Formal Verification of Machine Code

Anthony Fox, Mike Gordon and Magnus Myreen

Instruction Sets

Microprocessors are ubiquitous — they are used to control servers, laptops,
tablets, phones, TVs, transportation and a vast range of other digital devices.

Disassembly of section .text:

00000000 <hypotenuse>:
0: e92d4008 push {r3, lr}

The bghaviour of r.nicropr.ocesso.rs is controlled by low-level software or 4: ee607aad vmul.f32 s15, s1, sl
machine code. An instruction set is a defined collection of machine code 8: ee407a00 vmla.f32 s15, s0O, sO
instructions, as implemented by a class of processors. Families of instruction c: eef70ae7 vcvt.f64.f32 d16, sl15
sets include: ARM, x86, Power, MIPS and SPARC. 10: eeflObed  vsqrt.fe4 dle, di6

14: eef40b60 vcmp.f64 dl6, dle
Instruction set architectures (ISAs) are often extremely complex — consisting 18: eeflfal® vmrs APSR_nzcv, fpscr
of hundreds of low-level instructions, each altering a processor’s registers and 1lc: 02000002 beq 2c <hypotenuse+0x2c>
memory in a wide variety of different ways. 20: eeb70ae7  vcvt.f64.f32 d0, sl5

24: ebfffffe bl 0 <sqrt>
. . . . 28: eef00b40 vmov.f64 d1l6, dO
Formal Specification and Verification 2c: eeb70bed  vcvt.f32.f64 S0, d16
30: e8hd8008 pop {r3, pc}
There are applications where software assurance extremely important. Errors in

software can have significant repercussions, with a single bug having the
potential to cause huge corporate and/or personal loss.

—
Using mathematic models, it is possible to verify that software will always ARM machine code — as produced by the G(( compiler

behave as required. Our work involves formally specifying the semantics of
instruction set architectures and using this as the basis for formally verifying the
correctness of machine code programs.

(Z)

HOL4: Interactive Theorem Proving

aaaaaaa
M 32 Ar
"o s, RECtUrg

Interactive theorem provers are software tools that provide assistance in o
constructing formal proofs. The HOL4 proof assistant derives from Robin Milner’s | ;;% 2 Raspberry Pi® comes with
LCF theorem prover, which was initially developed in the 1970s. The logical
foundation of HOL4 is Higher-Order Logic. HOL4 provides a excellent framework in
which to write tools for the formal verification of machine code programs.

L3: ISA Specification

an ARMTT processor
Intel® Manuals

® 0o bl +#12

Py |E| €3 svr-acjf3-armie.cl.cam.ac.uk ¢

ARM instruction evaluator

The L3 language has been designed to ease the task of constructing ISA models in theorem Home | About | Learn mare | Feecback|
provers. In particular, L3 acts as an authoring tool for HOL4 ISA specifications. We have L3 T
written specifications for the ARM and x86-64 ISAs. Advanced tools have been developed in Architecture: [ARm7-a -
HOL4 for working with these ISA models — these include a decompiler and web interface Plﬂstruct"ﬂn 5;t= ARM_
o . o o rocessor mode. | usr «
for exploring the semantics of ARM instructions. Byte order: (lime-endian &
If-Then block:
Machine code: EBO000O1
Assembly code: (= bl +#12

Lookup an instruction...
|- SPEC (STATE arm_proj,NEXT_REL $= NextStateARM,arm_instr,$=)

-— BL<c> <label> (cond (Aligned (pc,4) a Aligned (rl3,4)) x* Mnemonic: | -
—— BLX<c> <label> (arm_exception NoException * arm_undefined und *
. . . arm_CurrentCondition cond * arm_Encoding enc * arm_CPSR_J F x*
define Branch > BranchLinkExchangeImmediate arm_CPSR_E F * arm CPSR.T F * arm CPSR M 16w * bl +#12
( targetInstrSet :: InstrSet, arm_REG RName_SPusr rl13 x arm_REG RName_3usr r3 x
imm32 :: bits(32) ) arm_REG RName_LRusr rl4 x arm_REG RName_PC pc x machine code: EB000001
- arm_MEM (rl3 - 8w) b0 x arm_MEM (rl3 - 8w + 1lw) bl x
. i arm_MEM (r13 - 8w + 2w) b2 * arm_MEM (rl3 - 8w + 3w) b3 * architecture = ARMv7-R
{ 1f CurrentInstrSet() == InstrSet_ARM then arm MEM (rl3 - 8w + 4w) b4 x arm MEM (rl3 - 8w + 4w + 1w) b5 % ——
LR <- PC - 4 arm_MEM (rl3 — 8w + 4w + 2w) b6 sctlr.A
else arm_MEM (r13 - 8w + 4w + 3w) b7)) {(pc,0xE92D4008w)} not sctlr.U
LR <- PC<31:1> : '1': (arm_exception NoException *x arm_undefined F x cpsr.IT = 0
N arm_CurrentCondition 14w x arm_Encoding Encoding_ARM x not cpsr.E
targetAddress = | arm_CPSR_J F x arm_CPSR_E F x arm_CPSR_T F % arm_CPSR_M 16w not cpsr.J
1f targetInstrSet == InstrSet_ARM arm_REG RName_SPusr (rl13 - 8w) * arm_REG RName_ 3usr r3 x et opat
then Align (PC, 4) + imm32 arm_REG RName_LRusr rl4 x arm_REG RName_PC (pc + 4w) * cf’?r‘“d' ”E”q
else PC + imm32; arm_MEM (rl3 - 8w) ((7 >< @) r3) x :;;g?z*s{i 3; j OxEB
! . arm_MEM (rl13 - 8w + 1lw) ((15 >< 8) r3) x* e
SelectInstrSet (targetInstrSet); arm MEM (rl3 - 8w + 2w) ((23 >< 16) r3) * st W
BranchWritePC (targetAddress) arm_MEM (rl3 - 8w + 3w) ((31 >< 24) r3) % At sy B
} arm_MEM (rl3 - 8w + 4w) ((7 >< 0) rl4) x
arm_MEM (rl3 - 8w + 4w + 1lw) ((15 >< 8) rl14) x TS b
arm_MEM (rl3 - 8w + 4w + 2w) ((23 >< 16) rl4) x SR e S
arm_MEM (rl13 - 8w + 4w + 3w) ((31 >< 24) rl4)):
thm
T — ——— N
L 3 specification for the ARM |
instructions BL and BLX Web interface

Computer Laboratory





