Beauty before age?

Subjectivity and English Adjective Ordering (AO)

. The Problem

Some orderings sound clearly wrong

(1) Cambridge is a beautiful academic city
(2) ? Oxford is an academic beautiful city

Modifier order affects meaning

(3) dirty French book — covered in dirt
(4) French dirty book — adults only

(5) wild office party  — wild
(6) wild bird enthusiast — almost certainly not wild

This poses multiple NLP challenges
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« Room for improvement in AO systems for English language generation
- 82% best reported accuracy (Mitchell et al. 2011)

* No cross-linguistic systems

« Extracting semantic representations of complex NPs is hard

Il. The Subjectivity Hypothesis

* Subjectivity: the degree to which an utterance can or cannot be
Interpreted independently of speaker perspective (Langacker 1991)

* Hypothesis: More subjective adjectives appear further from the noun
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Figure 1. Subjectivity Hypothesis was tested with diachronic analyses
using Google n-Gram Viewer. In its original meaning, gay was
more subjective than young. The new meaning is less subjective.

IV. Features of Adjective Subjectivity V. Outcomes

» Features combined are highly significant predictors of AO »* =2257 p <0.001*

Features potentially indicative of subjectivity — derived from: * Ordering accuracy of unseen combinations 73.0%

* linguistic analysis » Accuracy rises to 86.3% if testing on the 3000 pairs with highest ordering preference

« automatic subjectivity quantification e.g. (Wiebe 2000) in N-gram Corpus (70.1% lowest 3000)
MODIFIABILITY: Likelihood that adjective takes a ‘degree modifier’ Accuracy of
: Classifier
(very hot, really tired)
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COMPARABILITY: Likelihood that adjective takes (morphological or composite) ol
comparative or superlative form (Wiebe 2000) (colder, the most expensive)
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PREDICATIVITY: Occurrence In predicative (I am confused) vs. ‘
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POLARITY: Positive/negative sentiment (wonderful, terrible) vs. Figure 3: Performance of each feature in isolation

neutral (quiet, yellow) (Wiebe 2000) o o | |
» All features apart from COMPARABILITY are statistically significant in combined

ADVERBIABILITY: Prevalence of derived adverbial forms mode| p <0.001*

(slow — slowly, yellow 4 *yellowly) « NOMINALITY correlates inversely with distance from head noun as predicted

_ o L  All features statistically significant predictors in isolation p <0.001*
NOMINALITY: Prevalence of nominal senses (expected to indicate objectivity)

(the British are intolerable) * Introduction of ‘direct’ feature LEFTTENDENCY increases accuracy to 76.3%

I1l. System Overview VI. Conclusions

Implications:

« Semantic features can be usefully incorporated into AO systems

BNC Google N-gram Corpus

‘ _ ! « Potential to apply distributional subjectivity features to other tasks e.g. phrase-level
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« Strong empirical evidence for the subjectivity hypothesis for AO previously supported
only by discussion and examples
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Figure 2: Schematic design of subjectivity-based AO system
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» Feature profiles extracted for each from 24m words of BNC data

* Logistic regression classifier trained on ‘correct’ orderings taken from 1tn
word Google N-gram Corpus — then tested on unseen pairs
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