
Appendix A

In this appendix we show that when using feature functions in Eqs.(1) and (2)
the CCRF distribution is actually that of a multi-variate Gaussian.

In our discussion we will use the following notation: x = {x(q)
1 ,x

(q)
2 , · · · ,x(q)

n }
is a set of input variables that are observed and y = {y(q)

1 , y
(q)
2 , · · · , y(q)

n } a set

of output variables that we wish to predict, x
(q)
i ∈ Rm and y

(q)
i ∈ R, here q

indicates the qth sequence of interest, it is omitted in some equations for clarity
(when there is no ambiguity). We also define X as a matrix where the ith row
represents xi.

fk(yi,X) = −(yi −Xi,k)2 (1)

gk(yi, yj ,X) = −1

2
S

(k)
i,j (yi − yj)2 (2)

When using feature functions defined in Eqs.(1) and (2), the probability
distribution of CCRF:

P (y|X) =
exp(Ψ)∫∞

−∞ exp(Ψ)dy
(3)

Ψ =
∑
i

K1∑
k=1

αkfk(yi,X) +
∑
i,j

K2∑
k=1

βkgk(yi, yj ,X) (4)

is in fact a multivariate Gaussian with the following distribution:

P (y|X) =
1

(2π)
n
2 |Σ| 12

exp(−1

2
(y − µ)TΣ−1(y − µ)), (5)

where
Σ−1 = 2(A+B) (6)

The diagonal matrix A represents the contribution of α terms (vertex features)
to the covariance matrix, and the symmetric B represents the contribution of
the β terms (edge features).

Ai,j =

{ ∑K1
k=1 αk, i = j

0, i 6= j
(7)

Bi,j =

 (
∑K2
k=1 βk

∑n
r=1 S

k
i,r)− (

∑K2
k=1 βkS

k
i,j), i = j

−
∑K2
k=1 βkS

k
i,j , i 6= j

(8)

We also define a further vector b:

bi = 2

K1∑
k=1

αkXi,k (9)

b = 2Xα (10)
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We can now define another useful term µ, which will be our mean values in the
multivariate Gaussian distribution:

µ = Σb (11)

Defining A, B and b in such a way allows us to rewrite the factors of Eq.(3) in
terms of matrix multiplications making the derivation of the partition function
and the partial derivatives easier.

Having defined all the necessary variables we can start showing the equiv-
alence between probability density in Eq.(3) and the multivariate Gaussian in
Eq.(5). First we plug in the feature functions in Eqs.(1) and (2) into Eq.(4)

Ψ =
∑
i

∑K1
k=1 αkfk(yi,X) +

∑
i,j

∑K2
k=1 βkgk(yi, yj ,X)

= −
∑
i

∑K1
k=1 αk(yi −Xi,k)2 − 1

2

∑
i,j

∑K2
k=1 βkS

k
i,j(yi − yj)2

(12)

Now we can express the factor Ψ in terms of A, B and b. We do this in parts
starting with terms containing α parameters in Eq.(12).

−
∑
i

∑K1
k=1 αk(yi −Xi,k)2

= −
∑
i

∑K1
k=1 αk(y2

i − 2yiXi,k +X2
i,k)

= −
∑
i

∑K1
k=1 αky

2
i +

∑
i

∑K1
k=1 αk2yiXi,k −

∑
i

∑K1
k=1 αkX

2
i,k

= −yTAy + yT b−
∑
i

∑K1
k=1 αkX

2
i,k

(13)

And now collecting terms with β parameters in Eq.(12). Here we use the as-
sumption that every S(k) is a symmetric matrix (which as a similarity matrix
it should be).

− 1
2

∑
i,j

∑K2
k=1 βkS

k
i,j(yi − yj)2

= − 1
2

∑
i,j

∑K2
k=1 βkS

k
i,j(y

2
i − 2yiyj + y2

j )

= − 1
2

∑
i,j

∑K2
k=1 βkS

k
i,j(y

2
i + y2

j ) +
∑
i,j

∑K2
k=1 βkS

k
i,jyiyj

= −
∑K2
k=1 βk

∑
i,j S

(k)
i,j y

2
i +

∑K2
k=1 βkS

(k)
i,j

∑
i,j yiyj

= −yTBy

(14)

We now combining Eqs.(12), (13), and (14) for an alternative expression of Ψ.

Ψ = −yTAy + yT b− yTBy − d = −1

2
(yTΣ−1y) + yΣ−1µ− d (15)

We define d =
∑
i

∑K1
k=1 αkX

2
i,k for brevity (it’s not necessary writing it out

in full as it cancels out eventually). We also use the fact from Eq.(11) that
b = Σ−1µ.
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Using Eq.(15) in Eq.(3) we get (As d does not depend on y, we can cancel
exp(−d) out):

P (y|X) = exp(Ψ)∫∞
−∞

exp(Ψ)dy
=

=
exp(− 1

2 (yTΣ−1y)+yΣ−1µ) exp(−d)∫∞
−∞
{exp(− 1

2 (yTΣ−1y)+yΣ−1µ) exp(−d)}dy

=
exp(− 1

2 (yTΣ−1y)+yΣ−1µ)∫∞
−∞
{exp(− 1

2 (yTΣ−1y)+yΣ−1µ)}dy

(16)

Now we need to find the definite integral of exp(− 1
2 (yTΣ−1y) + yΣ−1µ)

with respect to y, this can be achieved using the integral of a an expontial with
square and linear terms1.∫ ∞

−∞
{exp(−1

2
(yTΣ−1y) + yΣ−1µ)}dy =

(2π)
n
2

|Σ−1| 12
exp(

1

2
µΣ−1µ) (17)

Finally. plugging Eq.(15) and (17) into Eq.(3) we get:

P (y|X) =
exp(− 1

2y
TΣ−1y+yΣ−1µ)

(2π)
n
2

|Σ−1|
1
2

exp( 1
2µΣ−1µ)

=
exp(− 1

2y
TΣ−1y+yΣ−1µ) exp(− 1

2µΣ−1µ)

(2π)
n
2 |Σ|

1
2

=
exp(− 1

2y
TΣ−1y+yΣ−1µ− 1

2µΣ−1µ)

(2π)
n
2 |Σ|

1
2

= 1

(2π)
n
2 |Σ|

1
2

exp(− 1
2 (y − µ)TΣ−1(y − µ))

(18)

This is exactly what we set out to show.

Appendix B

This appendix deals with calculating the partial derivatives of the CCRF log-
likelihood with respect to the parameters α and β. First of all, we would like
to calculate the log-likelihood of Eq.(18)).

log(P (y|X)) = − 1
2 (y − µ)TΣ−1(y − µ)− log((2π)

n
2 |Σ| 12 )

= − 1
2 (y − µ)TΣ−1(y − µ)− (n2 log(2π) + 1

2 log |Σ|)

= − 1
2 (y − µ)TΣ−1(y − µ) + 1

2 log |Σ−1| − n
2 log(2π)

= − 1
2y

TΣ−1y + yTΣ−1µ− 1
2µ

TΣ−1µ+ 1
2 log |Σ−1| − n

2 log(2π)

= − 1
2y

TΣ−1y + yT b− 1
2µ

TΣ−1µ+ 1
2 log |Σ−1| − n

2 log(2π)

= − 1
2y

TΣ−1y + yT b− 1
2b
TΣb+ 1

2 log |Σ−1| − n
2 log(2π)

(19)
Above we use |Σ| = 1

|Σ−1| , where |Σ| denotes the determinant of the matrix Σ.

Furthermore, because Σ−1 is symmetric by construction, Σ−1 = (Σ−1)T and
Σ = ΣT .

1http://www.weylmann.com/gaussian.pdf
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Now we can derive all of the necessary partial derivatives, first we define the
partial derivatives of Σ−1 and b with respect to α and β, as they will be reused.
I is the identity matrix of size n × n, where n is the number of elements in a
sequence. Remember that A is only dependent on α, and B on β.

We will first show the partial derivatives of the likelihood for the alphas.

∂Σ−1

∂αk
=
∂2A+ 2B

∂αk
=
∂2A

∂αk
= 2I (20)

∂b

∂αk
=
∂2Xα

∂αk
= 2X∗,k (21)

Here X∗,k notation refers to a row vector corresponding to the kth row of a ma-
trix X. In the derivation below, we use a trick of using the partial derivative of

a matrix inverse (∂M
−1

∂α = −M−1 ∂M
∂αM

−1 or alternatively ∂M
∂α = −M ∂M−1

∂α M)
to get the partial derivative of Σ.

∂bTΣb
∂αk

= ∂bT

∂αk
Σb+ bT ∂Σb

∂αk
= 2X∗,kµ+ bT ( ∂Σ

∂αk
b+ Σ ∂b

∂αk
)

= 2X∗,kµ+ bT ∂Σ
∂αk

b+ bTΣ2(X∗,k)T = 4X∗,kµ+ bT ∂Σ
∂αk

b

= 4X∗,kµ+ bT (−Σ∂Σ−1

∂αk
Σ)b = 4X∗,kµ− 2bTΣΣb

= 4X∗,kµ− 2µTµ

(22)

Now for the normalisation (partition) function part:

∂ log |Σ−1|
∂αk

= 1
|Σ−1|

∂|Σ−1|
∂αk

= 1
|Σ−1| |Σ

−1| × trace(Σ∂Σ−1

αk
)

= 2× trace(ΣI) = 2× trace(Σ)
(23)

Now we can combine these to get

∂ log(P (y|X))

αk
= −yTy + 2yTXT

∗,k − 2X∗,kµ+ µTµ+ trace(Σ) (24)

We can now derive the partial derivatives of the likelihood with respect to β
parameters

∂Σ−1

∂βk
= 2B(k) (25)

B(k) =

{
(
∑n
r=1 S

(k)
i,r )− S(k)

i,j , i = j

−S(k)
i,j , i 6= j

(26)

∂b

∂βk
= 0 (27)

bTΣb

βk
= −bT (Σ

∂Σ−1

∂β
Σ)b = −2bTΣB(k)Σb = −2µTB(k)µ (28)

∂ log |Σ−1|
∂βk

= 1
|Σ−1|

∂|Σ−1|
∂βk

= 1
|Σ−1| |Σ

−1| × trace(Σ∂Σ−1

βk
)

= 2× trace(ΣB(k)) = 2×Vec(Σ)TVec(B(k))
(29)

Here we use the matrix trace property trace(AB) = Vec(A)TVec(B), here Vec
refers to the matrix vectorisation operation which stacks up colums of a matrix
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together to form a single column matrix. We also use the derivative of inverse
matrix trick as in the case with αk version.

We can now combine these to get:

∂ log(P (y|X))

βk
= −yTB(k)y + µTB(k)µ+ Vec(Σ)TVec(B(k)) (30)
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