
Formal Veri!cation of Machine Code
Anthony Fox, Mike Gordon and Magnus Myreen

HOL4: Interactive Theorem Proving

L3: ISA Speci!cation

Instruction Sets

Formal Speci!cation and Veri!cation

Disassembly of section .text:

00000000 <hypotenuse>:
 0:!e92d4008 ! push! {r3, lr}
 4:!ee607aa0 ! vmul.f32!s15, s1, s1
 8:!ee407a00 ! vmla.f32!s15, s0, s0
 c:!eef70ae7 ! vcvt.f64.f32! d16, s15
 10:!eef10be0 ! vsqrt.f64! d16, d16
 14:!eef40b60 ! vcmp.f64!d16, d16
 18:!eef1fa10 ! vmrs! APSR_nzcv, fpscr
 1c:!0a000002 ! beq! 2c <hypotenuse+0x2c>
 20:!eeb70ae7 ! vcvt.f64.f32! d0, s15
 24:!ebfffffe ! bl!0 <sqrt>
 28:!eef00b40 ! vmov.f64!d16, d0
 2c:!eeb70be0 ! vcvt.f32.f64! s0, d16
 30:!e8bd8008 ! pop! {r3, pc}

ARM machine code — as produced by the GCC compiler

|- SPEC (STATE arm_proj,NEXT_REL $= NextStateARM,arm_instr,$=)
 (cond (Aligned (pc,4) " Aligned (r13,4)) *
 (arm_exception NoException * arm_undefined und *
 arm_CurrentCondition cond * arm_Encoding enc * arm_CPSR_J F *
 arm_CPSR_E F * arm_CPSR_T F * arm_CPSR_M 16w *
 arm_REG RName_SPusr r13 * arm_REG RName_3usr r3 *
 arm_REG RName_LRusr r14 * arm_REG RName_PC pc *
 arm_MEM (r13 # 8w) b0 * arm_MEM (r13 # 8w + 1w) b1 *
 arm_MEM (r13 # 8w + 2w) b2 * arm_MEM (r13 # 8w + 3w) b3 *
 arm_MEM (r13 # 8w + 4w) b4 * arm_MEM (r13 # 8w + 4w + 1w) b5 *
 arm_MEM (r13 # 8w + 4w + 2w) b6 *
 arm_MEM (r13 # 8w + 4w + 3w) b7)) {(pc,0xE92D4008w)}
 (arm_exception NoException * arm_undefined F *
 arm_CurrentCondition 14w * arm_Encoding Encoding_ARM *
 arm_CPSR_J F * arm_CPSR_E F * arm_CPSR_T F * arm_CPSR_M 16w *
 arm_REG RName_SPusr (r13 # 8w) * arm_REG RName_3usr r3 *
 arm_REG RName_LRusr r14 * arm_REG RName_PC (pc + 4w) *
 arm_MEM (r13 # 8w) ((7 >< 0) r3) *
 arm_MEM (r13 # 8w + 1w) ((15 >< 8) r3) *
 arm_MEM (r13 # 8w + 2w) ((23 >< 16) r3) *
 arm_MEM (r13 # 8w + 3w) ((31 >< 24) r3) *
 arm_MEM (r13 # 8w + 4w) ((7 >< 0) r14) *
 arm_MEM (r13 # 8w + 4w + 1w) ((15 >< 8) r14) *
 arm_MEM (r13 # 8w + 4w + 2w) ((23 >< 16) r14) *
 arm_MEM (r13 # 8w + 4w + 3w) ((31 >< 24) r14)):
 thm

HOL4 theorem for the semantics of the machine code instruction 0xE92D4008

-- BL<c> <label>
-- BLX<c> <label>
define Branch > BranchLinkExchangeImmediate
 (targetInstrSet :: InstrSet,
 imm32 :: bits(32))
 =
{ if CurrentInstrSet() == InstrSet_ARM then
 LR <- PC - 4
 else
 LR <- PC<31:1> : '1';
 targetAddress =
 if targetInstrSet == InstrSet_ARM
 then Align (PC, 4) + imm32
 else PC + imm32;
 SelectInstrSet (targetInstrSet);
 BranchWritePC (targetAddress)
}

L3 speci!cation for the ARM
instructions BL and BLX

 arm_CurrentCondition cond * arm_Encoding enc * arm_CPSR_J F *

 8w + 4w + 1w) b5 *

 arm_CPSR_J F * arm_CPSR_E F * arm_CPSR_T F * arm_CPSR_M 16w *

HOL4 theorem for the semantics of the machine code instruction 0xE92D4008
Web interface

Raspberry Pi® comes with
an ARM11 processor

Microprocessors are ubiquitous — they are used to control servers, laptops,
tablets, phones, TVs, transportation and a vast range of other digital devices.
The behaviour of microprocessors is controlled by low-level software or
machine code. An instruction set is a de!ned collection of machine code
instructions, as implemented by a class of processors. Families of instruction
sets include: ARM, x86, Power, MIPS and SPARC.

Instruction set architectures (ISAs) are often extremely complex — consisting
of hundreds of low-level instructions, each altering a processor’s registers and
memory in a wide variety of different ways.

There are applications where software assurance extremely important. Errors in
software can have signi!cant repercussions, with a single bug having the
potential to cause huge corporate and/or personal loss.

Using mathematic models, it is possible to verify that software will always
behave as required. Our work involves formally specifying the semantics of
instruction set architectures and using this as the basis for formally verifying the
correctness of machine code programs.

Interactive theorem provers are software tools that provide assistance in
constructing formal proofs. The HOL4 proof assistant derives from Robin Milner’s
LCF theorem prover, which was initially developed in the 1970s. The logical
foundation of HOL4 is Higher-Order Logic. HOL4 provides a excellent framework in
which to write tools for the formal veri!cation of machine code programs.

The L3 language has been designed to ease the task of constructing ISA models in theorem
provers. In particular, L3 acts as an authoring tool for HOL4 ISA speci!cations. We have L3
written speci!cations for the ARM and x86-64 ISAs. Advanced tools have been developed in
HOL4 for working with these ISA models — these include a decompiler and web interface
for exploring the semantics of ARM instructions.

Intel® Manuals

