their shared password P to
check whether their two session keys are the same, without giving this password
away to Eve. Firstly, U sends H ¢(P, ky); then, if this agrees with H’s version
of P, he returns q(h(P), k). Now if Eve is in fact present, she can perform a
dictionary search and finds that 2"~ of the possible passwords satisfy it. The
best she can do is to choose one of them, P’ at random, and send ¢(P’, kg) to
H.

The probability that P = P’ is 2"~ ", and H will accept P’ if and only if
h(P | kg) = h(P' | ky) mod 2™. The probability of this is 27" + 2™~" which
will be minimised at 2"/ if we set m = n/2.

It would not of course be prudent for the user to continue using a password
which had been rejected, as he would have to assume that the rejection was
caused by an attack, which reduced the entropy of his password by m bits.
Thus an eavesdropper can carry out a denial of service attack. However, this is
always possible (for example, using dynamite); the purpose of computer security
mechanisms is not to prevent such attacks, but to detect them [5].

In many application environments (such as payment systems), the security
manager will want to know at once if such an attack is attempted, and so the
procedure will be for the user to call a security hotline for a new password.
There might be a mechanism in the user software for dealing with mistyped
passwords, in order to minimise the false alarm rate; there are a number of
options ranging from typing passwords twice, through displaying a password
checksum, to issuing machine generated passwords which contain a controlled
amount of redundancy.

Using authentication servers: The above protocol ignores the fact that
the host H may use a separate authentication server A to check passwords.
For example, H might be a merchant, and A a credit card company which
guarantees to pay H for services purchased by properly identified customers.

In this environment, a sensible card issuer would not trust merchant hosts
with user passwords, because of the ease with which these hosts can be sub-
verted, and the risk that the opponent will register as a merchant in order to
harvest passwords and carry out a major fraud; such frauds are becoming in-
creasingly common against ATM and eftpos systems [7]. Thus the initial session
will take place between U and A, with H acting as a communications channel.
Once U has set up a key with A, this can be used to set up a key with H.

Conclusions: Collision rich hash functions are a useful tool for building
secure communications protocols, especially where one must rely on low quality
shared secrets such as passwords. In particular, they enable authenticated key
exchange protocols to be simpler than was previously the case.

R J ANDERSON AND T' M A LoMAS
UNIVERSITY COMPUTER LABORATORY
PEMBROKE STREET, CAMBRIDGE CB2 3QG

References

[1] Diffie W and ME Hellman, “New Directions in Cryptography”, in IEEE Transac-
tions on Information Theory, IT-22 no 6 (November 1976) p 650

Diffie W, “Authenticated Key Exchange and Secure Interactive Communications”,
in SECURICOM 90

Lomas TMA and B Christianson, “To Whom am I Speaking?”, to appear in IEEE
Computer

Kumar B, and J Crowcroft, “Integrating Security in Inter-Domain Routing Pro-
tocols”, in Computer Communication Review v 89 no 5 (Sep 93) pp 36 - 51

Bellovin SM and M Merritt, “Augmented Encrypted Key Exchange”, in Pro-
ceedings of the 1st ACM Conference on Computer and Communications Security
(1993) pp 244 - 250

Needham RM, “Denial of Service”, to appear in Communications of the ACM

Anderson RJ, “Why Cryptosystems Fail”, in Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security (1993) pp 215 - 227

