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Abstract. An increasing number of computer vision and pattern recog-
nition problems require structured regression techniques. Problems like
human pose estimation, unsegmented action recognition, emotion pre-
diction and facial landmark detection have temporal or spatial output
dependencies that regular regression techniques do not capture. In this
paper we present continuous conditional neural fields (CCNF) – a novel
structured regression model that can learn non-linear input-output de-
pendencies, and model temporal and spatial output relationships of vary-
ing length sequences. We propose two instances of our CCNF framework:
Chain-CCNF for time series modelling, and Grid-CCNF for spatial rela-
tionship modelling. We evaluate our model on five public datasets span-
ning three different regression problems: facial landmark detection in the
wild, emotion prediction in music and facial action unit recognition. Our
CCNF model demonstrates state-of-the-art performance on all of the
datasets used.
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1 Introduction

As an extension to the conventional regression problem, structured regression
algorithms are designed to take advantage of the relationships between output
variables. A number of computer vision problems such as human pose estimation
and unsegmented action recognition exhibit temporal output structure. Struc-
tured regression is also desirable when modelling 2D spatial relationships for
landmark detection problems. Another important aspect of many prediction
problems is the need for modelling variable length sequences or variable size
2D grids. This is both because we might have varying length video sequences
as training data; and because we would like our approaches to generalise to
sequences of arbitrary length.

In this paper we present the continuous conditional neural field (CCNF)
model that can perform structured regression. The key features of CCNF are:
(1) a structured regression model; (2) captures non-linearities between input
and output; (3) can easily define temporal and spatial relationships (long and
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short distance); (4) ability to model arbitrary and different length sequences; (5)
simple and efficient single pass inference.

We propose two instances of our CCNF framework: Chain-CCNF for time
series modelling, and Grid-CCNF for spatial relationship modelling. We evalu-
ate CCNF on five public datasets spanning three very different and challenging
regression problems: facial landmark detection in the wild, emotion prediction
in music and facial action unit recognition.1 This work is a generalisation of our
work on Grid-CCNF [1].

First we present a brief overview of structured prediction and regression
techniques (Section 1.1). This is followed by the description of our CCNF model
(Section 2). The two instances of the model are evaluated in Sections 3 and 4.

1.1 Prior Work

The most often used techniques for regression problems in computer vision and
pattern recognition communities are linear and logistic regression, support vec-
tor regression (SVR), neural networks, and relevance vector machines (RVM)
[2]. These approaches are designed to model input-output dependencies disre-
garding the output-output structure. SVR models have been used for modelling
alignment probabilities of facial landmarks [3,4], inferring continuous emotions
from music [5] and human behaviour [6], and the recognition of facial action
units in videos [7]. RVM is another popular approach and has been used for
emotion prediction from facial expressions [8] and speech [9].

The greatest amount of work on structured prediction concentrates on dis-
crete outputs (classification). Popular approaches include conditional random
fields (CRF) [10], Hidden Markov Models [2] structural SVM [11] and Markov
Random Field models [12]. Another example of a structured classification method
that is suitable for temporal modelling is the Conditional Neural Fields Model
[13], which augments CRF with the ability to model non-linear relationships. It
is possible to convert regression problems to classification ones through quanti-
sation. However, this can lead to loss of information and of relationships between
neighbouring classes, moreover, the number of classes to be used is often unclear.

There has been some recent work exploring structured regression as well.
One such example is the Output-Associative Relevance Vector Machine (OA-
RVM), that has been used for emotion prediction from facial expressions [8].
Other examples include SVR models for structured output [14] and the twinned
Gaussian process model that exploits the output dependencies of multi-variate
output [15]. Both of these approaches have been used for human pose estima-
tion. However, few of the above mentioned approaches are suitable for modelling
arbitrary length sequences, such as varying length time-series, directly.

Another structured regression approach is the continuous conditional random
fields (CCRF) [16] model, that extends the CRF model to the continuous case.
CCRF model relies on initial prediction from an unstructured regression model

1 Code available at https://github.com/TadasBaltrusaitis/CCNF

https://github.com/TadasBaltrusaitis/CCNF
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such as SVR [17], making the training procedure more complex. Our approach
does not suffer from this problem as all of its parameters are optimised jointly.

2 Continuous Conditional Neural Fields

In this section we introduce and define our CCNF model for structured regres-
sion. The model definition is presented in Section 2.1, followed by description of
learning and inference in Section 2.2. Section 2.3 presents two specific instanti-
ations of our model.

2.1 Model Definition

In our discussion we adopt the following notation: x = {x1,x2, . . . ,xn} is a set
of observed input variables (xi ∈ Rm), y = {y1, y2, . . . , yn} is a set of output
variables (yi ∈ R) that we wish to predict, n is the size of the set (length of se-
quence or the number of pixels we are interested in), and m is the dimensionality
of input vector.

CCNF is an undirected graphical model that can learn the conditional prob-
ability of a continuous valued vector y depending on continuous x. A graphical
illustration of our two model instances – Chain-CCNF and Grid-CCNF, can be
seen in Figure 1. We define our CCNF model as:

P (y|x) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
(1)

Our potential function is defined as:

Ψ =
∑
i

∑K1
k=1 αkfk(yi,x,θk) +

∑
i,j

∑K2
k=1 βkgk(yi, yj)+∑

i,j

∑K3
k=1 γklk(yi, yj)

, (2)

We define three types of feature functions in our model – vertex features (fk)
and two types of edge features (gk, lk), see Figure 1 for an illustration.

Vertex features fk represent the mapping from the input xi to output yi
through a single layer neural network and θk is the weight vector for a particular
neuron k. The corresponding αk for vertex feature fk represents the reliability
of the kth neuron.

fk(yi,x,θk) = −(yi − h(θk,xi))
2, (3)

h(θ,x) =
1

1 + e−θ
Tx

; (4)

Edge features gk represent the similarities between observations yi and yj ,
allowing the model to enforce smoothness. This is controlled by the neighbour-
hood measure S(gk), which allows us to control where the smoothness is to be

enforced (which nodes should be connected). If S
(gk)
i,j > 0 there exists a simi-

larity connection between yi and yj ; if S
(gk)
i,j = 0 they are not connected. It is
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Fig. 1: Two instances of our CCNF model: Chain-CCNF and Grid-CCNF. Solid
lines represent vertex features (fk), dashed lines represent edge features (gk or
lk). The input vector xi is connected to the relevant output yi through the vertex
features that combine the neural layer (Θ) and the vertex weights α. The outputs
are further connected with edge features gk (similarity) or lk (sparsity). Only
direct links from xi to yi are presented here, but extensions are straightforward.

important to note that CCNF supports connections between any of the nodes,
allowing us to create long range dependencies and still retain tractable training
and inference.

gk(yi, yj) = −1

2
S
(gk)
i,j (yi − yj)2; (5)

Edge features lk represent the sparsity (or inhibition) constraint between
observations yi and yj . For example the model is penalised if both yi and yj are
high, but is not penalised if both of them are zero (note that we are constrained
to certain types of edge and vertex features in order to keep model learning
and inference tractable). This is controlled by the neighbourhood measure S(lk)

that allows us to define regions where sparsity/inhibition should be enforced.
This feature is particularly useful if we want to model output as a unimodal
probability density (which is the case for landmark detection).

lk(yi, yj) = −1

2
S
(lk)
i,j (yi + yj)

2. (6)

The feature functions are parametrised by parameters that need to be learned:
α = {α1, α2, . . . αK1}, Θ = {θ1,θ2, . . .θK1}, β = {β1, β2, . . . βK2}, and γ =
{γ1, γ2, . . . γK3}. The number of edge feature functions (K2, and K3) is depen-
dent on the CCNF instance (see Section 2.3) and the number of vertex feature
functions K1 depends on the nature of the regression problem and can be deter-
mined during model validation.

2.2 Learning

In this section we describe how to estimate the parameters {α,β,γ,Θ}. It is
important to note that all of the parameters are optimised jointly. We learn the
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temporal/spatial structure alongside the mapping from features to the predic-
tion, which is not the case in a model like CCRF.

We are given training data {x(q),y(q)}Mq=1 of M sets, where each x(q) =

{x(q)
1 ,x

(q)
2 , . . . ,x

(q)
n } is a set of inputs and each y(q) = {y(q)1 , y

(q)
2 , . . . , y

(q)
n } is a

set of real valued outputs, n can be different for each set.
In learning we want to optimise the α, β, γ and Θ parameters that maximise

the conditional log-likelihood of CCNF on the training sequences:

L(α,β,γ,Θ) =

M∑
q=1

logP (y(q)|x(q)) (7)

(α∗,β∗,γ∗,Θ∗) = arg max
α,β,γ,Θ

(L(α,β,γ,Θ)) (8)

Because of the careful vertex and edge feature selection, Equation 1 can be
transformed into a multivariate Gaussian form (a more detailed derivation can
be found in the Appendix in the supplementary material):

P (y|x) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(y − µ)TΣ−1(y − µ)). (9)

This is achieved by collecting the quadratic y terms in the exponent into the
covariance matrix:

Σ−1 = 2(A+B + C) (10)

Ai,j =


K1∑
k=1

αk, i = j

0, i 6= j

(11)

Bi,j =


(

K2∑
k=1

βk

n∑
r=1

S
(gk)
i,r )− (

K2∑
k=1

βkS
(gk)
i,j ), i = j

−
K2∑
k=1

βkS
(gk)
i,j , i 6= j

(12)

Ci,j =


(

K2∑
k=1

γk

n∑
r=1

S
(lk)
i,r ) + (

K2∑
k=1

γkS
(lk)
i,j ), i = j

K2∑
k=1

γkS
(lk)
i,j , i 6= j

(13)

The diagonal matrix A represents the contribution of α terms (vertex fea-
tures) to the covariance matrix, and the symmetric B and C represent the con-
tribution of the β, and γ terms (edge features).

It is useful and convenient for inference to define a vector d, that describes the
linear terms in the distribution, and µ which is the mean value of the Gaussian
form of the CCNF distribution:

d = 2αT (1 + exp(−ΘX))−1, (14)



6 T. Baltrušaitis, P. Robinson, and L-P. Morency

µ = Σd. (15)

Above X is a matrix where the ith column is xi, Θ is the concatenated neural
network weights, and exp is an element-wise exponential function.

Intuitively d is the contribution from the the vertex features. These are the
terms that contribute directly from input features x towards y. Σ on the other
hand, controls the influence of the edge features on the output. Finally, µ is the
expected value of the distribution.

In order to guarantee that our partition function is integrable, we constrain
αk > 0 and βk > 0, γk > 0 [16]. The log-likelihood can be maximised using a
gradient based method such as constrained limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm [18]. In order to make the optimisation
more accurate and faster we the partial derivatives of the logP (y|x) can be
used:

∂ log(P (y|x))

αk
= −yTy + 2yTHT

k,∗ − 2H∗,kµ+ µTµ+ tr(Σ) (16)

∂ log(P (y|x))

βk
= −yT ∂B

∂βk
y + µT

∂B

∂βk
µ+ tr(Σ

∂B

∂βk
), (17)

∂ log(P (y|x))

γk
= −yT ∂C

∂γk
y + µT

∂C

∂γk
µ+ tr(Σ

∂C

∂γk
), (18)

∂ log(P (y|x))

θi,j
= yT

∂b

∂θi,j
− µT ∂b

∂θi,j
(19)

bi = 2

K1∑
k=1

αkh(θk,xi), (20)

Above, H = (1 + exp(−ΘX))−1, where the exponential is applied element-wise.
Hk,∗ notation refers to a row vector corresponding to the kth row respectively
(kth column for H∗,k), and tr is the matrix trace.

Regularisation To prevent over-fitting of the model, we assume that the pa-
rameters have a Gaussian prior and constrain the diagonal inverse covariance
matrix by a small number of hyper-parameters. We split the model parameters
into three different groups: α, θ, and [β,γ], and assume that the parameters
among different groups are independent of each other. This leads to the follow-
ing log-likelihood function:

L(α,β,γ,Θ) =

M∑
q=1

logP (y(q)|x(q)) + λα||α||

+λβ ||β||+ λβ ||γ||+ λθ||Θ||
(21)

The variances λα, λβ , λθ are determined automatically during model validation.
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Inference Since the CCNF model can be viewed as a multivariate Gaussian,
inferring y′ values that maximise P (y|x) (from Equation 1) is straightforward.
The prediction is the mean (expected) value of the distribution:

y′ = arg max
y

(P (y|x)) = µ = Σd. (22)

Such straightforward and efficient inference is a major advantage of our model
when compared to other structured prediction approaches, such as CNF.

Note that because of the sigmoid activation function, outputs yi are limited
the 0-1 range. However, most regression problems can be mapped to this range
and later mapped back to their original ranges.

2.3 CCNF Instances

We propose two instances of the CCNF model that can exploit different output
relationships. The first instance is called Chain-CCNF and can be used for time
series and sequence modelling (illustrated in Figure 1a). The model has neigh-
bouring nodes in time series connected using a single similarity edge feature:

S
(l)
i,j =

{
1, |i− j| = 1
0, otherwise

(23)

This allows to capture the smoothness of the time-series signal. Even though,
this example only connects neighbouring nodes it is easily extended to capture
distant dependencies.

The second instance is called Grid-CCNF and it models spatial relationships.
This model is illustrated in Figure 1b. Grid-CCNF is particularly suited for vision
problems where regression across the image is needed, for example a probability
density across an image. Sections 3 and 4 compare Chain- and Grid- CCNF to
other popular regression models.

3 Chain-CCNF Experiments

We performed a set of experiments that explored the use of Chain-CCNF for
time series modelling on two tasks: emotion prediction in music on the MTurk
dataset [19] and facial action unit recognition on the DISFA dataset [20]. The
following sections present the datasets, baselines, methodology and results.

3.1 Datasets

MTurk is a music extracts dataset labelled on the arousal-valence (AV) dimen-
sional emotion space using Mechanical Turk [19]. Paid participants were asked
to label 15-second excerpts with continuous emotion ratings on the AV space.
The songs in the dataset cover a wide range of genres: pop, various types of
rock and hip-hop/rap. MTurk dataset consists 240 15-second clips, with ≈ 17
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ratings each - we used the ratings averaged over one second windows as ground
truth. In addition, the dataset contains a standard set of features extracted
from those musical clips. We used four types of features provided in the dataset:
mel-frequency cepstral coefficients, chromagram, spectral contrast and statisti-
cal spectrum descriptors. They were concatenated into a single vector of 100
features per observation. Features were averaged over a one second window and
their Z-scores were computed on the training set (same scalings used on the test
set). For CCNF training the ground truth was scaled to [0,1], and the inverse
scalings were used for testing.

DISFA - Denver Intensity of Spontaneous Facial Action database [20] con-
tains 27, 4 minute long, videos of spontaneous facial expression, annotated for
action units (AU) [21]. DISFA contains over 130,000 annotated frames from 27
adult participants. For every video frame, the intensity of 12 AUs was manually
annotated on a six-point ordinal scale (0 and five increasing levels of intensity).
AUs are a way to quantify facial muscle action and are a way to describe facial
expressions. For our experiment these were treated as continuous values from 0
to 5 and not discrete classes.

For feature extraction we used an approach similar to the one proposed by
Jeni et al.[7]. First, we extracted 25× 25 pixel areas around facial feature points
(provided with DISFA dataset). The areas of interest are also normalised for scale
and rotation using affine transforms to frontal face and 32 pixel interocular dis-
tance. Only the areas around relevant feature points are extracted for each AU.
For example for AU1 (inner brow raiser) prediction, we used the areas around
eyebrow and eye-corner feature points. Each area of interest was normalised on
a per subject basis to extract subject specific changes in appearance.

To reduce feature dimensionality of appearance features, we performed sparse
non-negative matrix factorisation on each area of interest [22]. Unseen samples
were projected on the non-negative basis using non-negative least squares (the
basis was recomputed for each training fold). As an additional feature to ap-
pearance, we used the non-rigid shape parameters of a Point Distribution Model
inferred from the provided landmark locations (the model was trained on the
Multi-PIE dataset [23]).

Given the unbalanced nature of this dataset (most of the time neutral expres-
sion is shown), we rebalanced the training subset by keeping all sub-sequences
with at least one AU activated and adding some temporal padding before and
after. This lead to ≈ 40k frames per each AU with sequences of ≈ 100 frames.
Note, that this rebalancing was only performed on the training set, for testing
we used the original sequences. For CCNF training the ground truth was scaled
to [0,1], and the inverse scalings were used for testing.

3.2 Baseline Models

We compared our Chain-CCNF model to the following approaches:
SVR which is a widely used model for regression. SVR treats each element

in a sequence independently and does not perform structured regression. We
explored both linear-kernel and radial basis kernel SVR.
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Neural Network another popular regression technique. We used a version
of CCNF model without edge features, which reduces to a neural network as
time dependencies are not modelled any more. This allows us to evaluate the
effect of the temporal CCNF features.

CCRF is a structured regression approach that can model temporal rela-
tionships [17,24]. The process of CCRF training requires an extra step, it first
needs to train an SVR model to use its predictions as input to the CCRF model.

3.3 Methodology

For the MTurk dataset, a separate model was trained for each emotional di-
mension: one for arousal and one for valence. A 5-fold cross-validation testing
was used for all of the experiments. When splitting the dataset into folds, it was
made sure that all of the feature vectors from a single song were in the same
fold. The reported test results were averaged over 5 folds. All experiments were
performed on the same training and testing sets.

For hyper-parameter selection, 2-fold cross-validation (splitting into equal
parts) was used on the training dataset. The automatically chosen hyper-parameters
were used for training on the whole training dataset.

To evaluate the results, we used three metrics suggested for emotion predic-
tion in music evaluation [25]: average Euclidean distance (combined dimensions),
average root mean squared error and average squared Pearson correlation coef-
ficient (per dimension).

We used leave-one-subject out testing in our experiments on the DISFA
datasets, as done in previous work [20]. For hyper-parameter validation we used
hold-out validation, with 2/3rds of the data used for training and the rest for
validation for training all of the approaches.

To evaluate the results on the DISFA dataset, we used the Pearson correlation
coefficient and RMSE across all test sequences (concatenating predictions from
each test fold and then computing the error metrics).

3.4 Results and Discussion

CCNF consistently outperforms the baselines on most of the evaluation metrics
on the MTurk dataset (Table 1). Not only is accuracy improved, but the results
are substantially better than those of linear-kernel SVR, radial basis function
SVR. Friedman’s ANOVA (χ2(3) = 49.6, p < 0.001) on mean per-sequence Eu-
clidean errors with follow up Wilcoxon tests on the Euclidean metric revealed
that CCNF performs statistically significantly better than the other baselines.

For action unit recogntion the results of our experiment can be seen in Table
2. The CCNF model can be seen outperforming the other proposed baselines
on most AUs for the correlation metric. Interestingly, CCNF does not do better
on the RMSE metric than the baselines on some of the AUs while substantially
outperforming the same baselines on the correlation metric (AU5, AU15, AU17).
This is because RMSE is not a reliable metric for evaluating regressors on such
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Table 1: Results comparing the CCNF approach to the CCRF and SVR with
linear and RBF kernels for emotion prediction on the MTurk dataset.

Model Arousal Valence Arousal Valence Euclidean
corr. corr. rms rms distance

SVR-Lin 0.636 0.174 0.179 0.186 0.130
SVR-RBF 0.649 0.232 0.176 0.180 0.126

Neural Network 0.647 0.201 0.176 0.185 0.127
CCRF [24] 0.744 0.265 0.150 0.175 0.121

CCNF 0.732 0.289 0.145 0.166 0.116

Table 2: Results comparing the CCNF approach to other baselines on the DISFA
dataset. The Pearson correlation metric and RMSE were computed on concate-
nated predictions across all of the 27 subjects. We also present a comparison
against the best performing model from Sandbach et al.[12] (Built 1) for AUs
reported in their paper.

Model AU1 AU2 AU4 AU5 AU6 AU9 AU12 AU15 AU17 AU20 AU25 AU26 Avg.

correlation

SVR [7] 0.35 0.34 0.48 0.28 0.42 0.31 0.71 0.38 0.17 0.13 0.81 0.47 0.40
MRF [12] 0.56 0.55 0.44 0.17 0.14 0.01 - - - - - - -
CCRF [24] 0.44 0.37 0.43 0.40 0.38 0.26 0.65 0.35 0.31 0.14 0.77 0.46 0.41

CCNF 0.48 0.50 0.52 0.48 0.45 0.36 0.70 0.41 0.39 0.11 0.89 0.57 0.49

rmse

SVR [7] 0.74 0.70 1.09 0.27 0.78 0.64 0.71 0.41 0.59 0.39 0.81 0.67 0.65
MRF [12] 0.62 0.59 1.10 0.34 0.90 0.61 - - - - - - -
CCRF [24] 0.65 0.62 1.04 0.27 0.72 0.61 0.75 0.39 0.57 0.45 0.87 0.66 0.63

CCNF 0.74 0.63 1.13 0.33 0.75 0.67 0.71 0.46 0.67 0.58 0.63 0.63 0.66

an unbalanced dataset dominated by neutral expressions. This leads to an un-
informed regressor that always predicts 0 performing well on RMSE metric.

None of the regressors are able to learn to recognise AU20 reliably. This is
possibly because of two reasons: the features used are not discriminative enough,
and there not enough positive training samples in the dataset – only 99 events
for the action unit, when compared to 296 and 321 events for AU25 and AU26.

These results show the importance of modelling temporal and non-linear
relationships for both emotion prediction in music and action unit recognition
and the ability of CCNF to do so effectively.

4 Grid-CCNF Experiments

We conducted a set of experiments to evaluate our Grid-CCNF model as a patch
expert in the constrained local model (CLM) – a popular framework for facial
landmark detection [3,26]. Patch experts evaluate the probability of a landmark
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alignment at a particular pixel location and are a crucial part of CLM. The
alignment probability is often modelled using a regressor trained to output 0
when landmark is not aligned and 1 when it is aligned. The evaluation of a
patch expert in an area of interest leads to a response map. Landmark detection
is done by optimising the CLM model over these response maps.

There has been a number of different patch experts proposed: various SVR
models and logistic regressors, or even simple template matching techniques.
The most popular patch expert by far is the linear SVR in combination with a
logistic regressor [27,3,4]. Linear SVRs are used because of their computational
simplicity and potential for efficient implementation on images using convolution.

There are some desirable properties for a response map from a patch expert[3,4]:
the high probabilities should be be centred around the true landmark location,
it should be smooth, preferably convex, and not have ambiguous peaks. Because
of these desired properties, patch expert is a great use case for our Grid-CCNF
model: (1) non-linear relationships between input pixel values and the output re-
sponses lead to better accuracy, and (2) ability to enforce similarity and sparsity
relationships lead to a smoother and more convex response map.

To achieve desired similarity properties we define two similarity edge features:
S(g1) returns 1 (otherwise return 0) only when the two nodes i and j are direct
(horizontal/vertical) neighbours in a grid; S(g2) returns 1 (otherwise 0) when i
and j are diagonal neighbours in a grid. For sparsity we define a single sparsity
edge feature using the neighbourhood region S(l) that returns 1 only when two
nodes i and j are between 4 and 6 edges apart (where edges are counted from
the grid layout of our Grid-CCNF patch expert).

To train our Grid-CCNF patch expert, we need to define the output variables
yi. Given an image, with a true landmark location at z = (u, v)T , landmark
alignment probability at zi is modelled as yi = N (zi; z, σ) (σ = 1).

4.1 Datasets

In order to evaluate the ability of Grid-CCNF to generalise on unseen datasets
we evaluated our approach on four different datasets: Annotated Faces in the
Wild (AFW)[28], IBUG [29], and 300 Faces in-the-Wild Challenge (300-W)
[29] and LFPW + Helen [30,31] datasets. The datasets contain 135, 337, 600,
and 554 images respectively. They all contain uncontrolled images of faces in the
wild : in indoor-outdoor environments, under varying illuminations, in presence
of occlusions, under different poses, and from different quality cameras. Note
that LFPW and Helen were used as training datasets for CLM, CCNF, and
AAM models, but same images were not used for testing.

4.2 Baseline models

We used a number of state-of-the-art facial landmark detectors to compare to
our CLM model that using Grid-CCNF patch experts:

CLM + SVR model that uses linear SVR patch experts and regularised
landmark mean-shift fitting [3]. Same training data and initialisation was used for
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this model as for our CLM with Grid-CCNF. Note that we use a more accurate
CLM model that that presented by Saragih et al.[3], our model includes a multi-
modal (patch experts trained on raw pixel and gradient images) and multi-scale
formulation leading to more accurate landmark detection.

Tree based face and landmark detector, proposed by Zhu and Ramanan [28].
It has shown good performance at locating the face and the landmark features
on a number of datasets. We used a model trained on in the wild dataset [27].

DRMF – discriminative response map fitting implementation provided by
the authors [27]. It was trained on LFPW [30] and Multi-PIE [23] datasets.

SDM – Supervised Descent Method implementation from the authors [32].
This approach is trained on the Multi-PIE and LFW [33] datasets. It relies on
face detection from a Viola-Jones face detector.

AAM - Active Appearance Model using the inverse compositional image
alignment algorithm [34]. This model was trained on in the wild data.

The above baselines were trained to detect 49, 66, or 68 feature points, mak-
ing exact comparisons difficult. However, they all share 49 feature points, on
which the error metrics were computed in our experiments.

4.3 Methodology

For Grid-CCNF and SVR patch expert training we used two datasets: Labelled
Face Parts in the Wild (LFPW) [30] and Helen [31]. Both of them contain
unconstrained images of faces in indoor and outdoor environments. In total 1029
training images were used, each of which was sampled at 6 locations (5 away
from the true landmark location and 1 near it) in window sizes of 19× 19 pixels
- this led to 6 sequences of 81 samples per image. Each of the samples was
an 11 × 11 pixel support region. Each training sample was normalised using
their Z-score. For SVR each of the samples was treated independently. The
models were trained using the LIBLINEAR package [35] with default parameters.
For Grid-CCNF training the following parameters were used: 7 vertex features,
λα = 102, λβ = 103, λΘ = 1.

Nine sets of patch experts were trained in total: at three orientations –
−20◦, 0◦, 20◦ yaw; and three scales – 17, 23 and 30 pixel of interocular dis-
tance. Labels from the Helen and LFPW datasets were used to learn the point
distribution model, using non-rigid structure from motion [36].

For fitting we used a multi-scale approach, with 15×15 pixel areas of interest
for each scale. For model fitting we used regularised landmark mean-shift [3].

To initialise model fitting, we used the bounding boxes initialised using the
tree based face detector [28]. In order to deal with pose variation the model was
initialised at three orientations – (0, 0, 0), (0,±30, 0) degrees of roll, pitch and
yaw. The converged model with the highest alignment likelihood was chosen as
the correct one. Note that SDM code provided by the authors does not allow to
use bounding box or rotation initialisation. hence the images were cropped to
the face area to make them easier for the internal face detector (however, it still
failed in more difficult cases).
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Table 3: Results comparing CCNF patch expert to SVR patch expert on the
LFPW and Helen datasets. Notice how CCNF can learn the relationship between
input pixels and expected response map much better than SVR (all differences
statistically significant according to a Wilcoxon signed-rank test, p < .001).

Scale CCNF SVR[3]
rms corr. rms corr.

0.25 0.083 0.33 0.094 0.20
0.35 0.086 0.27 0.092 0.16
0.5 0.089 0.22 0.090 0.12

Avg. 0.086 0.27 0.092 0.16

4.4 Results and Discussion

Before performing any landmark detection, we studied how CCNF patch ex-
perts compare to SVR ones at learning the expected patch response maps. We
evaluated the patch experts on an unseen 1/5th of the images in the training
datasets (LFPW and Helen). The results of this can be seen in Table 3. The
results demonstrate that Grid-CCNF can learn the relationship between pixel
values and expected alignment better than SVR at all of the training scales. The
differences are statistically significant (see Table 3 caption).

The second experiment, compared the proposed CLM model that uses Grid-
CCNF as a patch expert against other landmark detectors. The results of this
experiment can be seen in Figure 2. Our approach can be seen outperforming
all of the other baselines tested. The differences are statistically significant (see
Figure 2 caption). This illustrates the greater generalisability of our proposed
model over other approaches. This improved performance comes both from the
learning capacity and the non-linearity of the neural network and the modelled
sparsity and similarity constraints of our CCNF. Linear SVR is unable to accu-
rately discriminate facial landmarks when their appearance varies due to large
changes in illumination and pose.

Training time for 68× 3× 3 = 612 patch experts took ≈ 9 hours on a single
quad core Intel i7 machine. We exploited the fact that patch experts of a profile
face in one direction are just mirror images of a profile face in another direction,
same fact was exploited for symmetric frontal face patch experts.

Finally, part of Grid-CCNF inference across an image area of interest can
be performed using convolution, leading to fast landmark detection. Landmark
detection speed depends on the area of interest, our CCNF implementation is
able to reach 30 frames per second for landmark detection in videos and 5 images
per second for more complex in the wild images.

5 Conclusions

We presented the Continuous Conditional Neural Field model for structured
regression. Our model can exploit spatial and temporal relationships inherent
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(c) LFPW + HELEN
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Fig. 2: Landmark detection using our CLM + CCNF model and other state-
of-the-art methods. The benefit of our approach in generalising on unseen data
is clear. Note that for 300-W dataset, error rates using just internal (51) and
all of the points (68) are reported. CLM + CCNF has statistically significantly
smaller RMS values compared to all of the other approaches on all of the datasets
(p < .001), according to Friedman’s ANOVA and Wilcoxon signed-rank follow
up tests.

in pattern recognition problems. It also learns non-linear dependencies between
input and output. The flexibility of CCNF is demonstrated through evaluation
on six datasets spanning three challenging regression tasks: landmark detection,
emotion prediction in music and continuous intensity action unit recognition.

Our CCNF model showed statistically significant improvement over state-of-
the-art approaches for all of the tasks, both in terms of prediction accuracy -
evaluated using root mean squared error, and prediction structure - evaluated
using the correlation coefficient. Finally, we make all of our code available for
experiment recreation on the public datasets.
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