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Formal modelling

Formal languages (process algebras, Petri nets, rule-based) provide a
convenient interface for describing complex systems.

High-level abstraction makes writing and manipulating models easier.

They can capture different kinds of behaviour: deterministic,
stochastic, . . .

Formal nature lends itself to automatic, rigorous methods for analysis
and verification.

. . . but what if parts of the system are unknown?

Hillston 21/9/2016 4 / 70



Alternative perspective

?

?

Model creation is data-driven
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Modelling

There are two approaches to model construction:

Machine Learning: extracting a model from the data generated by the
system, or refining a model based on system behaviour using
statistical techniques.

Mechanistic Modelling: starting from a description or hypothesis,
construct a model that algorithmically mimics the behaviour
of the system, validated against data.
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Machine Learning

prior

posterior

data

inference

Bayes’ Theorem

For the distribution of a parameter θ and observed data D,

P(θ | D) ∝ P(θ)P(D | θ)
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Bayesian statistics

Represent belief and uncertainty as probability distributions (prior,
posterior).

Treat parameters and unobserved variables similarly.

Bayes’ Theorem:

P(θ | D) =
P(θ) · P(D | θ)

P(D)

posterior ∝ prior · likelihood
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Bayesian statistics
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Bayesian statistics
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Mechanistic modelling

Models are constructed reflecting what is known about the components of
the biological system and their behaviour.

Several approaches originating in theoretical computer science have been
proposed to capture the system behaviour in a high-level way.

These are then compiled into executable models1 which can be run to
deepen understanding of the model.

Executing the model generates data that can be compared with biological
data.

1Jasmin Fisher, Thomas A. Henzinger: Executable cell biology. Nature
Biotechnology 2007
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Optimizing models

Usual process of parameterising a model is iterative and manual.

model

data

simulate/
analyse

update
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Comparing the techniques

Data-driven modelling:

+ rigorous handling of parameter uncertainty
- limited or no treatment of stochasticity
- in many cases bespoke solutions are required which can

limit the size of system which can be handled

Mechanistic modelling:

+ general execution ”engine” (deterministic or stochastic)
can be reused for many models

+ models can be used speculatively to investigate roles of
parameters, or alternative hypotheses

- parameters are assumed to be known and fixed, or
costly approaches must be used to seek appropriate
parameterisation
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Developing a probabilistic programming approach

What if we could...

include information about uncertainty in the model?

automatically use observations to refine this uncertainty?

do all this in a formal context?

Starting from an existing process algebra (Bio-PEPA), we have developed
a new language ProPPA that addresses these issues2.

2Anastasis Georgoulas, Jane Hillston, Dimitrios Milios, Guido Sanguinetti:
Probabilistic Programming Process Algebra. QEST 2014: 249-264.
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Probabilistic programming

A programming paradigm for describing incomplete knowledge scenarios,
and resolving the uncertainty.

Describe how the data is generated in syntax like a conventional
programming language, but leaving some variables uncertain.

Specify observations, which impose constraints on acceptable outputs
of the program.

Run program forwards: Generate data consistent with observations.

Run program backwards: Find values for the uncertain variables
which make the output match the observations.
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Molecular processes as concurrent computations

Concurrency
Molecular
Biology

Metabolism Signal
Transduction

Concurrent
computational processes

Molecules Enzymes and
metabolites

Interacting
proteins

Synchronous communication Molecular
interaction

Binding and
catalysis

Binding and
catalysis

Transition or mobility
Biochemical
modification or
relocation

Metabolite
synthesis

Protein binding,
modification or
sequestration

A. Regev and E. Shapiro Cells as computation, Nature 419, 2002.
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Stochastic Process Algebra

In a stochastic process algebra actions (reactions) have a name or type,
but also a stochastic duration or rate.

In systems biology modelling it is these rates that are often unknown.
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Bio-PEPA modelling

The state of the system at any time consists of the local states of
each of its sequential/species components.

The local states of components are quantitative rather than
functional, i.e. biological changes to species are represented as
distinct components.

A component varying its state corresponds to it varying its amount.

This is captured by an integer parameter associated with the species
and the effect of a reaction is to vary that parameter by a number
corresponding to the stoichiometry of this species in the reaction.
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The abstraction

Each species i is described by a species component Ci

Each reaction j is associated with an action type αj and its dynamics
is described by a specific function fαj

The species components (now quantified) are then composed together to
describe the behaviour of the system.
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The semantics

The semantics is defined by two transition relations:

First, a capability relation — is a transition possible?

Second, a stochastic relation — gives rate of a transition, derived
from the parameters of the model.

The labelled transition system generated by the stochastic relation
formally defines the underlying CTMC.
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Example — in Bio-PEPA

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

Hillston 21/9/2016 23 / 70



Example — in Bio-PEPA

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;

k_r = 0.1;

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

Hillston 21/9/2016 23 / 70



A Probabilistic Programming Process Algebra: ProPPA

The objective of ProPPA is to retain the features of the stochastic process
algebra:

simple model description in terms of components

rigorous semantics giving an executable version of the model...

... whilst also incorporating features of a probabilistic programming
language:

recording uncertainty in the parameters

ability to incorporate observations into models

access to inference to update uncertainty based on observations
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Example Revisited

I RSI
S S

R
spread

stop1
stop2

k_s = 0.5;
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kineticLawOf spread : k_s * I * S;
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Additions

Declaring uncertain parameters:

k s = Uniform(0,1);

k t = Uniform(0,1);

Providing observations:

observe(’trace’)

Specifying inference approach:

infer(’ABC’)
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Additions

I RSI
S S

R
spread

stop1
stop2

k_s = Uniform(0,1);

k_r = Uniform(0,1);

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;
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I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Semantics

A Bio-PEPA model can be interpreted as a CTMC; however, CTMCs
cannot capture uncertainty in the rates (every transition must have a
concrete rate).

ProPPA models include uncertainty in the parameters, which
translates into uncertainty in the transition rates.

A ProPPA model should be mapped to something like a distribution
over CTMCs.
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parameter

model

k = 2

CTMC
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parameter

model

k ∈ [0,5]

set
 of CTMCs
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parameter

model

k ∼ p

distribution
over CTMCs

μ
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Constraint Markov Chains

Constraint Markov Chains3 (CMCs) are a generalization of DTMCs, in
which the transition probabilities are not concrete, but can take any value
satisfying some constraints.

Constraint Markov Chain

A CMC is a tuple 〈S , o,A,V , φ〉, where:

S is the set of states, of cardinality k .

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0, 1]k → {0, 1} is the constraint function.

3Caillaud et al., Constraint Markov Chains, Theoretical Computer Science, 2011
Hillston 21/9/2016 30 / 70



Constraint Markov Chains

In a CMC, arbitrary constraints are permitted, expressed through the
function φ: φ(s, ~p) = 1 iff ~p is an acceptable vector of transition
probabilities from state s.

However,

CMCs are defined only for the discrete-time case, and

this does not say anything about how likely a value is to be chosen,
only about whether it is acceptable.

To address these shortcomings, we define Probabilistic Constraint
Markov Chains.
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Probabilistic CMCs

A Probabilistic Constraint Markov Chain is a tuple 〈S , o,A,V , φ〉, where:

S is the set of states, of cardinality k .

o ∈ S is the initial state.

A is a set of atomic propositions.

V : S → 22
A

gives a set of acceptable labellings for each state.

φ : S × [0,∞)k → [0,∞) is the constraint function.

This is applicable to continuous-time systems.

φ(s, ·) is now a probability density function on the transition rates
from state s.
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Semantics of ProPPA

The semantics definition follows that of Bio-PEPA, which is defined using
two transition relations:

Capability relation — is a transition possible?

Stochastic relation — gives rate of a transition

The distribution over the parameter values induces a distribution over
transition rates.

Rules are expressed as state-to-function transition systems (FuTS).
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Simulating Probabilistic Constraint Markov Chains

Probabilistic Constraint Markov Chains are open to two alternative
dynamic interpretations:

1 For each trajectory, for each uncertain transition rate, sample once at
the start of the run and use that value throughout;

2 During each trajectory, each time a transition with an uncertain rate
is encountered, sample a value but then discard it and re-sample
whenever this transition is visited again.

1 Uncertain Markov Chains

2 Imprecise Markov Chains

Our current work is focused on the Uncertain Markov Chain case.
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Inference

parameter

model

k ∼ p

distribution
over CTMCs

μ
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Inference

parameter

model

k ∼ p

distribution
over CTMCs

μ
observations

inference

posterior
distribution 

μ*
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Inference

P(θ | D) ∝ P(θ)P(D | θ)

The ProPPA semantics does not define a single inference algorithm,
allowing for a modular approach.

Different algorithms can act on different input (time-series vs
properties), return different results or in different forms.

Exact inference is often impossible, as we cannot calculate the
likelihood.

We must use approximate algorithms or approximations of the system.
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Inferring likelihood in uncertain CTMCs
Transient probabilities can be expressed as:

dpi (t)

dt
=

∑
j 6=i

pj(t) · qji − pi (t)
∑
j 6=i

qij

The probability of a single observation (y , t) can then be expressed as

p(y , t) =
∑
i∈S

pi (t)π(y | i)

where π(y | i) is the probability of observing y when in state i .

The likelihood can then be expressed as

P(D | θ) =
N∏
j=1

∑
i∈S

p(i |θ)(tj)π(yj | i)
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Calculating the transient probabilities

For finite state-spaces, the transient probabilities can, in principle, be
computed as

p(t) = p(0)eQt .

Likelihood is hard to compute:

Computing eQt is expensive if the state space is large

Impossible directly in infinite state-spaces
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Basic Inference

Approximate Bayesian Computation is a simple simulation-based
solution:

I Approximates posterior distribution over parameters as a set of samples
I Likelihood of parameters is approximated with a notion of distance.
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Approximate Bayesian Computation

ABC algorithm

1 Sample a parameter set from the prior distribution.

2 Simulate the system using these parameters.

3 Compare the simulation trace obtained with the observations.

4 If distance < ε, accept, otherwise reject.

This results in an approximate to the posterior distribution.
As ε→ 0, set of samples converges to true posterior.
We use a more elaborate version based on Markov Chain Monte Carlo
sampling.
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Inference for infinite state spaces

Various methods become inefficient or inapplicable as the state-space
grows.

How to deal with unbounded systems?

Multiple simulation runs

Large population approximations (diffusion, Linear Noise,. . . )

Systematic truncation

Random truncations
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Expanding the likelihood
The likelihood can be written as an infinite series:

p(x ′, t ′ | x , t) =
∞∑

N=0

p(N)(x ′, t ′ | x , t)

=
∞∑

N=0

[
f (N)(x ′, t ′ | x , t)− f (N−1)(x ′, t ′ | x , t)

]
where

x∗ = max{x , x ′}
p(N)(x ′, t ′ | x , t) is the probability of going from state x at time t to
state x ′ at time t ′ through a path with maximum state x∗ + N

f (N) is the same, except the maximum state cannot exceed x∗ + N
(but does not have to reach it)

Any finite number of terms can be computed — Can the infinite sum be
computed or estimated?
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Russian Roulette Truncation

We want to estimate the value of

f =
∞∑
n=0

fn

where the fn’s are computable.

Truncate the sum randomly: stop at term k with probability qk .

Form f̂ as a partial sum of the fn, n = 1, . . . , k, rescaled appropriately.

f̂ =
k∑

n=0

fn
k−1∏
j=0

(1− qj)
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Russian Roulette

f̂ ← f0
i ← 1
p ← 1
loop

Choose to stop with probability qi
if stopping then

return f̂
else

p ← p · (1− qi )
f̂ ← f̂ + fi

p
i ← i + 1

end if
end loop
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Russian Roulette

f̂ =
k∑

n=0

fn∏k−1
j=0 (1− qj)

In our case, f is a probability that we wish to approximate.

Using f̂ instead of f leads to an error; however f̂ is unbiased:
E [f̂ ] = f .

f̂ is also guaranteed to be positive.

Pseudo-marginal algorithms can use this and still draw samples from
the correct distribution.

We have developed both Metropolis-Hastings and Gibbs-like sampling
algorithms based on this approach5.

5Unbiased Bayesian Inference for Population Markov Jump Processes via Random
Truncations. A.Georgoulas, J.Hillston and D.Sanguinetti, to appear in Stats & Comp.
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SSA samples
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Posterior samples
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Example model

I RSI
S S

R

k_s = Uniform(0,1);

k_r = Uniform(0,1);

kineticLawOf spread : k_s * I * S;

kineticLawOf stop1 : k_r * S * S;

kineticLawOf stop2 : k_r * S * R;

I = (spread,1) ↓ ;

S = (spread,1) ↑ + (stop1,1) ↓ + (stop2,1) ↓ ;

R = (stop1,1) ↑ + (stop2,1) ↑ ;

I[10] BC
∗

S[5] BC
∗

R[0]

observe(’trace’)

infer(’ABC’) //Approximate Bayesian Computation
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Results

Tested on the rumour-spreading example, giving the two parameters
uniform priors.

Approximate Bayesian Computation

Returns posterior as a set of points (samples)

Observations: time-series (single simulation)
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Results: ABC
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Results: ABC
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Genetic Toggle Switch

Two mutually-repressing genes: promoters (unobserved) and their
protein products

Bistable behaviour: switching induced by environmental changes

Synthesised in E. coli6

Stochastic variant7 where switching is induced by noise

6Gardner, Cantor & Collins, Construction of a genetic toggle switch in Escherichia
coli, Nature, 2000

7Tian & Burrage, Stochastic models for regulatory networks of the genetic toggle
switch, PNAS, 2006
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Genetic Toggle Switch
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Toggle switch model: species

G1 = activ1 ↑ + deact1 ↓ + expr1 ⊕;
G2 = activ2 ↑ + deact2 ↓ + expr2 ⊕;

P1 = expr1 ↑ + degr1 ↓ + deact2 ⊕ ;

P2 = expr2 ↑ + degr2 ↓ + deact1 ⊕

G1[1] <*> G2[0] <*> P1[20] <*> P2[0]

observe(toggle_obs);

infer(rouletteGibbs);
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θ 1 = Gamma(3,5); //etc...

kineticLawOf expr1 : θ 1 * G1;

kineticLawOf expr2 : θ 2 * G2;

kineticLawOf degr1 : θ 3 * P1;

kineticLawOf degr2 : θ 4 * P2;

kineticLawOf activ1 : θ 5 * (1 - G1);

kineticLawOf activ2 : θ 6 * (1 - G2);

kineticLawOf deact1 : θ 7 * exp(r ∗ P2) * G1;

kineticLawOf deact2 : θ 8 * exp(r ∗ P1) * G2;

G1 = activ1 ↑ + deact1 ↓ + expr1 ⊕;
G2 = activ2 ↑ + deact2 ↓ + expr2 ⊕;
P1 = expr1 ↑ + degr1 ↓ + deact2 ⊕ ;

P2 = expr2 ↑ + degr2 ↓ + deact1 ⊕

G1[1] <*> G2[0] <*> P1[20] <*> P2[0]

observe(toggle_obs);

infer(rouletteGibbs);
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Experiment

Simulated observations

Gamma priors on all parameters (required by algorithm)

Goal: learn posterior of 8 parameters

5000 samples taken using the Gibbs-like random truncation algorithm
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Promoters
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Observations used
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Results
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Workflow

model

inference 
algorithm

low-level 
description

inference 
results 

(samples)

statistics

plotting

prediction

...

infercompile
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Summary

ProPPA is a process algebra that incorporates uncertainty and
observations directly in the model, influenced by probabilistic
programming.

Syntax remains similar to Bio-PEPA.

Semantics defined in terms of an extension of Constraint Markov
Chains.

Observations can be either time-series or logical properties.

Parameter inference based on random truncations (Russian Roulette)
offers new possibilities for inference.
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