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Architectural protection for pointers

• De-conflate virtualization and protection

• Hybrid model: retain Memory Management Unit 
(MMU) implementing multiple address spaces

• OS processes, full-system virtualization, …

• Add ISA-level capabilities to implement and 
protect pointers within address spaces

• Fine-grained, compiler-driven memory 
protection for code and data

• Fine-grained, scalable compartmentalization
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CHERI software protection goals

• Target C/C++-language TCBs – OS kernels, 
monolithic applications, language runtimes, …:

• Spatial safety protects against many pointer-
misuse vulnerabilities

• Temporal safety supports software models that 
protect against memory re-use attacks

• Scalable compartmentalization provides 
exploit-independent mitigation

• Hybrid capability-system model provides strong 
compatibility with current software models
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Architectural least privilege
• Classical buffer-overflow attack

• Buggy code overruns a buffer, overwriting an 
on-stack return address

• Overwritten return address is loaded and 
jumped to, corrupting control flow

• Why did we allow these privileges not 
required by the language model:

• Ability to overrun the buffer?

• Ability to inject a code pointer that can be 
used as a jump target?

• Ability to execute data as code?

• Limiting these privileges wouldn’t prevent 
the bug – but would provide effective 
architectural vulnerability mitigation
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pointer (64 bits)

Pointers today

• Pointers are integer virtual addresses

• Pointers (usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – easily overwritten

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings
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Valid userspace pointer set – pointers not generated using derivation rules
are not part of the valid provenance tree and should not be dereferenceable

Enforcing pointer provenance,
bounds, permissions, and monotonicity

Heap allocator
Stack allocator

Run-time linker

Code pointers –
branch/jump/load targetsData pointers – load/store targets

Kernel pointersUser pointer range

Pointer range on reset



CHERI architectural approach
• RISC: simple, compiler-focused ISA extensions avoid 

microcode and table-based data structures

• Pointers implemented via architectural capabilities

• Tagged capabilities protect code and data pointer 
integrity in both registers and memory

• Pointer metadata, including bounds and permissions, 
limits undesired use

• Guarded manipulation implements capability 
monotonicity and sealing for least privilege

• 256-bit architectural model – 64-bit addresses, etc.

• Efficient 128-bit microarchitectural implementation
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CHERI-MIPS: capabilities protect 
pointers in registers and memory

• Capability register file holds in-use capabilities (pointers)

• Tagged memory protects capability-sized words in DRAM as pointers

• Program counter capability ($pcc) extends program counter

• Default data capability ($ddc) controls legacy RISC loads/stores

• System control registers are also extended – e.g., $epc→$epcc, TLB
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Tags for integrity and provenance

• Capability register tags indicate valid capabilities

• Untagged dereferences throw CPU exceptions

• Tagged memory retains tags when loaded/stored

• Tagged pointers can be embedded in data structures

• Tags track pointer provenance:

• Tag is set in primordial capabilities

• Valid guarded manipulations maintain tag

• Invalid manipulations, memory overwrite clear tag
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pointer (64 bits)

Bounds checking

• Capability bounds restrict access to a range of memory

• Architectural base, length, and base-relative offset

• Pointer can float within bounds – and beyond

• Set bounds instruction subsets a current capability range

• Used by heap, stack allocators – but also for explicit subsetting

• Out-of-bounds dereference throws a hardware exception
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pointer (64 bits)

permissions (31 bits)

Permissions

• Permissions limit how a pointer may be dereferenced

• Load, store, instruction fetch (and others)

• E.g., cannot jump to a data pointer, write via a code pointer

• Permission mask instruction reduces permissions

• Unauthorized de-reference throws a hardware exception
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Pointer provenance and monotonicity

• Pointer provenance: pointers must be derived from other pointers

• Guarded manipulation implements capability monotonicity:

• Tags can be cleared but not set

• Bounds can be narrowed but not widened

• Permissions can be cleared but not set

• E.g., received network data cannot be interpreted as a code pointer

• E.g., data pointers cannot be manipulated to access other heap objects

12

Stack allocator
Heap allocator

Data



pointer (64 bits)

permissions (31 bits)

Controlling capability flow

• CHERI permissions mark capabilities as local or global

• Local capabilities can only be stored via store-local capabilities

• In CheriBSD, non-garbage-collectable object-local and stack 
capabilities cannot be delegated between protection domains:

• Heap capabilities are global and !store-local

• Object/stack capabilities are local and store-local
13

25
6-

bi
t 

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t 
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)



objtype (24bits) s

Sealed capabilities

• Sealed bit provides strong, software-defined encapsulation

• Sealed capabilities are immutable, cannot be dereferenced

• Object types atomically link multiple capabilities

• Object capabilities pair code and data capabilities

• Foundation for secure hardware-software object invocation
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objtype (24bits) s

pointer (64 bits)

256-bit architectural capabilities

• CHERI capabilities are fat pointers with strong integrity

• Tags protect integrity; can’t dereference invalid capability

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, instruction fetch

• Guarded manipulation enforces monotonic rights decrease

• Architectural description not the microarchitectural implementation
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128-bit micro-architectural capabilities
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Virtual address (64 bits)

• Exchange bounds precision for reduced capability size

• Floating-point bounds relative to pointer

• Supports out-of-bound C pointers – unlike prior schemes

• Retains monotonicity for safe delegation!

• Imprecision translates to stronger alignment requirements

• DRAM tag density from 0.4% to 0.8% of memory size

• Fully functioning prototype with software stack on FPGA
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CHERI memory protection:
• Eliminates out-of-bounds accesses
• Prevents injected data use as a code or data pointer
• Data pointers cannot be used as branch or jump targets
• Control-Flow Integrity (CFI) limits code-pointer reuse
• Scalable compartmentalization mitigates as-yet 

undiscovered attack techniques and supply-chain attacks

While:
• Retaining current programming languages and models
• Supporting incremental deployment in software stack



Virtual memory and capabilities
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Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C 

code, data structures

Hardware MMU,TLB Capability registers,
tagged memory

Costs TLB, page tables, lookups, 
shootdowns

Per-pointer overhead,
context switching

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

CHERI hybridizes the two models:
pick the best for each problem to solve!



CHERI software models

• Source and binary compatibility: common C-language idioms, various ABIs

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: e.g., used solely in return addresses, for annotated data/code 
pointers, for specific types, stack pointers, etc.; n64-interoperable.

• Pure-capability code: ubiquitous data-pointer protection, strong Control Flow 
Integrity (CFI). Non-n64-interoperable.

• CHERI Clang/LLVM prototype generates code for all three
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CHERI technical reports
• Capability Hardware Enhanced RISC Instructions: CHERI 

Instruction-Set Architecture. (UCAM-CL-TR-876).

• ISAv4 released in November 2015

• ISAv4: experimental 128-bit capabilities, domain-switching 
optimizations, further C-language support; chapters describing 
software protection model

• Capability Hardware Enhanced RISC Instructions: CHERI 
Programmer’s Guide. (UCAM-CL-TR-877).

• New document released in November 2015

• Much more detail on compiler, OS internals

• New ISA specification due in May 2016: mature128-bit capabilities, 
instructions for more efficient code generation
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CHERI papers
• ISCA 2014: Fine-grained, in-address-space memory protection 

hybridizing MMU, capability model

• ASPLOS 2015: Explore and refine C-language compatibility; 
converge capabilities and fat pointers

• Oakland 2015: Efficient, capability-based hardware-software 
compartmentalization within processes

• ACM CCS 2015: Compartmentalization modeling and 
analysis

• PLDI 2016: C-language semantics and extension

• IEEE Micro Journal 2016 submission: Hardware assistance 
for efficient domain switching

• IEEE Micro 2016 submission: Compressed 128-bit 
capabilities for reduced cache footprint
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Q&A
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BACKUP SLIDES
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CHERI OS considerations

• Prototyped on FreeBSD operating system (+/- 4 KLoC)

• Process model extended for tagged capabilities

• Register-file setup and maintenance (exec, switch, thread create)

• VM support for physical tags; signal handling; debugging

• Fine-grained, in-address-space object-capability security model

• CCall/CReturn exception handlers; sandboxed syscalls restricted

• Userspace compartmentalization runtime
24
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CHERI instructions
Instruction class Instructions

Inspect capabilities CGetBase,CGetOffset, CGetLen, CGetTag, 
CGetSealed, CGetPerm, CGetType, CToPtr, CPtrCmp

Manipulate capabilities CClearRegs, CIncOffset, CSetBounds, 
CSetBoundsExact, Cmove, CClearTag, CAndPerm, 
CSetOffset, CGetPCC, CFromPtr, CSub

Memory access to, and 
via, capabilities

CL[BHWD][U], CLC, CLLC, CLL[BHWD][U], CSCC, 
CS[BHWD], CSC, CSC[BHWD], CSSC

Control flow CBTU, CBTS, CJR, CJALR

Sealed capabilities CCheckPerm, CCheckType, CSeal, CUnseal, CCall, 
CReturn

Exception handling CGetCause, CSetCause
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