How to Cheat at the Lottery

(or, Massively Parallel Requirements Engineering)

Ross Anderson

University of Cambridge Computer Laboratory,
New Museums Site, Pembroke Street, Cambridge CB2 3QG, UK
Ross.Anderson@cl.cam.ac.uk

Abstract. Collaborative software projects such as Linux and Apache
have shown that a large, complex system can be built and maintained
by many developers working in a highly parallel, relatively unstructured
way.

In this note, I report an experiment to see whether a high quality system
specification can also be produced by a large number of people working
in parallel with a minimum of communication.

1 Introduction

Experienced software engineers know that perhaps 30% of the cost of a soft-
ware product goes into specifying it, 10% into coding, and the remaining 60%
on maintenance. This has profound effects on computer science. For example,
when designing new programming languages the motive nowadays is mostly not
to make coding easier, but to cut the costs of maintenance. There has also been
massive interest in open source software products such as Linux and Apache,
whose maintenance is undertaken by thousands of programmers working world-
wide in a voluntary and cooperative way.

Open source software is not entirely a recent invention; in the early days
of computing most system software vendors published their source code. This
openness started to recede in the early 1980s when pressure of litigation led IBM
to adopt an ‘object-code-only’ policy for its mainframe software, despite bitter
criticism from its user community. The pendulum now seems to be swinging
back, with Linux and Apache gaining huge market share.

In his influential paper ‘The Cathedral and the Bazaar’ [1], Eric Raymond
compares the hierarchical organisation of large software projects in industry (‘the
cathedral’) with the more open, unstructured approach of cooperative developers
(‘the bazaar’). He makes a number of telling observations about the efficiency of
the latter, such as that “Given enough eyeballs, all bugs are shallow”. His more
recent paper, ‘The Magic Cauldron’ [2], explores the economic incentives that
for-profit publishers have found to publish their source code, and concludes that
IBM’s critics were right: where reliability is paramount, open source is best, as
users will cooperate in finding and removing bugs.

There is a corollary to this argument, which I explore in this paper: the next
priority after cutting the costs of maintenance should be cutting the costs of
specification.

Specification is not only the second most expensive item in the system de-
velopment life cycle, but is also where the most expensive things go wrong. The
seminal study by Curtis, Krasner and Iscoe of large software project disasters
found that failure to understand the requirements was mostly to blame [3]: a
thin spread of application domain knowledge typically led to fluctuating and
conflicting requirements which in turn caused a breakdown in communication.
They suggested that the solution was to find an ‘exceptional designer’ with a
deep understanding of the problem who would assume overall responsibility.

But there are many cases where an established expert is not available, such as
when designing a new application from scratch or when building a competitor to
a closed, proprietary system whose behaviour can only be observed at a distance.

There are also some particular domains in which specification is well known
to be hard. Security is one example; the literature has many examples of sys-
tems which protected the wrong thing, or protected the right thing but using the
wrong mechanisms. Most real life security failures result from the opportunistic
exploitation of elementary design flaws rather than ‘high-tech’ attacks such as
cryptanalysis [4]. The list of possible attacks on a typical system is long, and
people doing initial security designs are very likely to overlook some of them.

Even in a closed environment, the use of multiple independent experts is recom-
mended [5].

Security conspicuously satisfies the five tests which Raymond suggested would
identify the products most likely to benefit from an open source approach [2]. It
is based on common engineering knowledge rather than proprietary techniques;
it is sensitive to failure; it needs peer review for verification; it is business criti-
cal; and its economics include strong network effects. Its own traditional wisdom,
going back at least to Auguste Kerkhoffs in 1883, is that cryptographic systems
should be designed in such a way that they are not compromised if the opponent
learns the technique being used. In other words, the security should reside in the
choice of key rather than in obscure design features [6].

It therefore seemed worthwhile to see if a high quality security specification
could be designed in a highly parallel way, by getting a lot of different people
to contribute drafts in the hope that most of the possible attacks would be
considered in at least one of them.

2 Experimental design

The opportunity to test this idea was provided by the fact that I teach courses
in cryptography and computer security to second and third year undergraduates
at Cambridge. By the third year, students should be able to analyse a protection
problem systematically by listing the threats, devising a security policy and then

recommending mechanisms that will enforce it. (The syllabus and lecture notes
are available online at [7].)

By a security policy, we mean a high level specification which sets out the
threats to which a system is assumed to be exposed and the assurance properties
which are to be provided in response. Like most specifications, it is a means of
communication between the users (who understand the environment) and the
system engineers (who will have to implement the encryption, access control,
logging or other mechanisms). So it must be clearly comprehensible to both
communities; it should also be concise.

The students see, as textbook examples of security policy:

— the Bell-LaPadula model, which is commonly used by governments to protect
classified information and which states that information can only flow up
the classification hierarchy, and never down. Thus a civil servant cleared to
‘Secret’ can read files at ‘Secret’ or below, but not ‘Top Secret’, while a
process running at ‘Secret’ can write at the same level or above, but never
down to ‘Unclassified’;

— The Clark-Wilson model, which provides a reasonably formal description of
the double-entry bookkeeping systems used by large organisations to detect
fraud by insiders;

— The Chinese Wall model, which models conflicts of interest in professional
practice. Thus an advertising account executive who has worked on one
bank’s strategy will be prevented from seeing the files on any other banking
client for a fixed period of time afterwards;

— The British Medical Association model, which describes how flows of per-
sonal health information must be restricted so as to respect the established
ethical norms for patient privacy. Only people involved directly in a pa-
tient’s care should be allowed to access their medical records, unless the
patient gives consent or the records are de-identified effectively.

The first three of these are documented in [8] and the fourth in [9]. Further
examples of security policy models are always welcome, as they help teach the
lesson that ‘security’ means radically different things in different applications.
However, developing a security policy is usually hard work, involving exten-
sive consultation with domain experts and successive refinement until a model
emerges that is compact, concise and agreed by all parties.

Exceptions include designing a policy for a new application, and for a com-
petitor to a closed system. In such cases, the best we can do may be to think
long and hard, and hope that we will not miss anything important.

I therefore set the following exam question to my third year students:

You have been hired by a company which is bidding to take
over the National Lottery when Camelot’s franchise expires,
and your responsibility is the security policy. State the security
policy you would recommend and outline the mechanisms you
would implement to enforce it.

3 The UK National Lottery

For the benefit of overseas readers, I will now give a simplified description of our
national lottery. (British readers can skip the next two paragraphs.)

The UK’s national lottery is operated by a consortium of companies called
Camelot which holds a seven year licence from the government. This licence
is up for renewal, which makes the question topical; and presumably Camelot
will refuse to share its experience with potential competitors. A large number of
franchised retail outlets sell tickets. The customer marks six out of 49 numbers
on a form which he hands with his money to the operator; she passes it through
a machine that scans it and prints a ticket containing the choice of numbers plus
some further coded information to authenticate it.

Twice a week there is a draw on TV at which a machine selects seven num-
bered balls from 49 in a drum. The customers who have predicted the first six
share a jackpot of several million pounds; the odds should be (49 choose 6) or
13,983,816 to one against, meaning that with much of the population playing
there are several winners in a typical draw. (Occasionally there are no winners
and the jackpot is ‘rolled over’ to the next draw, giving a pot of many millions
of pounds which whips the popular press to a frenzy.) There are also smaller
cash prizes for people who guessed only some of the numbers. Half the takings
go on prize money; the other half gets shared between Camelot, the taxman and

various charitable good causes'.

The model answer I had prepared had a primary threat model that attackers,
possibly in cahoots with insiders, would try to place bets once the result of the
draw is known, whether by altering bet records or forging tickets. The secondary
threats were that bets would be placed that had not been paid for, and that
attackers might operate bogus vending stations which would pay small claims
but disappear if a client won a big prize.

The security policy that follows logically from this is that bets should be
registered online with a server which is secured prior to the draw, both against
tampering and against the extraction of sufficient information to forge a winning
ticket; that there should be credit limits for genuine vendors; and that there
should be ways of identifying bogus vendors. Once the security policy has been
developed in enough detail, designing enforcement mechanisms should not be
too hard for someone skilled in the art — though there are some subtleties, as we
shall see below.

The exam was set on the first of June 1999 [10], and when the scripts were
delivered that evening, I was eager to find out what the students might have
come up with.

1 Appointing the members of the committees that dish out the money is a source of
vast patronage for the Prime Minister and, according to cynics, is the real reason for
the Lottery to exist.

4 Results

Thirty four candidates answered the question, and five of their papers were good
enough to be kept as model answers. All of these candidates had original ideas
which are incorporated in this paper, as did a further seven candidates whose
answers were less complete. As the exam marking is anonymous, the ‘co-authors’
of this specification are a subset of the candidates listed in the ackowledgements
below. The question was a ‘good’ one in that it divided the students up about
equally into first, second and third class ranges of marks. Almost all the original
ideas came from the first class candidates.

The contributions came at a number of levels, including policy goal state-
ments, discussions of particular attacks, and arguments about the merits of par-
ticular protection mechanisms.

4.1 Policy goal statements

On sorting out the high level policy statements from the more detailed contribu-
tions, the first thing to catch the eye was a conflict reminiscent of the old debate
over who should pay when a ‘phantom withdrawal’ happens via an automatic
teller machine — the customer or the bank [4].

One of the candidates assumed that the customer’s rights must have prece-
dence: ‘All winning tickets must be redeemable! So failures must not allow un-
registered tickets to be printed.” Another candidate assumed the contrary, and
thus the ‘worst outcome should be that the jackpot gets paid to the wrong per-
son, never twice.” Ultimately, whether systems fail in the shop’s favour or the
customer’s is a regulatory issue. However, there are consequences for security. In
the context of cash machine disputes, it was noted that if the customer carries
the risk of fraud while only the bank is in a position to improve the security
measures, then the bank may get more and more careless until an epidemic of
fraud takes place. We presumably want to avoid this kind of ‘moral hazard’ in a
national lottery; perhaps the solution is for disputed sums to be added back to
the prize fund, or distributed to the ‘good causes’.

As well as protecting the system from fraud, the operator must also convince
the gaming public of this. This was expressed in various ways: ‘take care how you
Justify your operations;’ ‘don’t forget the indirect costs of security failure such
as TV contract penalties, ticket refund, and publicity of failure leading to bogus
claims;’ ‘at all costs ensure that there is enough backup to prevent unverifiable
ticket problems.” The operator can get some protection by signs such as ‘no
winnings due unless entry logged’ but this cover is never total.

Next, a number of candidates argued that it was foolish to place sole reliance
on any single protection mechanism, or any single instance of a particular type of
mechanisms. A typical statement was: ‘Don’t bet the farm on tamper-resistance’.
For example, if the main threat is someone forging a winning ticket after tapping
the network which the central server uses to send ticket authenticator codes

to vending machines, we might not just encrypt the line but also delay paying
jackpots for several days to give all winners a chance to claim. (Simply encrypting
the authentication codes would not be enough, if a technician who dismantled the
encryption device at the server could get both the authentication keys and the
encryption keys.) Translated into methodology, this suggests a security matrix
approach which maps the threats to the protection mechanisms, and makes it
easy for us to check that at least two independent mechanisms constrain every
serious threat.

Various attempts were made to reuse existing security policies, and par-
ticularly Clark-Wilson. These were mostly by weak candidates and not very
convincing. But three candidates did get some mileage; for example, one can
model the lottery terminal as a device that turns an unconstrained data item
(the customer selection) into a constrained data item (the valid lottery ticket)
by registering it and printing an authentication code on it. Such concepts can
be useful in designing separation-of-duty mechanisms for ticket redemption and
general financial control, but do not seem to be enough to cover all the novel
and interesting security problems which a lottery provides.

Some candidates wondered whether a new franchisee would want to extend
the existing lottery’s business model, such as by allowing people to buy tickets
over the phone or the net. In that case, one should try to design the policy to
be extensible to non-material sales channels. (Internet based lottery ticket sales
have since been declared to be a good thing by the government [11].)

Finally, some attention needs to be paid to protecting genuine winners. The
obvious issue is safeguarding the privacy of winners who refuse publicity; less
obvious issues include the risk that winners might be traced, robbed and perhaps
even murdered during the claim process. For example, the UK has some recent
history of telephone technicians abusing their access to win airline tickets and
other prizes offered during phone-in competitions; one might be concerned about
the risk that a technician, in cahoots with organised crime, would divert the
winners’ hotline, intercept a jackpot claim, and dispatch a hit squad to collect
the ticket. In practice, measures to control this risk are likely to involve the
phone company as much as the lottery itself.

4.2 Discussions of particular attacks

This leads to a discussion of attacks. There were several views on how the threat
model should be organised; one succinct statement was ‘Any attack that can be
done by an outsider can be done at least as well by an insider. So concentrate
on insider attacks’. This is something that almost everyone knows, but which
many system designers disregard in practice. Other candidates pointed out that
no system can defend itself against being owned by a corrupt organisation, and

that senior insiders should be watched with particular care?.

2 One of the companies that originally made up the Camelot consortium had to leave
after its chief executive was found by the High Court to have tried to bribe a com-
peting consortium during the bidding for the original lottery franchise.

Moving now to the more technical analysis, a number of interesting attack
scenarios were explored.

1. A number of candidates remarked that in the absence of enforceable limits
on ticket sales per machine, an operator could issue large numbers of tickets
without any intention of paying for them. In extremis, he might issue all
13,983,816 tickets required to win a jackpot. The obvious fix is to have a
value counter to enforce a system of credit limits — but where? If the terminal
cannot be completely tamperproof, we need an online solution. But this is
not enough: three candidates warned about possible traffic insertion attacks
at the server end, so having synchronised value counters at both the terminal
and the server might be a good idea3. So would banking industry style batch
controls and totals.

2. Three candidates discussed tricking genuine terminals into attaching to a
fake server. The goal might be fraud (after the draw, forge tickets with
authenticators calculated using the fake server key) or denial of service (un-
dermine the lottery’s credibility by causing vendors to print tickets which
cannot be redeemed if they win). The obvious fix is to have the terminals
authenticate the server.

3. There was concern about the prospect of a winning ticket being claimed
simultaneously at several shops. The general consensus was that an online
operation with guaranteed commit-abort semantics and strong authentica-
tion of the terminal should be required to pay a winning ticket.

4. Candidates disagreed about the threat from refunds. If refunds are allowed,
then someone might get a refund on a forged ticket and later present the
original if it wins. (Historically, refund mechanisms have been a source of
fraud with systems such as prepaid electricity meters [5]). The simplest so-
lution is not to allow any refunds at all; and alternative is to allow them only
in very restricted circumstances (only for data entry errors, only while the
customer is still in the shop, only up to close of play, only while the terminal
is online, and subject to collection and audit of all refunded tickets along
with all locally paid winning tickets).

5. Although tamper resistance cannot be relied on completely, it can still be
helpful. But should we protect the whole vending machine or just an em-
bedded crypto module? If the latter, there is a risk that vendors will tamper
with the rest of the system so that it reports only a proportion of their
takings, in effect competing with the lottery by issuing the other tickets on
their own account. So it is probably a good idea to make the whole vending
machine tamper resistant, except for those components such as the receipt
printer where user access is unavoidable.

6. It may be a good idea to allow small claims to be cashed anywhere in the
system. This way, any bogus tickets should be spotted as quickly as pos-
sible. This will also help the operator detect any rogue merchants running
completely bogus vending operations with unauthorised equipment.

3 but see section 4.3 below on the problems of redundancy

10.

11.

This will not help, however, with another possible attack on the vending
machine’s tamper resistance. This is where a wiretap is used to reveal which
machine sold a winning ticket (whether directly, or from published informa-
tion about where a prizewinner lives); the attacker then burgles the shop,
steals the machine and digs the authentication keys or logs out of it. So
vending machines should not contain enough information to forge a ticket,
except in the instant that a genuine ticket is being printed.

There are some secondary design concerns here. How will the machines val-
idate the lower-value tickets that are paid out locally — only online? Or will
some of the authenticator code be kept in the vending station? But in that
case, how do we cope with the accidental or malicious destruction of the ma-
chine that sold a jackpot winning ticket, and how do we pay small winnings
when the machine that sold the ticket is offline?

. Close attention has to be paid to failure modes. If random errors and system

failures can lead to individual gain then, as with some burglar alarm sys-
tems [12], deliberate attempts to cause failure can be expected. They may
lead not just to occasional frauds but also to more widespread service denial.
Some attention has to be paid to whether the system should collect evi-
dence with a view to resolving possible disputes with franchisees, and if so
what form it should take. The naive approach is to ask for everything to
carry a digital signature, but this is largely irrelevant to the kind of attack
one expects from the experience of electricity token vending [5] — namely
that a vendor sells a large number of tickets and then reports the machine
stolen. The solution is likely to involve contractual obligations, insurance,
and monitoring of vending machines by the central server.

There should be enough privacy protection to prevent punters learning the
pattern of bets; even if the draw is random, other people’s choice of numbers
will not be, and this will skew the odds. The published history of jackpots
gives some information on this (it is already extensively analysed) but one
should not give out any more information, unless the operator decides to
as a matter of policy. If it were believed that insiders had an advantage
by knowing the popularity of each number, this could seriously erode confi-
dence. (There is no realistic way to stop a clever vending agent rigging up
some means of collecting local statistics, but at least the authentic national
statistics should be protected.)

Some candidates suggested using the BBC’s broadcast radio clock signal as
an authentication input to the vending terminals; but one candidate correctly
pointed out that this signal could be jammed without much difficulty. This
was a highly effective suggestion, in the sense that when it was mentioned
to a colleague who had recently done an audit of a different online gaming
system, his response was ‘Oh s***!’

4.3 Reasoning about particular protection mechanisms

The third type of contribution from the candidates can be roughly classed as
reasoning about particular mechanisms.

1. Five candidates discussed the kind of authenticator needed to validate the
ticket. One suggested a digital signature; one reasoned that a MAC* would
do; three pointed out that even a random number generated by the central
server would be enough (though a MAC might be more convenient).

2. There was some discussion of how one should eliminate single points of vul-
nerability such as the encryption devices that would generate authenticators
if this were done algorithmically. There was also some reasoning about sep-
aration of duty, such as how to prevent any single individual from being
able to validate a jackpot win. One might, for example, have ‘orange’ and
‘blue’ encryption boxes (if encryption were used to generate authenticators)
or databases (if the authenticators were randomly generated) and have the
call centre send out an orange manager and a blue manager to visit the
winner and check the claim.

3. There was also discussion of the nature of the Trusted Computing Base®.
Is this all of the central server or just part of it? How much protection can
you get by separating function across replicated hardware, such as multiple
databases or crypto boxes at the centre, or by having part of the authentica-
tor computed centrally and part by the vending machine? In the latter case,
do you need to have all the vending machines online when claims are paid, or
do you upload winning authenticators — in which case what did you gain by
decentralising part of the codes before the draw? The efficacy of replication
is well known to be bounded by common mode errors (particularly specifi-
cation errors [13]). And in any case, how do you prevent yourself being laid
open to service denial attacks? There are similar tradeoffs involving security
and resilience when we consider whether to put the value counters at the
server, in the terminals, or in both. Managing these tradeoffs may involve
several iterations of a detailed design, with criticism from a number of bright
people in parallel.

4. Some candidates discussed the level of reliance that could be placed on physi-
cal ticket security technologies, such as holograms; the general consensus was
that the stock is bound to be stolen. Thus the primary protection should be
digital not physical. However, having a printed serial number on the ticket
costs little and may do some good if it is also an input to the MAC or other
authentication process. This way, a crook has to do some physical forgery
as well. Serial numbers might also provide a second level control against
wiretap attacks, as one might transmit only the first few digits of the serial
number to the server and arrange matters so that the remaining digits were
a MAC computed with a key known only to the ticket printing company.

4 For the benefit of readers without a security background, a MAC — or message
authentication code — is a cryptographic checksum computed on data using a secret
key and which can only be verified by principals who also possess that secret key.
By comparison, a digital signature can in principle be verified by anybody. See [8]
for more detail

5 the set of hardware, software and procedural components whose failure could lead
to a compromise of the security policy

. The candidates came up with quite a number of checklist items of the kind
that designers often overlook — e.g. ‘tickets must be associated with a par-
ticular draw’. This might seem obvious, but a protocol design which used
a purchase date, ticket serial number and server-supplied random challenge
as input to a MAC computation might appear plausible to a superficial in-
spection. The evaluator might not check to see whether a shopkeeper could
manufacture tickets that could be used in more than one draw. Experienced
designers appreciate the value of such checklists.

. The user interface design also needs some care. We mentioned above that
one should ask for telephone claims of big wins after the draw, then delay
payment for a week or two in the hope that any duplicated winning ticket will
become evident. This delay can be used for (and excused by) due diligence
activities such as getting a sworn statement from each jackpot winner that
the ticket is theirs, and that they are not cheating on a partner or a syndicate
with an equity stake in the win — an activity which has given rise to most of
the publicised disputes over the years.

. As the company will want to convince outsiders that it is not cheating, it
might veer towards involving third parties in many of the protection mecha-
nisms. For example, in order to secure the database of bets before the draw,
it would be natural to use a third party timestamping service rather than
simply having a spare copy of a CD of the database; if a spare database were
preferred, then one might leave it with a bank rather than at an in-house
backup site.

. How much audit effort is needed? Certainly, one should collect both winning
and refunded tickets for examination. Key staff should be watched; a Jaguar
in the car park should sound an alarm more quickly than it did in the Aldrich
Ames case. There are many other details, such as:

— what will be the controls on adding vending machines to network (and
for that matter adding servers);

— how long should logs be kept;

— how to deal with refunded tickets;

— how to deal with tickets that are registered but not printed (these will
exist if you insist that unregistered tickets are never printed);

— what system will be used to transfer takings from merchants to the
operator (we don’t want a fake server to be able to collect real money);

— what audit requirements the taxman will impose;

— what sort of ‘intrusion detection’ or statistical monitoring system will be
incorporated to catch the bugs and/or attacks that we forgot about or
which crept in during the implementation. E.g., we might have a weird
bug which enables a shopkeeper to manufacture occasional medium-sized
winners which he credits against his account. If this is significant, it
should turn up in long term statistical analysis.

As we work through these details, it becomes clear that for most of the
system, ‘Trusted’ means not just tamper resistant but subject to approved
audit and batch control mechanisms.

10

4.4 How complete are the above lists?

At the time I set the exam question, I had never played the lottery. I did not
perform this experiment until after marking the exam scripts; this helped ensure
an even playing field for the candidates. In fact, by the time I got round to
buying a ticket, I had already written the first draft of this article and circulated
it to colleagues. My description of the ticket purchase process in that draft had
been based on casual observation of people ahead of me in Post Office queues,
and was wrong in an unimportant but noticeable detail: I had assumed that
the authentication code was printed on the form filled by the customer whereas
in fact it appears on the receipt (which I have therefore called ‘the ticket’ in
this version of the paper). None of my colleagues noticed, and none of them
has since admitted to having ever played. Indeed, only one of the candidates
shows any sign of having done so. I had expected a negative correlation between
education and lottery participation (many churches already denounce the lottery
as a regressive tax on the poor, the weak and the less educated) but the strength
of this correlation surprised me.

So the above security analysis was done essentially blind — that is, without
looking at the existing system. Subsequent observation of the procedures actually
implemented by Camelot suggests only two further issues.

1. Firstly, the Camelot rules allow small franchisees to pay wins of up to £500,
while the agencies in main Post Offices can pay up to £10,000. This seems
a better idea than our 4.2.6; it makes it a lot harder to run a bogus vend-
ing operation. Wins in the £500-£10,000 range are much commoner than
jackpots, and main Post Offices are much harder to ‘forge’ than corner shops.

2. Secondly, the tickets are numbered as suggested in 4.3.4, but printed on
continuous stock. The selected bet numbers and authentication codes are
printed on the front, while pre-printed serial numbers appear on the back.
This may have both advantages and disadvantages. If a standard retail re-
ceipt printer is used, it can produce a paper audit roll with a copy of all
tickets printed. This may well be more convincing to a judge than any cryp-
tographic protection for electronic logs. On the other hand, the audit roll
might facilitate ticket forgery as in 4.2.7, and there may be synchronisation
problems (the sample ticket I purchased has two successive serial numbers
on the back). When synchronising tickets with serial numbers, one will have
to consider everything from ticket refunds to how operators will initialise a
new roll of paper in the ticket printer, and what sort of mistakes they will
make.

The final drafting of the threat model, security policy and detailed functional
design is now left as an exercise to the reader.

11

5 Discussion and Conclusions

Linux and Apache prove that software maintenance can be done in parallel; the
experiment reported in this paper shows that requirements engineering can too.

There has been collaborative specification development before, as with the
‘set-discuss’ mailing list used to gather feedback during the development of the
SET protocol for electronic payments. However, such mechanisms tend to have
been rather ad-hoc, and limited to debugging a specification that was substan-
tially completed in advance by a single team. The contribution of this paper
is twofold: to show that it is possible to parallelise right from the start of the
exercise, and to illustrate how much value one can add in a remarkably short
period of time. Our approach is a kind of structured brainstorming, and where
a complete specification is required for a new kind of system to a very tight
deadline, it looks unbeatable: it produced high quality input at every level from
policy through threat analysis to technical design detail.

The bottleneck is the labour required to edit the contributions into shape.
In the case of this paper, the time I spent marking scripts, then rereading them,
thinking about them and drafting the paper was about five working days. A
system specification would usually need less polishing than a paper aimed at
publication, but the time saved would have been spent on other activities such
as doing a formal matrix analysis of threats and protection mechanisms, and
finalising the functional design.

Finally, there is an interesting parallel with testing. It is known that different
testers find the same bugs at different rates — even if Alice and Bob are equally
productive on average, a bug that Alice finds after half an hour will only be
spotted by Bob after several days, and vice versa. This is because different people
have different areas of focus in the testing space. The consequence is that it is
often cheaper to do testing in parallel rather than series, as the average time spent
finding each bug goes down [14]. The exercise reported in this paper strongly
supports the notion that the same economics apply to requirements engineering
too. Rather than paying a single consultant to think about a problem for twenty
days, it will often be more efficient to pay fifteen consultants to think about it
for a day each and then have an editor spend a week hammering their ideas into
a single coherent document.

Acknowledgements

I am grateful to the security group at Cambridge, and in particular to Frank
Stajano, for a number of discussions. I also thank JR Rao of IBM for the history
of the ‘object code only’ effort, and Karen Spérck Jones who highlighted those
parts of the first draft that assumed too much knowledge of computer security
for a general engineering audience, and also persuaded me to buy a ticket.

Finally, the students who contributed many of the ideas described here were
an anonymous subset of our third year undergraduates for 1998-9, who were:

12

PP Adams, MSD Ashdown, JJ Askew, T Balopoulos, KE Bebbington, AR Beres-
ford, TJ Blake, NJ Boultbee, DL, Bowman, SE Boxall, G Briggs, AJ Brunning,
JR Bulpin, B Chalmers, IW Chaudhry, MH Choi, I Clark, MR Cobley, DP
Crowhurst, AES Curran, SP Davey, AJB Evans, MJ Fairhurst, JK Fawcett, KA
Fraser, PS Gardiner, ADOF Gregorio, RG Hague, JD Hall, P Hari Ram, DA
Harris, WF Harris, T Honohan, MT Huckvale, T Huynh, NJ Jacob, APC Jones,
SR King, AM Krakauer, RC Lamb, RJP Lancaster, CK Lee, PR Lee, TY Le-
ung, JC Lim, MS Lloyd, TH Lynn, BR Mansell, DH Mansell, AD McDonald, NG
McDonnell, CJ McNulty, RD Merrifield, JT Nevins, TM Oinn, C Pat Fong, AJ
Pearce, SW Plummer, C Reed, DJ Scott, AA Serjantov, RW Sharp, DJ Sheri-
dan, MA Slyman, AB Swaine, RJ Taylor, ME Thorpe, BT Waine, MR Watkins,
MJ Wharton, E Young, HJ Young, WR Younger, W Zhu.

References

1. The Cathedral and the Bazaar. Eric S. Raymond, http://wuw.tuxedo.org/
“esr/writings/cathedral-bazaar/
2. The Magic Cauldron. Eric S. Raymond, http://www.tuxedo.org/ esr/
writings/magic-cauldron/
3. A Field Study of the Software Design Process for Large Systems. Bill Curtis,
Herb Krasner, Neil Iscoe, Comm ACM 31.11 (Nov 88) pp 1268-87
4. Why Cryptosystems Fail. Ross Anderson, Comm ACM 37.11 (Nov 1994) pp
32-40, http://www.cl.cam.ac.uk/users/rjal4/wcf . html
5. On the Reliability of Electronic Payment Systems. Ross Anderson and S
Johann Beduidenhoudt, IEEE Trans. Software Engineering 22.5 (May 1996)
pp 294-301, http://www.cl.cam.ac.uk/ftp/users/rjal4/meters.ps.gz
6. La Cryptographie Militaire. Auguste Kerkhoffs, Journal des Sciences Mil-
itaires, 9th series, IX (Jan 1883) pp 5-38 and (Feb 1883) pp 161-191;
http://www.cl.cam.ac.uk/ fapp2/kerckhoffs/
7. Security. Ross Anderson, University of Cambridge Computer Laboratory,
http://www.cl.cam.ac.uk/Teaching/1998/Security/
8. Computer Security. Dieter Gollmann, John Wiley and Sons, 1999; ISBN 0-
471-978442-2
9. A Security Policy Model for Clinical Information Systems. Ross J Anderson,
Proceedings of the 1996 IEEE Symposium on Security and Privacy, pp 30—
43, Oakland, CA, 1996; conference paper is http://www.cl.cam.ac.uk/ftp/
users/rjal4/oakpolicy.ps.Z; full BMA version is http://www.cl.cam.ac.
uk/users/rjal4/policyl1l/policyll.html
10. The 1999 papers are at http://www.cl.cam.ac.uk/tripos/y1999.html; see
http://wuw.cl.cam.ac.uk/tripos/y1999PAPER7 .pdf for paper 7 in which
this question is number 6
11. New Age lottery will be played on the net. Rupert Steiner, Sunday Times
25 July 1999 p 3.3
12. Denial of Service: An Example. Roger M Needham, Comm ACM 37.11 (Nov
1994) pp 42-46
13. Safeware. Nancy Leveson, Addison-Wesley (1994).
14. Murphy’s law, the fitness of evolving species, and the limits of software
reliability. Ross J Anderson, Robert M Brady and Robin C Ball; http:
//www.cl.cam.ac.uk/ftp/users/rjal4/bab.ps.gz.

13

