
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and
the Air Force Research Laboratory (AFRL), under contracts FA8750-10-C-0237 (‘CTSRD’) and FA8750-11-C-0249 (‘MRC2’). The views, opinions,
and/or findings contained in this article/presentation are those of the author(s)/presenter(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.

CHERI
A Hybrid Capability Architecture

Robert N. M. Watson
SimonW. Moore, Peter G. Neumann, JonathanWoodruff, JonathanAnderson,

Hadrien Barral, Ruslan Bukin, David Chisnall, Nirav Dave, Brooks Davis,
Lawrence Esswood, Khilan Gudka, Alexandre Joannou, Chris Kitching, Ben Laurie,

A.Theo Markettos, Alan Mujumdar, Steven J. Murdoch, Robert Norton, Philip Paeps,
Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi, Stacey Son, MunrajVadera,

Hongyan Xia, and Bjoern Zeeb

University of Cambridge, SRI International

CHERI Microkernel Workshop – 23 April 2016

Architectural protection for pointers

• De-conflate virtualization and protection

• Hybrid model: retain Memory Management Unit
(MMU) implementing multiple address spaces

• OS processes, full-system virtualization, …

• Add ISA-level capabilities to implement and
protect pointers within address spaces

• Fine-grained, compiler-driven memory
protection for code and data

• Fine-grained, scalable compartmentalization
2

CHERI software protection goals

• Target C/C++-language TCBs – OS kernels,
monolithic applications, language runtimes, …:

• Spatial safety protects against many pointer-
misuse vulnerabilities

• Temporal safety supports software models that
protect against memory re-use attacks

• Scalable compartmentalization provides
exploit-independent mitigation

• Hybrid capability-system model provides strong
compatibility with current software models

3

String
buffer

Malicious
data

$pc

$ra

Architectural least privilege
• Classical buffer-overflow attack

• Buggy code overruns a buffer, overwriting an
on-stack return address

• Overwritten return address is loaded and
jumped to, corrupting control flow

• Why did we allow these privileges not
required by the language model:

• Ability to overrun the buffer?

• Ability to inject a code pointer that can be
used as a jump target?

• Ability to execute data as code?

• Limiting these privileges wouldn’t prevent
the bug – but would provide effective
architectural vulnerability mitigation

4

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

pointer (64 bits)

Pointers today

• Pointers are integer virtual addresses

• Pointers (usually) point into allocations, mappings

• Derived from other pointers via integer arithmetic

• Dereferenced via jump, load, store

• No integrity protection – easily overwritten

• Arithmetic errors – out-of-bounds leaks/overwrites

• Inappropriate use – executable data, format strings
5

64
-b

it
po

in
te

r

Virtual
address
space

6

Valid userspace pointer set – pointers not generated using derivation rules
are not part of the valid provenance tree and should not be dereferenceable

Enforcing pointer provenance,
bounds, permissions, and monotonicity

Heap allocator
Stack allocator

Run-time linker

Code pointers –
branch/jump/load targetsData pointers – load/store targets

Kernel pointersUser pointer range

Pointer range on reset

CHERI architectural approach
• RISC: simple, compiler-focused ISA extensions avoid

microcode and table-based data structures

• Pointers implemented via architectural capabilities

• Tagged capabilities protect code and data pointer
integrity in both registers and memory

• Pointer metadata, including bounds and permissions,
limits undesired use

• Guarded manipulation implements capability
monotonicity and sealing for least privilege

• 256-bit architectural model – 64-bit addresses, etc.

• Efficient 128-bit microarchitectural implementation

7

CHERI-MIPS: capabilities protect
pointers in registers and memory

• Capability register file holds in-use capabilities (pointers)

• Tagged memory protects capability-sized words in DRAM as pointers

• Program counter capability ($pcc) extends program counter

• Default data capability ($ddc) controls legacy RISC loads/stores

• System control registers are also extended – e.g., $epc→$epcc, TLB
8

General-purpose
register file Physical memoryCapability register file

$pc

$ra

$a1
$a0

$pcc v

d d

vCapability

Capability width

-
$c31

v$c4

$ddc v

v

$c3 -

pointers

Tags for integrity and provenance

• Capability register tags indicate valid capabilities

• Untagged dereferences throw CPU exceptions

• Tagged memory retains tags when loaded/stored

• Tagged pointers can be embedded in data structures

• Tags track pointer provenance:

• Tag is set in primordial capabilities

• Valid guarded manipulations maintain tag

• Invalid manipulations, memory overwrite clear tag

Virtual
address
space

v

1-
bi

t
ta

g

pointer (64 bits)64
-b

it
po

in
te

r

pointer (64 bits)

Bounds checking

• Capability bounds restrict access to a range of memory

• Architectural base, length, and base-relative offset

• Pointer can float within bounds – and beyond

• Set bounds instruction subsets a current capability range

• Used by heap, stack allocators – but also for explicit subsetting

• Out-of-bounds dereference throws a hardware exception
10

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

pointer (64 bits)

permissions (31 bits)

Permissions

• Permissions limit how a pointer may be dereferenced

• Load, store, instruction fetch (and others)

• E.g., cannot jump to a data pointer, write via a code pointer

• Permission mask instruction reduces permissions

• Unauthorized de-reference throws a hardware exception

11

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

Pointer provenance and monotonicity

• Pointer provenance: pointers must be derived from other pointers

• Guarded manipulation implements capability monotonicity:

• Tags can be cleared but not set

• Bounds can be narrowed but not widened

• Permissions can be cleared but not set

• E.g., received network data cannot be interpreted as a code pointer

• E.g., data pointers cannot be manipulated to access other heap objects

12

Stack allocator
Heap allocator

Data

pointer (64 bits)

permissions (31 bits)

Controlling capability flow

• CHERI permissions mark capabilities as local or global

• Local capabilities can only be stored via store-local capabilities

• In CheriBSD, non-garbage-collectable object-local and stack
capabilities cannot be delegated between protection domains:

• Heap capabilities are global and !store-local

• Object/stack capabilities are local and store-local
13

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

objtype (24bits) s

Sealed capabilities

• Sealed bit provides strong, software-defined encapsulation

• Sealed capabilities are immutable, cannot be dereferenced

• Object types atomically link multiple capabilities

• Object capabilities pair code and data capabilities

• Foundation for secure hardware-software object invocation
14

Virtual
address
space

pointer (64 bits)

permissions (31 bits)

25
6-

bi
t

ca
pa

bi
lit

y

v

1-
bi

t
ta

g

length (64 bits)

offset (64 bits)

base (64 bits)

objtype (24bits) s

pointer (64 bits)

256-bit architectural capabilities

• CHERI capabilities are fat pointers with strong integrity

• Tags protect integrity; can’t dereference invalid capability

• Bounds limit range of address space accessible via pointer

• Permissions limit operations – e.g., load, store, instruction fetch

• Guarded manipulation enforces monotonic rights decrease

• Architectural description not the microarchitectural implementation
15

25
6-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v1-
bi

t
ta

g

permissions (31 bits)

length (64 bits)

offset (64 bits)

base (64 bits)

128-bit micro-architectural capabilities

16

12
8-

bi
t

ca
pa

bi
lit

y

Virtual
address
space

v

1-
bi

t
ta

g

perms compressed bounds relative to address s

Virtual address (64 bits)

• Exchange bounds precision for reduced capability size

• Floating-point bounds relative to pointer

• Supports out-of-bound C pointers – unlike prior schemes

• Retains monotonicity for safe delegation!

• Imprecision translates to stronger alignment requirements

• DRAM tag density from 0.4% to 0.8% of memory size

• Fully functioning prototype with software stack on FPGA

String
buffer

Malicious
data

$pc

$ra

Architectural least privilege

17

$a1

$ra

$a0

Register file
Virtual

memory

$pc
Return
Address

Program
counter

CHERI memory protection:
• Eliminates out-of-bounds accesses
• Prevents injected data use as a code or data pointer
• Data pointers cannot be used as branch or jump targets
• Control-Flow Integrity (CFI) limits code-pointer reuse
• Scalable compartmentalization mitigates as-yet

undiscovered attack techniques and supply-chain attacks

While:
• Retaining current programming languages and models
• Supporting incremental deployment in software stack

Virtual memory and capabilities

18

Virtual Memory Capabilities
Protects Virtual addresses and pages References (pointers) to C

code, data structures

Hardware MMU,TLB Capability registers,
tagged memory

Costs TLB, page tables, lookups,
shootdowns

Per-pointer overhead,
context switching

Compartment scalability Tens to hundreds Thousands or more

Domain crossing IPC Function calls

Optimization goals Isolation, full virtualization Memory sharing,
frequent domain transitions

CHERI hybridizes the two models:
pick the best for each problem to solve!

CHERI software models

• Source and binary compatibility: common C-language idioms, various ABIs

• Unmodified code: Existing n64 code runs without modification

• Hybrid code: e.g., used solely in return addresses, for annotated data/code
pointers, for specific types, stack pointers, etc.; n64-interoperable.

• Pure-capability code: ubiquitous data-pointer protection, strong Control Flow
Integrity (CFI). Non-n64-interoperable.

• CHERI Clang/LLVM prototype generates code for all three
19

More compatible Safer

Unmodified
All pointers are
registers

Hybrid
Annotated and automatically selected

pointers are capabilities

Pure-capability
All code and data

pointers are capabilities

CHERI technical reports
• Capability Hardware Enhanced RISC Instructions: CHERI

Instruction-Set Architecture. (UCAM-CL-TR-876).

• ISAv4 released in November 2015

• ISAv4: experimental 128-bit capabilities, domain-switching
optimizations, further C-language support; chapters describing
software protection model

• Capability Hardware Enhanced RISC Instructions: CHERI
Programmer’s Guide. (UCAM-CL-TR-877).

• New document released in November 2015

• Much more detail on compiler, OS internals

• New ISA specification due in May 2016: mature128-bit capabilities,
instructions for more efficient code generation

20

CHERI papers
• ISCA 2014: Fine-grained, in-address-space memory protection

hybridizing MMU, capability model

• ASPLOS 2015: Explore and refine C-language compatibility;
converge capabilities and fat pointers

• Oakland 2015: Efficient, capability-based hardware-software
compartmentalization within processes

• ACM CCS 2015: Compartmentalization modeling and
analysis

• PLDI 2016: C-language semantics and extension

• IEEE Micro Journal 2016 submission: Hardware assistance
for efficient domain switching

• IEEE Micro 2016 submission: Compressed 128-bit
capabilities for reduced cache footprint

21

Q&A

22

BACKUP SLIDES

23

CHERI OS considerations

• Prototyped on FreeBSD operating system (+/- 4 KLoC)

• Process model extended for tagged capabilities

• Register-file setup and maintenance (exec, switch, thread create)

• VM support for physical tags; signal handling; debugging

• Fine-grained, in-address-space object-capability security model

• CCall/CReturn exception handlers; sandboxed syscalls restricted

• Userspace compartmentalization runtime
24

OS kernel

Address-space executive

Address-space executive

Legacy application
+

capability libraries
Address-space executive

Pure-capability
application

Vi
rtu

al
 a

dd
re

ss
 s

pa
ce

s

Hybrid capability/MMU OSes

Capability-based
OS with legacy

libraries

CHERI CPU

libsslzlibzlib zlibzlib class1
libssl

class2

libssllibssl

Single address space

CHERI instructions
Instruction class Instructions

Inspect capabilities CGetBase,CGetOffset, CGetLen, CGetTag,
CGetSealed, CGetPerm, CGetType, CToPtr, CPtrCmp

Manipulate capabilities CClearRegs, CIncOffset, CSetBounds,
CSetBoundsExact, Cmove, CClearTag, CAndPerm,
CSetOffset, CGetPCC, CFromPtr, CSub

Memory access to, and
via, capabilities

CL[BHWD][U], CLC, CLLC, CLL[BHWD][U], CSCC,
CS[BHWD], CSC, CSC[BHWD], CSSC

Control flow CBTU, CBTS, CJR, CJALR

Sealed capabilities CCheckPerm, CCheckType, CSeal, CUnseal, CCall,
CReturn

Exception handling CGetCause, CSetCause

25

