
III. System Overview

Beauty before age?  
Subjectivity and English Adjective Ordering (AO)

I. The Problem
Some orderings sound clearly wrong

(1) Cambridge is a beautiful academic city
(2) ? Oxford is an academic beautiful city

Modifier order affects meaning

(3) dirty French book → covered in dirt
(4) French dirty book → adults only

(5) wild office party → wild
(6) wild bird enthusiast  → almost certainly not wild

This poses multiple NLP challenges

• Room for improvement in AO systems for English language generation 
- 82% best reported accuracy (Mitchell et al. 2011)

• No cross-linguistic systems

• Extracting semantic representations of complex NPs is hard

Google Translate
Jan 2013

ENGLISH

* An English summer rain
* A rainy summer English

SPANISH

Un verano ingles lluvioso
Un verano lluvioso ingles

• Feature profiles extracted for each from 24m words of BNC data

• Logistic regression classifier trained on ‘correct’ orderings taken from 1tn 
word Google N-gram Corpus – then tested on unseen pairs
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Figure 2:  Schematic design of subjectivity-based AO system 

II. The Subjectivity Hypothesis

“gay young man” 

“young gay man” 
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Figure 1:  Subjectivity Hypothesis was tested with diachronic analyses 
using Google n-Gram Viewer.  In its original meaning,  gay was 
more subjective than young.  The new meaning is less subjective.  

• Subjectivity:  the degree to which an utterance can or cannot be 
interpreted independently of speaker perspective  (Langacker 1991)  

• Hypothesis:  More subjective adjectives appear further from the noun
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beautiful English rose English beautiful rose

IV. Features of Adjective Subjectivity

Features potentially indicative of subjectivity – derived from: 
• linguistic analysis
• automatic subjectivity quantification e.g. (Wiebe 2000)

MODIFIABILITY: Likelihood that adjective takes a ‘degree modifier’  
(very hot,  really tired)

COMPARABILITY: Likelihood that adjective takes (morphological or composite) 
comparative or  superlative form (Wiebe 2000) (colder, the most expensive)

PREDICATIVITY: Occurrence in predicative (I am confused) vs.
attributive (a confusing poster) constructions

POLARITY: Positive/negative sentiment (wonderful, terrible) vs.
neutral (quiet, yellow) (Wiebe 2000)

ADVERBIABILITY: Prevalence of derived adverbial forms                                    
(slow →  slowly,    yellow → *yellowly)

NOMINALITY:  Prevalence of nominal senses (expected to indicate objectivity)
(the British are intolerable)

V. Outcomes
• Features combined are highly significant predictors of AO

• Ordering accuracy of unseen combinations  73.0%

• Accuracy rises to 86.3% if testing on the 3000 pairs with highest ordering preference  
in N-gram Corpus (70.1% lowest 3000)
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Figure 3:  Performance of each feature in isolation
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• All features apart from COMPARABILITY are statistically significant  in combined 
model 

• NOMINALITY correlates inversely with distance from head noun as predicted

• All features statistically significant predictors in isolation

• Introduction of ‘direct’ feature LEFTTENDENCY increases accuracy to 76.3% 
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VI. Conclusions
Implications:
• Semantic features can be usefully incorporated into AO systems

• Potential to apply distributional subjectivity features to other tasks e.g. phrase-level  
semantic interpretation and inference, and cognitive modelling  

• Strong empirical evidence for the subjectivity hypothesis for AO previously supported 
only by discussion and examples

Future work:
• More Training Data:  Analysis shows rising accuracy when more data used for feature 

extraction (73.0% for 24m words vs. 71.1% for 7m words)

• Combine semantic (subjectivity) and direct (n-gram) features

• Direct comparison with existing benchmarks:  Current testing framework does not 
correspond to other published work
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