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Outline
- Computational Methods

+ Comparing Networks
+ Network Bisimulations (and Morphisms)
+ Finding Bisimulations by Theorem Proving

- Systems Biology
+ Morphisms of Antagonistic Networks
- Network Morphisms as Evolutionary Paths
- Noise Reduction in Complex Biochemical Switches




Comparing Networks

- High-value activity:
- 20071 Nobel prize in Physiology for the discovery of “Key regulators of the cell cycle ... they

have identified key molecules that requlate the cell cycle in all eukaryotic organisms, including
yeast, plants, animals, and human."

- These are not the same molecules in all organisms, but it is still “the same network”

- Network differences expose evolution
- Tracing back ancestral networks from current ones

+ Networks are algorithms
- Algorithms fall in different performance classes (is nature “optimal”?)
- Different networks for the same function may or may not be in the same class




Morphing networks

How can we compare different networks?

- Different number of species
- Different number of reactions
- Apparently unrelated connectivity

So that we can compare their function?

- Does antagonism (in network structure) guarantee bistability (in function)?

- We do it by mapping networks onto one another
so that they emulate each other ('s traces)

- Deterministic version of simulation of reactive systems
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Mapping one network into another

A formal notion was strangely missing from the literature

Seen in Biology: single-network analysis (e.g. structure of feedback loops) and network reduction
(e.g. while preserving steady states). Study of common or frequent subnetworks.

Seen in C.S.: comparing network behaviors (e.g. morphisms of event structures).
Nothing much resembling (bi)simulation “on the syntax” (structure) of whole biochemical networks.

Model reduction is unavoidable and pervasive, but

Often criticized/ignored by biologists when it leads to quantities that are “not biologically
meaningful”. E.g. a fusion or change a variables in the ODEs where the new variables do not
correspond to biological parts. The reduced model should “inform” the original one.

: Soences ethos

The "truth” is the big network, not the small one!
If you depart from the truth in any way, you have to explain how you can get back to it.

The point is not to reduce the size of the network (although that's neat),
but to understand aspects of the big network by reference to a smaller one.

The mapping is more important than either networks.

Norbert Wiener

Pioneer of stochastic processes
and inventor of Cybernetics.

"The best material model of a
cat is another, or preferably the
same, cat”




Chemical Reaction Networks

A+C—o%C+E
B+C—->*C+E
C =B A
D BB

Vy=—aVaVe + BVe
Vi = —aVaVe + BVp
Ve = —BVe
Vb = —BVp

I}—E = EEV—AV_ Y+ ﬁifglf N

A

pH B

The (autonomous) ODE system V = F(V) underlying a CRN (S, R) is F : IR"gU — RY,
where each component Fy, with X € S is delined as:
Fx(V)= Y (x(X)—p(X))-a- [T ™.
,n—"—hwER Yes
This represents the well-known mass-action kinetics, where the reaction rate is proportional
to the concentrations of the reactants involved. Since the ODE system of a CRN is given by

polynomials, the vector field F' is locally Lipschitz. Hence, the theorem of Picard-Lindelsf
ensures that for any V(0) € R, there exists a unique non-continuable solution of V = F(V).

CONCUR




Behavior

directive sample 3.0 100
directive simulation deterministic
directive plot A; B; C; D; E

ratea=1;
rate b = 2;

init A1
initB 3 |
initC 1|
init D 3 |
init E0 |

A+C->{a}C+E|
B+C->{a}C+E|
C->{b} A
D->{b}B

4
] N A
] N B
_ \C
34 D
T N\ E
i
2
=
£ 2
=
@
[ E—
=
[~
'I..J_ s
1_
I:I IIII|IIII|IIII|III_|'|IIII|IIII
0 0.5 1 1.5 2 2.5 3

Time (=)




Microsoft”
Research

OXFORD

Network Bisimulation




A Bisimulation Approach

For discrete transition systems

Nondeterministic: If two systems are in “equivalent” states, and one system can step from one state to
another, then the other system can make a similar step and end up in an "equivalent” state. And vice-versa.

- Stochastic: If two systems are in "equivalent” states, and one system can step from one state to an
equivalence class of states (with some collective probability), then the other system can make a similar step
and end up again in an “equivalent” equivalence class of states. And vice-versa.

- Syntactic characterizations (bisimulation is definable over Process Algebras rather than their state spaces).

For continuous transition systems

- Continuous: If two systems are in “equivalent” states (e.q. identical states (BB), or up to sum of variables
(FB)), and one system takes an infinitesimal step into another state, then the other system can take a similar
infinitesimal step and end up in the “equivalent” state. And vice-versa.

- Defined on traces: no syntactic characterization.

- What we contribute:
- We define bisimulation (actually two of them) over a syntax for continuous transition systems, where the
syntax is that of CRNs,

- This allows us to both compare and minimize CRNs, via fast algorithms based on partition refinement
(Tarjan - CONCUR) or theorem proving (Tarski - POPL).




Forward Bisimulation

- Consider a partition (lumping) of species:
{A, B {C}, {D}, {E}}

- [t may induce a collapse of the CRN:

AB + C =*C +E
C B AB
D —B AB

In the sense that AB represents A+B




Reduction works for that partition

Original CRN,
plotting A+B

directive sample 3.0 100
directive simulation deterministic
directive plot sum(A; B); C; D; E

ratea =1,
rate b = 2;

init AT
init B3|
initC 1]
initD 3|
initE 0|

A+C->{@a)C+E|
B+C->{a}C+E|
C->{blA|
D ->{b} B

Concentration (nM)

5 N, (A + B)
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Reduced CRN

directive sample 3.0 100
directive simulation deterministic
directive plot AB; C; D; E

ratea =1;
rateb = 2;

init AB 4|
initC 1]
initD 3|
initE O |

AB+ C->{a} C + E |
C->{b} AB|
D ->{b} AB

+ B,
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Because it works on t

- We can consider AB = A +

ne ODEs

B and express the system

just in terms of AB, dropping A and B

Vag =Vi+ Ve = —aVupVe + BVe + BVp
Vo = —(Ve

( :)— B
Vp = -8V [ &

Ve = aVapVe

- And these are the ODEs of the reduced CRN




When does it work, in general?

A partition H of the ODE (variables) is an (ordinary-) lumping it one can derive an ODE for the partition
from the ODE of the original system, in terms of sums of the variables in the partition.

» Definition 2 (Ordinary fluid lumpability). Let (S,R) be a CRN, F be its vector field,
and H = {Hy,...,H,,} a partition of S. Then, H is ordinary fluid lumpable if for
all H € H there exists a polynomial gy in [H| variables such that 37, ., Fx(V) =
o (Xxem VXo oo Doxen, Vx) forall V e R,

Thm: A partition of CRN species that is a Forward Bisimulation is an ordinary lumping of the
corresponding ODEs.

» Theorem 11 (Forward bisimulation implies ordinary fluid lumpability). Let (S, R) be a CRN.
Then, H is an ordinarily fluid lumpable partition of S if H is an FB of S.

A partition of CRN species is a Forward Bisimulation if the fluxes of the CRN match up in a certain way
(checkable just by looking at the CRN, not its ODEs):

» Definition 7 (Reaction and production rates). Let (S,R) be a CRN, X,Y € S, and
p € MS(S). The p-reaction rate of X, and the p-production rate of Y-elements by X are
defined respectively as

crr[X,p] == (p(X)+1) Z @, pr(X,p,Y) = (p(X)+1) Z a-m(Y)
X+p—ImER X+p—3reR

Forward and Backward Bisimulations for Chemical Reaction Networks. Finally, for H C 5 we define pr[X, p, H] := 3 yepy (X, 1, Y).

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [CONCUR'15] » Definition 8 (Forward CRN Bisimulation). Let (S, R) be a CRN, R an equivalence relation
. . . . . . . over S and H = S/R. Then, R is a forward CRN bisimulation (abbreviated FB) if for all
Comparing Chemical Reaction Networks: A Categorical and Algorithmic Perspective. (X.Y) R, all p € MS(S), and all H € H it holds that

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [LICS'16]

crr[X,p] =crr[Y,p] and pr[X,p, H] =prlY,p, H| (1) 13




Backward Bisimulation

- Consider a partition (lumping) of species:
{A, BL {C, D}, {E}

- [t may induce a collapse of the CRN:

AB + CD =% CD + 2k
CD —B AB

In the sense that AB represents A and B equally




Reduction works for that partition

Original CRN,

directive sample 3.0 100
directive simulation deterministic
directive plot A; B; C; D; E

ratea =1,
rate b = 2;

"Llu Lot

init AT
initB 1]

ra
|

Concentration {nM)

init C 3 |
init D 3 |
init 0|

-
|

A+C->{@a)C+E|

=]

B+C’>{3}C+E| |||||||||||||||-;--|--|--|-|_
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Reduced CRN

directive sample 3.0 100
directive simulation deterministic

ratea =1,
rateb = 2;

init AB 1|
init CD 3 |
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Concentration {nfM)

init EO |
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AB + CD->{a}CD +2E|
CD ->{b} AB
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Because it works on the ODEs

- If Va(0) = V5(0) and V(0) = Vp(0) Va = —aVaVo + 3%
, . , , (o =medirer TV
then Va(t) = Va(t) and Vo (1) = Vi (1
——V; = ai{ A Ve +aVeVe
Va=—aVaVe + Ve (AB)

Ve = —3Ve 3 B3(E)

Ve = 2aVaVe @

- And these are the ODEs of the reduced CRN

16




When does it work, in general?

A partition H of the ODE (variables) is an (exact-) lumping if the derivatives are equal in each partition
whenever the concentrations are equal in each partition.

» Definition 4 (Exact fluid lumpability). Let (S, R) be a CRN, F' its vector field, and H a
partition of 5. We call V eR® constant on H if Vx, =Vx, forall H € H,and all X;, X; € H.
Then, H is exactly fluid lumpable if F(V) is constant on ‘H whenever V' is constant on H.

Thm: A partition of CRN species that is a Backward Bisimulation is an exact lumping of the
corresponding ODEs.

» Theorem 17 (Backward bisimulation characterizes exact fluid lumpability). Let (S, R) be a
CRN. Then, H is an exactly fluid lumpable partition of S if and only if H is a BB of S.

A partition of CRN species is a Backward Bisimulation if the fluxes of the CRN match up in a certain way
(checkable just by looking at the CRN, not its ODEs):

» Definition 13 (Cumulative flux rate). Let (5. R) be a CRN, X € S, p € MS(5), and
M C MSE(S). Then, we define

fr(X,p) = Z (m(X) = p(X)) - a, fr[X, M] = Z fr(X, p).
p—sreR pEM

.. . . . We call fr(X, d fr[ X, M] p-fi t d lative M- te of X, res tively.
Forward and Backward Bisimulations for Chemical Reaction Networks. e call fr(X, p) and f[X, M] p-fluz rate and cumulative M-fluz rate o Tespectively

Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [CONCUR'15] » Definition 14 (Backward CRN bisimulation). Let (S,R) be a CRN, R an equivalence
relation over S, H = S/R and p the choice function of H. Then, R is a backward CRN
Comparing Chemical Reaction Networks: A Categorical and Algorithmic Perspective. bisimulation (BB) if for any (X,Y) € R it holds that
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [LICS'16]
fr[X,M] = e[V, M] forall Mec{p|p-—sncR} ~u. (2) 17

where any two p,0 € MS(S) satisty p =~y o if p(p) = p(o).




Applications of Bisimulation

. Benchmarks from
M Odel Red uction Sneddon et al., Nature Methods, 2011
- Find reduced networks

. Reactions | Species Time (s) | BB | Time (s)
-+ Compute quotient CRNs

- Find network symmetries Sa3fios | SRS eze)| LGHEgt | a2 (Finsk e

that may be of biological interest g Hase|  Bhuall| Gy wedlea  1bp|aiifs

Morphism Generation T e e —

- Find morphisms between networks 0 i R e (e
(e.g. all the ones for a fixed rate assignment) e5 7680 1026 58 154E1 58 4.06E-1
eq4 1536 258 37 9.00E-3 37 1.09E-1

e3 288 66 22 1.00E-3 22 3.00E-3

e2 48 18 12 1.00E-3 12 2.00E-3

Concur 2015

Aggregation ‘ Emulation
reduction reductions




How does it work?

- Partition refinement!

- Start from the coarsest partition: {{A, B, C, D, E}}

- Thm: There is always a coarsest FB or BB partition

- Find a reason why that partition is not an FB or BB (e.qg., ask Z3)
- Split the partition: {{A, B, C}, {D, E}} (this is the clever part)

- |terate

- In the worst case we end up with {{A}, {B}, {C}, {D}, {E}}

- Customizable

- If we know that we want to observe A separately, we can start the algorithm e.g.
with the partition {{A}, {B, C, D, E}}

19
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-inding Network Bisimulations
oy Theorem Proving
for ‘general” kinetics




Differential Equations
- Linear ODE systems

- Control theory
- Electrical engineering

CTMCs

CRNs

Process
Algebra

Sec. 4.1

Sec. 4_21

IDOL

Sec. 43

FDE Ssc. 22

model

I'.‘JQC.B.I

ODE

BDE Sec. 2.3

Theorem 1

IDOL
guotlent
|
|

Quotient

Theorem 3

ODE

Figure 1. Paper overview.

- Kolmogorov equation for Continuous Time Markov Chains
a.k.a. the Chemical Master Equation for discrete (-molecule count) chemistry

- Nonlinear ODE systems

- Quantitative models of computing:

(continuous) Petri Nets, (mean-field) PEPA, ...

- Chemical Reaction Networks for continuous (-concentration) chemistry

(with Mass Action or with Hill kinetics)

21




IDOL: Intermediate Drift-Oriented Language

pu=cla;=fp n,m € Zand m # 0

fumnla | f+f|f-f|fm

- Each IDOL program is a list of variable drifts &; = f

+ The semantics is: t
22 [O5T] 5 B [l = o) + [ PR )ds

- where p is the full program, ¢ = (T',d) is the time horizon and initial conditions.
and x is the vector of all the ;.

- Provided there is a unique solution (there are sufficient conditions for that).
22




We <3 Tarski

- IDOL s within Tarski's decidable fragment of reals

- The Law of Mass action has drifts like @1 - 2
- Hill kinetics has drifts like 23 /(1 + z7)
- PEPA uses drifts like

. 1
(x1+zo—|z1—22|), with|z|:= (z-z)2

b | =

min(z1,x2) =

- |
where y = 22 = Jy(y* = )

- No trigonometry, no exponentials, etc. in our ODEs.

- Bisimulations over CRNS [coNCUR1S]

- Are also formulas within Tarski's fragment.

23




Differential Equivalence Relations

- We encode equivalences over IDOL programs

- As first-order logic formulas containing IDOL terms.

- /3 has a solver for them

D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In
IJCAR, pages 339-354, 2012.

- We use Z3 to minimize ODE (IDOL) systems

- And, indirectly, to minimize Chemical Reaction Networks
- On biological networks, Z3 is often faster than specialized polynomial algorithms!

- For Backward Bisimulation in particular:

- We use a counter-example guided partition refinement algorithm.

- The IDOL solver uses Z3 as a subroutine

- Possibly iteratively, e.g. for counter-example guided partitioning 24




Benchmarks

Original model Largest FB Largest FDE
Model |R| |S| Red.(s)  Size Red.(s)  Size
M1 8620 745 6.54E-1 745 7.85E+3 105
M2 3680 354 2.81E-1 354 3.22E+3 105
M3 [1] 4944 411 1.29E-1 411 6.46E+2 47
M4 3447 348 2.46E-1 348 5.22E+3 215

Table 1. FDE reduces more than forward bisimulation (FB).

Original model Reduction

Model |R| [S| BB (s) BDE (s) IS
M35 786432 65538 3.68E+3 1.01E+3 167
M6 [70] 172032 16386 1.77E+2 3.01E+2 122
M7 [70] 48 18  2.00E-3 6.00E-2 12
M8 [73] 194054 14531 1.32E+3 345E+3 6634
M9 187468 10734 2.71E+2 1.57E+3 5575
M10 5832 730 6.00E-1 3.22E+0 217
M11 487 85 6.00E-3 2.71E-1 56
M12 24 18  7.00E-3 5.20E-2 3

Table 2. BDE has runtimes similar to backward bisimulation (BB).

25




Automated model reduction for

- Continuous Time Markov Chains

- By their forward Kolmogorov equation

- Chemical Reaction Networks

- By their nonlinear ODE mass action kinetics

- Stochastic Process Algebra Just compile

- Including PEPA, which has a min-based interaction law them to |DO|_
- Chemical Master Equation

- By the (linear) Kolmogorov equation

- Linear Control Systems
- They are “just” linear ODEs

* E|€CJ[I’OH |C C”-CU |tS Symbolic Computation of Differential Equivalences.

. , Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin [POPL'16]
- Kirchhoff's laws ...

26




Further improvements

- General theorem proving is very appealing

- We can leave some model components undefined or underconstrained,
and let Z3 "figure them out”.

- Still, specialized algorithms can do better

- By using a version of Tarjan’s Partition Refinement algorithm, we are getting
amazing speedups in the computation of bisimulations for bimolecular CRNSs.

Efficient Syntax-Driven Lumping of Differential Equations.
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin [TACAS'16]

27




Microsoft”
Research

OXFORD

Morphisms of Antagonistic
Networks




Bisimulations (partitions) of T network, vs.
Morphisms (mappings) between 2 networks

- A morphism between two CRNs that preserves VA
traces can be understood as a (backward) 1—9‘/\ ?
bisimulation over the species of a "union CRN". y I

-
]

- Conversely, from a (many-to-one, backward) PL/
bisimulation we can reconstruct a canonical
morphism between two networks.

- Such a bisimulation is called an emulation
morphism: one network can exactly reproduce all
the traces of the other network.
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Antagonistic Networks

Tvs. 1
Mutual Inhibition &
Self Activation

l
vl
T

1
— 7
T Mi

Cell cycle transitions

Polarity establishment

PHILOSOPHICAL

PHnOSQEHICAL The PAR network: redundancy and

robustness in a symmetry-breaking i 1

OF
THE ROYAL | 5 system —
SOCIETY JLJ &

- 7

Gene networks

Construction of a genetic toggle switch in
Escherichia coli

Timothy S. Gardner®Z, Charles R. Cantor® & James 1. Collins*?

Tvs. 1
Mutual Inhibition &
Mutual Anti-activation

Kiggnm > X = Xou
~ L3 o
~ 4/ \( 5
A
Ay -
’ kY 5 LK bl
Yy YL > Y:)\d

2 VS. 2

low Notch => high Delta

£

(¥]

g —s
=

o

A

I

< I

8 v r
2

o

low Delta <= high Notch

Delta-Notch

e13a ybiy

Y210N ybiy <

activation =@
inhibition —4

3Vvs. 3

The "new” cell cycle switch

Phosphorylation network dynamics in the control of
cell cycle itions

- PPZA- ,:’:
PP{e ppﬂ-_)jr S f:Gwllfe\éwH

et

Pt

U .
NGl N

Weel® Weel ||

" [ Neaad

{Gde25®  CdaZ

30




A Consensus Algorithm
- Approximate Majority (AM) Algorithm

- Uses a third "undecided” population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent

10000

10000+

8000

8000
Nox ]
6000 5000~

4000 4000

2000 2000

0 LI | I|IIII 0 T 1T

0.002 0.00 0 0.001 0.002 0.00:

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

catalysis -0
chemical
reaction
network

activation -
inhibition =4

_X.--

AM
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A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch

(HMT) (HDAC)

M U AQ
y Sl Bul |
e i
(Hom)'— &5~ — — 'k&}, 4
(HAT)\_ &

Silenced o -

1 oo 1

Active .I, —7_\?\\‘ / lT ( % |
1333333333871

Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

mmmmmmmmmmmmmmmmm

2007
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Network Emulation Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

y Z » X =
I ¢ veex [ $T—
(3 species)
Mmi AM
] o] / N initialize:
] z2 1 N\ x2
2 :(1’ 2 Zz=X
- E ~y =X
U.SE DSE (y2=X0
- Y1 =X
SR SR VR SR N T Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism! 33




Network Emulation: NCC emulates M

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml
(3 species each)

3 9\ Il - 2 T
Vi il zrpoz el
?_/ r - 05 \ SZ ) Y,q,S =y 05_ | T T M

IIIIIIIIII IIIIIII
3 3

NCC Ml

(/// S S S

.

(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
Zrhp=z
yas=y

34




Emulations Compose

- The (18) trajectories NCC can always retrace those (3) of AM

d i o«

{ Lp -z Z,~y-> X
1_ J_ // T _'I' sy » — X --- The new cell cycle switch
late AM exactly.
T_ _T spox LY e e

~Y,~Q,~S > X For any initial conditions

NCC AM of AM.

/ ..... / ' And for any rates of AM.
] A ] N\, x0
2.54 22 | e N
] 2 1 N2

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)

35




Emulations are Modular

A L |
Ay m&
E_T I i 0 10 20 30 40 50

--------

t x0 1 2
B

-------------------

0 24 22 Yo vyl y2 wo wi w2

T — OO
TN HE
i f?'?“ - thook "!M‘!‘
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How to check for emulation

- How do we check a potential emulation morphism for all

possible initial conditions of the target?

+ Statically! Check conditions on the joint stoichiometric matrices of the two
networks under the mapping.

- How do we check a potential emulation morphism for all

possible rates of the target?

- Can't; but if one emulation is found, then the rates of the target network
can be changed arbitrarily and a related emulation will again exist.

37




N> 2> 7 N>
Iz X & &
R N v N N>
1 — [ 8
N — - |
| ? ._. F
1Y — —
® |
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T =z |
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Emulation Zoo

NCC

[ 0 ].

L]

» emulation (transitive)




Biological Corollaries

+ By checking only static network and
morphism properties we can learn that:

- All these networks are (at least) bistable

- (We do not have to reanalyze the steady
states of all these dynamical systems)

- All these networks can perform exactly
as fast as AM

- (We do not have to reprove the complexity

bounds for all these networks)

e

Eg;%
L

=
L
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Network Emulation Morphism FAQ

What guarantees emulation?

Reactant morphism + stoichiomorphism: static, state-independent (structural) conditions

How do you find them?

Emulation Theorem => they do not depend on initial conditions
Change of Rates Theorem => can look for rate-1 morphisms
E.g. test all possible rate-1 homomorphism between two networks to see if they are stoichiomorphisms

How common are they?

Likely relatively rare, but still many useful ones => richness of networks space

How useful are they?

Establish structural, algorithmic, (non-accidental) reasons for kinetic similarity
Explain simple behavior “facets” of complicated networks
Investigate evolutionary paths (maybe)

How brittle are they?

Will a perturbed trajectory of the source network converge to a trajectory of the target network?
What about other reaction kinetics?

What about stochastic?

Is there a CME Emulation Theorem?
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Network Evolution

Across species: Ortholog genes
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Walks in Network Space
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Walks in Network Space
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Walks in Network Space

p i

Y |

Se Z-
L T
Z,
I | S,
..y_ -e |

. __
DN

-

X..
%
¢ 1 ;
=N
j x| ]
ccC

NCC al I r
L Z
p Y
( homomorphism and
stoichiomorphism (transitive))

1 }
=
1 7T

5




Microsoft”
Research

OXFORD

Noise Reduction
iNn Biochemical Switches




Basic Switches (deterministic)

A B c (A) Influence network diagrams

AT ] (B) Chemical reaction network diagrams and feedback loops
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Basic Switches (stochastic)

Horizontal axes is time
B B c D Vertical axes is number of molecules.

AM Dxl_l

(A) Influence networks.

(B) Chemical Master Equation solution: probability distribution,
with color (in 10 bands from light = 0 to dark = 1) indicating the
probability that at time t there are y molecules of the single
indicated species.

(C) Chemical Master Equation solution: mean (solid lines) and
standard deviation (color bands) for the species in the network.

(D) Central Limit Approximation solution: mean (solid lines) and
standard deviation (color bands) for the species in the
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cer 2 Compare network noise on the baseline
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More Complex Switches
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Horizontal axes are time, vertical axes are number of molecules.

(A) Influence networks.

(B) ODE solutions for comparison

(C) Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network.
(D) Central Limit Approximation solution: mean (black lines) and standard deviation (color bands) for the species in the network.
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INntrinsic Noise
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Complexity improves overall performance of the cell cycle switch. The performance of different networks was

evaluated by calculating the standard deviation of the main molecular states over time.
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Standard deviations are calculated via numerical integration of the chemical master equation (CME) using the Visual GEC

software, and via numerical integration of the central limit approximation (CLA) in Matlab.
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Extrinsic noise is introduced by randomly perturbing all the reaction rates (separately but from the same distribution) of each model. (So the total

variation in more complex models is actually higher.)

Variations in network behaviour is assessed in comparison to the default parameters, in which allr eaction rates are set equal to 1.
Network variation is quantified using the summed Wasserstein metric over the whole probability distribution over time.
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Noise vs. Complexity

- With corresponding initial conditions, all studied networks show the
same mean behavior

- CCr emulating AM is the simplest explanation of the core cell cycle
switching function

- Many other biological switches can be so reduced to an algorithm
with well-understood properties

- On the basis of kinetic similarity of mean behavior, we show
variations in noise behavior (both intrinsic and extrinsic).

- Noise tends to decrease with complexity, but this also depends on
network structure and not directly on total molecular counts
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Computational Methods

- Comparing Networks

- Explanation of network structure (how functionality is achieved)

- Network Bisimulations (and Morphisms)

- Feasible for large networks by partition refinement algorithms

- Finding Bisimulations by Theorem Proving

- Also feasible for large networks by “magical” theorem proving
- Supports kinetics other than mass action
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Systems Biology

- Morphisms of Antagonistic Networks

- Entail deep properties of complex networks (bistability, optimality)

- Network Morphisms as Evolutionary Paths

- Neutral paths in network space

- Noise Reduction in Complex Biochemical Switches

- Deterministic morphisms as a baseline for making
stochastic comparisons between networks of different sizes
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