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ABSTRACT
Application compartmentalization, a vulnerability mitiga-
tion technique employed in programs such as OpenSSH and
the Chromium web browser, decomposes software into iso-
lated components to limit privileges leaked or otherwise
available to attackers. However, compartmentalizing appli-
cations – and maintaining that compartmentalization – is
hindered by ad hoc methodologies and significantly increased
programming effort. In practice, programmers stumble
through (rather than overtly reason about) compartmental-
ization spaces of possible decompositions, unknowingly trad-
ing off correctness, security, complexity, and performance.
We present a new conceptual framework embodied in an
LLVM-based tool: the Security-Oriented Analysis of Appli-
cation Programs (SOAAP) that allows programmers to rea-
son about compartmentalization using source-code annota-
tions (compartmentalization hypotheses). We demonstrate
considerable benefit when creating new compartmentaliza-
tions for complex applications, and analyze existing com-
partmentalized applications to discover design faults and
maintenance issues arising from application evolution.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

Keywords
Security, Compartmentalization, Vulnerability Mitigation

1. INTRODUCTION
Application compartmentalization decomposes software

into isolated but collaborating components to mitigate ex-
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ploitation of vulnerabilities. It seeks to employ the prin-
ciple of least privilege by granting each compartment only
the rights that it requires to operate [38]. It is used in
software ranging from OpenSSH [36] to the Chromium web
browser [37] to limit rights available to an attacker follow-
ing a successful exploit. Recently disclosed vulnerabilities
such as Heartbleed [30], Shellshock [32], and a symlink at-
tack vulnerability in Wget [31], illustrate the importance of
protecting software not just from known exploit techniques
(e.g., stack canaries mitigating buffer overflows), but also
from unknown future classes of vulnerabilities.

Application compartmentalization proves surprisingly
subtle: contrary to the implied suggestion of simplistic de-
scriptions (“Application X has been privilege separated”),
there are many possible compartmentalizations of most pro-
grams within a compartmentalization space that reflects dif-
ferent tradeoffs among correctness, security, complexity, and
performance. Selecting a suitable point in this space is
challenging, as implementing compartmentalization requires
considerable effort and can disrupt code structure. This
choice is crucial, as it can be difficult to change strategy
after implementation: the non-trivial code changes made to
application structure are often specific to the selected com-
partmentalization. Design choices and tradeoffs are infre-
quently revisited – even as understanding of program secu-
rity grows due to discovered vulnerabilities, or as program
functionality evolves beyond its compartmentalization.

Reasoning about compartmentalization tradeoffs is diffi-
cult for many reasons. Information about past vulnerabil-
ities – often a good predictor of future vulnerabilities – is
not easily accessible. Call graphs of compartmentalized ap-
plications are extremely complex, and simple control-flow
analysis cannot follow manually encoded cross-domain ac-
tions – typically via Inter-Process Communication (IPC) –
found in real-world applications. Even where call graphs
can be extracted, control flow is only a starting point: in
the compartmentalization adversary model, naively written
code may be vulnerable, but it is exposure to malicious data
that causes exploits – requiring reasoning about a combi-
nation of vulnerabilities, information flow from dangerous
sources, and uncompartmentalized code. Application fail-
ures due to compartmentalization are frequently mysterious:
the libraries they link against are often designed without the



expectation of sandboxing, and failures may not be detected
by testing. Finally, performance characteristics are critical,
with compartmentalization boundaries often selected that
are not based on ideal security boundaries, but rather on ac-
ceptable performance (e.g., in Capsicum where gzip rather
than zlib is sandboxed [42]). Even then, performance im-
pacts are difficult to predict.

Application developers would ideally be able to explore
how new or changing compartmentalization would affect fac-
tors such as security and performance without paying the full
cost of implementation, letting them more easily identify a
preferred spot in the compartmentalization space. For ex-
ample, partitioning decompression from decryption can pre-
vent decompression-related vulnerabilities from leaking key-
ing material – but at great costs to both code complexity
and run-time performance. The overhead of this compart-
mentalization may be too high for production use, requiring
another approach, such as having per-client compartments.

This exploration is comparable to the use of performance-
profiling tools to identify the hot spots in an application
that would benefit most from optimization. Similarly, se-
curity profiling tools could enable the developer to deter-
mine whether a particular compartmentalization was“worth
it”, namely that it would give sufficient security gains while
not exceeding tolerable performance overheads. Such an ap-
proach would also allow continuous automatic reevaluation
as application source code evolves, ensuring that, for exam-
ple, refactorings do not accidentally move vulnerable code
to a more privileged context. To this end, this paper:

• Describes a conceptual framework for compartmental-
ization grounded in isolation and controlled communi-
cation. Possible program compartmentalizations, each
with differing design tradeoffs in terms of complexity,
performance, security, and functionality, exist within
compartmentalization spaces. We also describe a set of
compartmentalization design patterns reflecting com-
mon approaches to compartmentalization.

• Presents the Security-Oriented Analysis of Application
Programs (SOAAP), an LLVM-based tool for evaluat-
ing proposed (or extant) compartmentalizations based
on annotated compartmentalization hypotheses, which
document programmer expectations and designs for
compartmentalization and security. Source-code anno-
tations represent sandboxing strategies, cross-domain
communication, past vulnerabilities, sensitive or risky
data, and security goals. SOAAP scales to multi-
million-LoC applications, providing efficient control-
flow and information-flow analysis of whole programs.

• Demonstrates the effectiveness of our approach
through analysis of existing real-world compartmen-
talizations – including OpenSSH and the Chromium
web browser – and discover bugs that were introduced
by developing these without the aid of a SOAAP-like
tool. We also show the use of SOAAP in adding new
compartmentalization to two existing applications:
FreeBSD’s fetch and the Okular document viewer
from KDE. SOAAP has identified various weaknesses,
including untrustworthy code unexpectedly executed
outside of sandboxes, and provides a new methodol-
ogy for evaluating software compartmentalization.

2. CONCEPTUAL FRAMEWORK
Application compartmentalization rests on the principle of

least privilege: compromised components yield fewer rights
to attackers, and offer fewer opportunities to compromise the
rest of the system. Karger first proposed using access con-
trol for vulnerability mitigation while working on capability
systems [19], and took as his threat model the trojan horse:
subverted software working on behalf of the adversary. Con-
temporary compartmentalization for vulnerability mitiga-
tion, sometimes referred to as privilege separation, saw its
foundations in work by Provos et al. [36] and Kilpatrick [20],
and has been applied to complex, security-relevant programs
such as OpenSSH and the Chromium web browser, both of
which hold substantial effective privilege and perform com-
plex processing of untrustworthy, network-originated data.

Compartmentalization adopts a de facto, and quite strong,
threat model in which attackers gain total control of com-
promised compartments as a result of poorly crafted C code
(or other program weaknesses) being being exposed to ma-
licious input. For example, buffer-overflow attacks triggered
by network input might allow malicious code to be executed,
or program control flow to be fully subverted by the at-
tacker. We generalize this model, adding software supply-
chain vulnerabilities involving explicitly trojaned software
without the need for malicious input – e.g., back doors be-
ing inserted following compromise of a software vendor’s
source-code repository. Weaker attacks, which fall short of
arbitrary code execution, are also important: the OpenSSL
Heartbleed vulnerability allows read access to victim mem-
ory, which might reveal keys allowing further access, but
does not immediately allow arbitrary manipulation.

Compartmentalization rests on three underpinnings: a
strong Trusted Computing Base (TCB) able to protect its
own integrity [3]; compartment isolation (implemented by
the TCB), which provides strong prevention of interference
between isolated program instances [11]; and controlled com-
munication, which allows safe communication between com-
partments – subject to suitable policies. Applications may,
themselves, construct application-specific TCBs on top of
the compartmentalization substrate – for example, compo-
nents that run with ambient authority, or that store sensitive
keying material, etc. – but for our purposes, TCB refers to
mechanisms underlying compartmentalization itself.

2.1 Isolation
Mechanisms for isolation vary, but will often be an

operating-system (OS) process model based on a hardware
Memory Management Unit (MMU). The conventional OS
process model limits the scope of accidental damage from
buggy programs, and also provides modest (often discre-
tionary) isolation between users to limit the damage mali-
cious user can cause to other users. To construct stronger
isolation, other access control mechanisms are used to nar-
row down access to system resources. For example, across
various systems, OpenSSH uses mechanisms such as chroot,
Linux seccomp, SELinux [25], Mac OS X [41], and Cap-
sicum [42] to restrict the OS facilities available to its com-
partments. The literature sometimes refers to a constrained
process as a sandbox, but we prefer the term compartment as
‘sandbox’ is often taken to refer to the near total isolation of
a whole application (or component) rather than being part
of a more nuanced decomposition in which processes may be
delegated more subsets of (perhaps quite powerful) rights.



Pattern Description

Sandboxing Compartments handling untrustworthy data or executing untrustworthy code are
delegated minimal rights – e.g., for web-page rendering [19, 13, 28, 40, 37].

Assured pipelines A series of linked compartments perform staged processing of data while limiting
the access of (and exposure of) compartments in the chain – e.g., when processing
protocol stages between two firewall interfaces [8].

Horizontal compartmentalization Compartments contain multiple instances of the same code operating on different
data instances – e.g., one sandbox for each image processed [43].

Vertical compartmentalization Compartments encapsulate different layers when performing a task – e.g., isolating
web-page download from rendering [43].

Temporal compartmentalization Reuse of compartments over time is avoided to prevent loss of confidentiality for
prior tasks, and loss of integrity or availability for later tasks [43].

Work-bounded compartmentalization Compartments are permitted to perform bounded work, limiting potential denial-
of-service impact (e.g., following a control-flow exploit) [43].

Library compartmentalization Compartmentalization occurs entirely ‘behind’ an existing API, allowing a library
to isolate its processing while leaving programming and binary interfaces unper-
turbed – e.g., placing compartmentalization in zlib rather than in gzip [42, 43].

Table 1: Common compartmentalization design patterns found across a broad range of compartmentalized systems.

Not all compartmentalization substrates are created
equal. seccomp and Capsicum are both available to unprivi-
leged processes, and intended to support extremely limited
access for isolated processes. In contrast, chroot depends
on OS privilege to use (requiring, for example, Chromium
to have a setuid helper), but constrains only unprivileged
processes. Further, chroot limits access only for the filesys-
tem namespace (unless extended via a mechanism such as
FreeBSD jails [18]), leaving (on many systems) interfaces
for several forms of IPC, and also administrative interfaces,
available to notionally isolated processes. Differing delega-
tion mechanisms used to assign rights to compartments can
also prove challenging for programmers: whereas Capsicum
allows system calls to be refined on a per-file-descriptor ba-
sis, but a fixed set of permitted system calls, seccomp pro-
vides a configurable filter on system calls, but not the abil-
ity to refine rights on particular file descriptors. These and
other differences (e.g., with respect to SELinux and Mac
OS X) present a substantial challenge to the authors of
portable applications, who must implement compartmental-
ization over different substrates, and hence may experience
variable expressiveness and mitigation properties.

2.2 Controlled communication
Controlled communication allows compartments to com-

municate both with the OS and one another. This commu-
nication takes the form of a call gate: a call between com-
partments that provides mediated access to a well-defined
set of entry points in a piece of code running with different
privileges. This allows subsets of global system rights to be
delegated to compartments, providing access to data or stor-
age required for computation (e.g., a web-browser cache), or
the ability to connect sockets to remote systems. Also im-
portant are intra-application rights; for example, different
compartments within applications might have different ex-
posure to malicious data, with those protecting access to
critical information (e.g., user payment details or private
keys) providing only narrowly constrained interfaces to com-
partments at greater risk (e.g., those rendering web pages).

A key concern in compartmentalized systems is the ex-
plicit or implied delegation of data rights, which may be con-
sidered in three classes: OS rights that represent access to re-

sources outside the compartmentalized application (e.g., an
open file descriptor), rights that represent the ability to com-
municate within the compartmentalized application (e.g., a
local domain socket allowing message passing with another
compartment), and data itself (which may flow via either
of these mechanisms). The initial and ongoing configura-
tions of these rights and data are critical to reasoning about
the security state of an application (and to the protective
properties of compartmentalization) as any communication
right not delegated to a compartment is an attack surface
avoided, in terms of potential exploits to gain privilege, and
also opportunities for denials of service. Data itself presents
a number of problems from the perspective of confidentiality
and integrity. When a compartment has been compromised,
it may have current access to confidential data, either in its
memory space or via rights it holds, as well as residual data
from earlier execution. Likewise, a compromised compart-
ment affects the integrity of future computations performed
in the compartment, which in turn impacts the confidential-
ity and integrity of data that may later be received.

2.3 Compartmentalization patterns
Compartmentalization is a general technique that config-

ures a network of communication and delegated rights be-
tween “cuts” in an application. Many compartmentalized
applications turn out to implement similar portable patterns.
The sandboxing pattern, for example, delegates as few rights
as possible to compartments processing high-risk data – e.g.,
a web-browser renderer that is able to send data to the dis-
play and receive limited input. By delegating only limited
rights to the sandbox – e.g., a connected socket and output
file rather than global access to the filesystem – vulnerabil-
ities in the sandboxed code, such as bugs in TLS process-
ing, can be mitigated. Table 1 illustrates a set of common
patterns [43]. We expect many further design patterns will
emerge as compartmentalization sees further deployment.

2.4 Compartmentalization spaces
Compartmentalization spaces, illustrated in Figure 1, are

a key concept: applications may be partitioned in many dif-
ferent ways, requiring compartments to have more or fewer
rights, and distributing both code of varying risk, as well
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Figure 1: fetch and libfetch can be compartmentalized along different dimensions, offering different tradeoffs.

as access to data of varying degrees of risk and sensitivity,
around the compartment graph. The figure illustrates two
possible dimensions of further refined compartmentalization
for FreeBSD’s fetch/libfetch, a command-line HTTP/FTP
file retrieval tool and supporting library: data-centered com-
partmentalization, in which different instances of data, pro-
cessed by the same code, will be isolated from another;
and code-centered compartmentalization, in which different
code components are isolated from one another. Combined,
these may be viewed as object-oriented compartmentaliza-
tion, which provides a more granular decomposition. For
fetch, data-centered compartmentalization might process
the contents of different sites, or even different URLs, in
their own sandbox, preventing cross-contamination with re-
spect to confidentiality, integrity, and availability. Code-
centered compartmentalization also offers benefits: by iso-
lating different phases of TLS, vulnerabilities granting ac-
cess to a TLS session key need not, for example, provide the
attacker access to a client-side certificate.

Different points in an application’s compartmentalization
space offer markedly different correctness, complexity, se-
curity, and performance. Correctness is particularly im-
pacted by distributed-system problems: data replicated be-
tween compartments may fall out of sync, leading to bugs.
Greater compartmentalization often implies greater com-
plexity, due to the need to select suitable rights to delegate
to each compartment, but also because compartments may
not naturally align with an application’s class structure. Se-
curity is a key concern: vulnerabilities are mitigated only
if rights assigned to compartments are limited. Predicting
the location of future vulnerabilities is an art rather than
a science, but notions of risky code (e.g., string parsing in
C), and also the history of past vulnerabilities in code, often
motivate software components in sandboxes. For example,
it is common to place compression and video CODECs in
sandboxes. Finally, performance is also critical: selecting
“unnatural” cuts within applications may lead to substan-
tial performance overheads resulting from frequent domain
crossings or the need to copy (rather than delegate a right
to) data. The latter may be due to mismatches between API
design and rights delegated between compartments.

The effort required to compartmentalize a program means
that adopting a particular point in the design space is a sub-
stantial commitment. Once a point is implemented, some

further points become more accessible – e.g., further sub-
division of existing compartments, or those that introduce
greater data-centered granularity – but most will now re-
quire greater application refactoring.

3. THE SOAAP ANALYSIS TOOL
Application compartmentalization is a powerful vulner-

ability mitigation technique, but it can require substantial
program refactoring and careful reasoning about interactions
with the underlying isolation and communication substrates.
To help developers explore the implications of current or
planned compartmentalization more easily, we have devel-
oped Security-Oriented Analysis of Application Programs
(SOAAP), a tool implemented using LLVM [22]. Figure 2
illustrates the SOAAP workflow. SOAAP accepts, as in-
put, C/++ source code annotated with compartmentaliza-
tion hypotheses. The annotations may originate with the
code author or, commonly, a third party retrofitting code
with compartmentalization after vulnerabilities are discov-
ered. They may include:

• Code that should run in a sandbox. This may be entire
functions or a portion of a function.

• Global state that should be accessible to sandboxes
together with the types of accesses allowed.

• File descriptors that sandboxes can access and what
operations are allowed on them.

• System calls that sandboxes can perform.

• Call gates available to sandboxes for performing priv-
ileged operations.

• Information-flow restrictions – for example, that cer-
tain data should not leak out of, or into, a sandbox.

• Information-flow relaxations for declassification and
explicitly-permitted flows, e.g., transmitting a pass-
word hash for authentication.

• Performance overhead goals.

• Past-vulnerability information.

SOAAP also takes descriptions of sandboxing platforms
that capture the protection provided – e.g., which system
calls are allowed within a sandbox, at what granularity file
accesses can be restricted, and whether sandboxes are com-
pletely isolated from one another or inter-sandbox communi-
cation might be permitted. These descriptions allow trade-
offs to be compared across different sandboxing technologies.



Past 
vulnerability 

analysis
Informatio

n flow 
analysis

Sandbox 
characterization

Call graph 
analysis

App
author

Security
developer

OS vendor

SOAAP toolchain

SOAAP outputs

SOAAP inputs

Performance 
analysis

static dynamic

Clang
annotation 
processing Perform. 

simulation

LLVM
Link-time 

taint, vuln., 
callgraph 
analysis

Callgraph 
analysis

Application and library 
source code

Compartmentalization
hypotheses as source 

code annotations

Application
change

and
hypothesis
refinement

recommendations

Figure 2: SOAAP engages the developer in an iterative cycle of hypothesis development and testing.

SOAAP uses LLVM’s Clang front end to compile the an-
notated program into LLVM’s intermediate representation
(IR). Source files are compiled to individual IR files before
being statically linked together into a single application IR
file for analysis. SOAAP assumes a closed world, meaning
that all dependencies whose behavior should be analyzed
must be statically linked with the main program’s IR. Most
of SOAAP’s analysis is static, to check whole-program be-
havior. We model the structure and behavior of the program
by building a compartmentalization control- and data-flow
graph. This captures the distributed nature and different se-
curity domains that would be present in the proposed com-
partmentalization. SOAAP performs dynamic analysis to
evaluate performance prior to implementation by simulat-
ing sandbox management and cross-domain communication
costs to measure execution overhead. If this overhead ex-
ceeds annotated performance goals, a warning is given. Un-
like static analysis, the results of performance simulation will
typically be sensitive to input parameters; representative re-
sults require multiple runs with representative workloads.

The SOAAP workflow engages the programmer in an it-
erative dialog as the compartmentalization approach is re-
fined: programmers may initially annotate sandbox bound-
aries and then add or remove these and other annotations as
they learn more about the compartmentalization. This cycle
is comparable to the regular iteration of a developer correct-
ing warnings through successive compiler passes. SOAAP
can also be used in a continuous integration environment
to validate that changes in program structure and compart-
mentalization do not introduce regressions over the longer-
term application life cycle. SOAAP may not identify all
possible shortcomings in a proposed approach, and it can-
not make design decisions, but it can help developers express
compartmentalization choices and understand their impacts.

3.1 SOAAP workflow example
To demonstrate SOAAP’s workflow, we annotate and an-

alyze a simple program that decrypts and decompresses files
(see Listing 1). Passing -l lists only archive contents.

3.1.1 Specifying sandbox boundaries
Developers begin by annotating code that should run

within a sandboxed compartment, the kind of sandbox, and
when it should be created. For our example, both decryp-
tion and decompression are known to be frequent sources
of security vulnerabilities. One possible compartmentaliza-

int l_flag = 0; // list file contents

int main(int argc , char** argv) {
l_flag = read_arg("l");
char* in , out;
while ((in = process_next_file ())) {

out = in_to_out(in);
int ifd = open(in, O_RDONLY);
int ofd = open(out , O_WRONLY);
dec2(ifd , ofd);

}
return 0;

}

void dec2(int ifd , int ofd) {
// decrypt input to tmp file
char key [256];
read_stdin("Password: ", key);
// ...
char* tmp = tmp_file ();
int tfd = open(tmp , O_RDWR);
// ...
read(ifd , buffer , buffer_size);
// ...
if (l_flag) { // list contents

// ...
} else {

// decompress tmp to output file
// ...

}
}

Listing 1: Example program that decrypts and decompresses
files. Passing -l allows only listing the archive contents.

tion isolates the dec2() function, which would prevent an
attacker from gaining access to the global filesystem names-
pace. We annotate a persistent sandbox, i.e., a reusable
global sandbox, with the name dec2:

__soaap_sandbox_persistent("dec2")
void dec2(int ifd , int ofd) ;

We also annotate that this sandboxed compartment will be
created at the start of main(), which allows SOAAP to un-
derstand the implications of sandboxes created via fork().
The subsequent sections present some of SOAAP’s output.

3.1.2 Finding data dependencies
An initial run of SOAAP identifies that a global variable

is read by the dec2 sandbox:

* Sandboxed method "dec2"



* [dec2] read global variable "l_flag"
* but has not been granted the right to
+ Line 70 of file dec2.c

The programmer must determine whether such accesses are
intended. If not, then the sandbox scope may need to be
reassessed or code refactored. In this case, the access is
intended, so we inform SOAAP through an annotation:

__soaap_var_read("dec2")
int l_flag = 0; // list file contents

Running SOAAP again now identifies a potential data-
consistency bug that arises because l_flag is initialized to a
command-line argument after the compartment is created:

* Write to shared variable "l_flag" in
* method "main" may not be seen by the
* sandboxes: [dec2]
+ Line 4 of dec2.c

If the compartment were realized as a UNIX process, a bug
would result: fork() copies global variables from the parent
to the child, and modifications to globals after the fork will
not be seen in the compartment. The developer must thus
ensure, when implementing this compartmentalization, that
the sandbox receives the correct value of l_flag. Otherwise,
the archive will be decompressed even when the user just
wants to list the contents! This error is similar in nature to
that we discovered during the original Capsicum-based com-
partmentalization of gzip, in which gzip performed faster
with sandboxing than without. This unlikely result was due
to the compression level not being propagated to the sand-
boxed child, leading to lower (hence faster) compression be-
ing applied [42].

3.1.3 Finding information leaks
The dec2 sandbox handles sensitive keying material. An

important security goal might be to ensure that it cannot
leak out of the sandbox, which we can express as:

char key [256] __soaap_private;

SOAAP informs us that our key could leak through several
extern library functions whose behavior we know nothing
about. If we are certain these functions are safe, we can
annotate them as such. SOAAP also identifies that reuse of
the sandbox could leak an earlier key, as the key buffer is
not scrubbed. One solution would be to zero out the buffer
before returning from the sandbox; another might be to use
an ephemeral sandbox instead. The former prevents against
accidental leakage, but could be bypassed by an attacker
able to compromise the sandbox. The latter approach pro-
vides more security, but at the cost of having to create and
destroy sandboxes more frequently.

3.1.4 Finding required privileges
SOAAP uses platform descriptions to reason about sand-

box restrictions, allowing the programmer to understand
what can be executed by each sandbox. For example,
chroot() sandboxes are allowed to perform any system call,
whereas seccomp permits only read(), write(), sigreturn()

and exit(). Capsicum may require explicit capabilities on
file descriptors to be able to perform operations on their
corresponding files. We tell SOAAP to model Capsicum be-
havior with our example, and it reports:

* Sandbox "dec2" performs system call

* "open" but it is not allowed to, based
* on the current sandboxing restrictions.
+ Line 35 of file dec2.c

* Sandbox "dec2" performs system call
* "read" but is not allowed to for the
* given fd arg.
+ Line 45 of file dec2.c

The first warning is specific to the Capsicum model: open-
ing the temporary file will not work in a Capsicum sandbox.
The second is more general, indicating that read() will fail
on the file descriptor passed into the sandbox as an integer,
because the parent and child process will have different file-
descriptor tables. We can declare that we will delegate the
read capability by annotating the input file descriptor with
__soaap_fd_permit(read).

3.1.5 Past vulnerabilities and supply-chain attacks
The number of mitigated past vulnerabilities is a useful

measure for how effective a proposed compartmentalization
might be. Annotating past vulnerabilities is not only worth-
while documentation but SOAAP can use these annotations
to inform which are mitigated. SOAAP is able to enumer-
ate the rights an attacker would gain if another vulnerability
were to be exploited there. We annotate a fictitious CVE in
the decryption portion of our example:

// decrypt input to tmp file
// ...
__soaap_vuln_pt("CVE -XXXX -YYYY")

SOAAP is now able to report on the effects of compartmen-
talization directly, showing the leaked rights:

*** Sandboxed function "dec2" [dec2]
*** has past -vulnerability annotations for
*** [CVE -XXXX -YYYY]. Another vulnerability
*** here would not grant ambient authority
*** to the attacker but would leak the
*** following restricted rights:
+++ Call [read] on file descriptor "ifd"
+++ Call [write] on file descriptor "ofd"
...

Relevant vulnerabilities are not limited to just the applica-
tion being annotated but also its dependencies, as exploiting
them would also give the attacker control of the application.
SOAAP allows hypothesizing the occurrence of vulnerabil-
ities in specific libraries or a particular vendor’s code (so-
called supply-chain trojans):

$ soaap --vulnerable -libs=libc ...
$ soaap --vulnerable -vendors=badvendor ...

SOAAP will again provide feedback on rights that might be
leaked by the application. We provide details about this in
our technical report [14].

3.2 SOAAP’s analysis

3.2.1 Sandbox-platform descriptions
An important SOAAP design goal is to aid in the de-

velopment of portable compartmentalized applications. As
discussed in Section 2, different OSes provide markedly dif-
ferent isolation primitives with different security proper-
ties that can impact the semantics of compartmentaliza-
tion. SOAAP’s platform descriptions identify the function-
ality and protection properties provided by platforms such



as Capsicum and seccomp. The descriptions, implemented
as C++ classes passed to the SOAAP analysis, also include
performance and communication models.

3.2.2 Data-flow analysis
SOAAP implements a data-flow framework that can per-

form both may and must as well as flow sensitive and flow-
insensitive analysis, depending upon the type of analysis and
precision required. It uses the control-flow and call graphs
computed by LLVM. For information flow analyses, such as
for tracking sensitive data or file descriptors, SOAAP tracks
explicit flows along define-use chains. Analyses are sandbox
sensitive, meaning that data-flow propagation within one
sandbox is distinct from that of another, even if they con-
tain overlapping code. This enables us to model the different
security domains of proposed compartmentalizations.

One of the challenges in analyzing C/C++ programs is
that function pointers and polymorphism mean that the
targets of a function call can be unclear. For static anal-
ysis to be safe, it must approximate all possible behaviors of
the program, which means knowing which functions will be
called. One approach is to assume that any plausible func-
tion could be invoked (i.e., a function pointer could refer
to any function that has its address taken, or any instance
method in the case of C++ – both assuming type compat-
ibility). However, this can be overly conservative, and lead
to imprecise analysis results.

SOAAP infers function-pointer targets by tracking assign-
ments, and also allows the programmer to explicitly anno-
tate callees. For C++, it builds a static class hierarchy
using static type information obtained from Clang’s AST
and vtable metadata present in the LLVM IR. SOAAP then
performs Class Hierarchy Analysis (CHA) [10] to calculate
the set of potential targets of a virtual method call, i.e., by
finding all method definitions in the class hierarchy rooted
at the receiver object’s static type.

3.2.3 Performance simulation
SOAAP instruments an application at relevant points

based on the hypothesis. For a persistent sandbox, we fork a
single process when the __soaap_create_persistent_sandbox

annotation is reached. For ephemeral sandboxes, we fork
and terminate a process at the start and end of the entry
point function. There are other models that could be used,
such as a zygote process, but we leave these for future work.

SOAAP emulates communication between compartments
by sending RPC messages (implemented as synchronous
messages sent via a UNIX pipe). Overhead is measured
using clock_gettime. The performance simulation is an esti-
mate: it will necessarily contain errors.

One source of error relates to overhead. SOAAP cur-
rently models sandbox creation as a constant cost, but true
compartmentalization costs are non-linear in the number of
sandboxes as contention triggers TLB and cache misses.

A second source of error is the varying cost of IPC.
SOAAP simulates IPC cost by sending a simulated payload
through a real IPC channel and measuring the round-trip
time. This measures the cost of data transmission, but may
not accurately capture scheduler interaction. When a pro-
cess sends a synchronous message to another, an ideal sched-
uler would immediately switch to the receiving process and
then switch back on reply. This policy was explicit in the
Spring [15] microkernel’s Doors mechanism, which was later

ported to Solaris, but is not guaranteed by most UNIX IPC
mechanisms; latency will increase considerably if other pro-
cesses are scheduled between IPC send and reply.

The performance emulation in SOAAP is intended as a
prototyping tool, giving a rough overview of whether a par-
ticular compartmentalization strategy will incur huge over-
heads, rather than as a modeling tool to determine exactly
what the overheads will be on a specific system.

4. EVALUATION
The purpose of SOAAP is to allow developers to reason

about (and evaluate) current and potential future compart-
mentalizations of software. We demonstrate three aspects of
SOAAP: that a diverse array of practical compartmentaliza-
tions (and compartmentalization technologies) map into the
SOAAP model; that a relatively sparse and maintainable
set of annotations produce immediately useful results when
a SOAAP analysis is applied; and that SOAAP performs
and scales sufficiently well so as to be a practical addition to
a contemporary software development environment, whether
as part of live builds or a continuous integration setup. We
therefore consider a series of practical compartmentalization
case studies that explore both fresh compartmentalizations
(of fetch and KDE’s Okular), as well as existing compart-
mentalizations (of OpenSSH and Chromium).

We ran our benchmarks on a server with a 4-core Intel
Xeon E5-1620 3.6GHz CPU, 64GB of RAM, and a 500GB
SSD running FreeBSD/amd64 10.1-RELEASE-p5 [26]. We
disabled hyper-threading and used four cores (passing -j4

to make and ninja) when building.

4.1 Fetch: design-space exploration
FreeBSD’s fetch application is an ideal candidate for

compartmentalization. It performs risky operations such
as URL/HTTP header parsing and implements TLS via
OpenSSL. It also runs with full user privileges, often the
system superuser. Finally, fetch may hold sensitive data,
such as credentials for file servers and proxy servers. With
many potential vulnerabilities and mutually untrusting par-
ties, fetch encapsulates much of the design-space tradeoff of
monolithic applications such as mail readers, web browsers,
and office suites. We use SOAAP to explore two points in the
design space space: compartmentalizing URL parsing and
executing all network code in a single compartment. Using
SOAAP, we validated our hypotheses and simulated perfor-
mance, then implemented the actual compartmentalizations
and compared their behavior with SOAAP’s predictions.

4.1.1 URL parsing
URL parsing is a small fraction of fetch’s code, but it

is a well-known source of vulnerabilities (e.g., CVE-2010-
1663, CVE-2010-2179 and CVE-2012-0641). This makes it
an excellent target for incremental, greedy compartmental-
ization. We expressed this hypothesis by annotating the
function fetchParseURL() with __soaap_sandbox_persistent

and the url struct’s password field with __soaap_classify.
An initial run of SOAAP warns us about global vari-

able accesses. Checking and annotating these global vari-
ables as being accessible to the URL parser, SOAAP sug-
gests we should propagate the value of the global variable
fetchLastErrCode back to the privileged parent, as well as
the value of fetchDebug to the sandbox. SOAAP also warns
about sharing sensitive state between sandbox invocations:



* Variable "u" (fetch.c:345) contains
* sensitive information , but is not
* erased before leaving the sandbox.
* Reusing the sandbox could allow
* another request to access this data.

This compartmentalization is fairly straightforward, as the
sandbox does not require any rights to execute. We must
only ensure that state is propagated between the sandbox
and privileged parent, and to scrub sensitive data before
leaving the sandbox. An implementer would also have to add
cross-domain interactions, including marshalling the URL
string and unmarshalling the returned struct.

We simulate performance and compare it with actual com-
partmentalized performance in Section 4.1.3.

4.1.2 Networking
We also explored the threat model of a malicious server ex-

ploiting HTTP header parsing or OpenSSL to gain elevated
privileges. This can be mitigated by executing network code
in a persistent sandbox. Again, we wish to ensure that sen-
sitive data cannot leak out of the sandbox.

In addition to data dependencies, SOAAP warns us about
system calls that are performed within the sandbox but
which would not be allowed under Capsicum by default:

* Sandbox "net" performs system call
* "connect" but it is not allowed to based
* on current sandboxing restrictions

Capsicum does not allow a sandbox to call connect(), nor
can it be delegated as a capability right. The programmer
must proxy such calls to the privileged parent or else recon-
sider sandbox boundaries. If we rerun SOAAP specifying
chroot as the sandboxing technique, this warning is not pro-
duced. This reflects a tension between security and code
complexity: a less invasive change also gives less security.

SOAAP also warns of potential private data leaks through
extern functions. The first of these leaks is unintentional and
the second is intentional:

* Sandboxed method "fetchParseURL"
* executing in sandboxes: [net] may leak
* private data through the extern function
* "fprintf"

* Sandboxed method "fetch_writev"
* executing in sandboxes: [net] may leak
* private data through the extern function
* "SSL_write"

The first is an illustration of a common but infrequently-
considered source of leaks [29]. The second warning can be
silenced by annotating the intentional flow of data with a
declassify-data annotation (__soaap_declassify).

4.1.3 Evaluating performance simulation
We evaluate SOAAP’s performance simulation by com-

paring it with actual compartmentalized performance. Fig-
ure 3 shows a graph with this comparison.

We manually compartmentalized fetch according to our
hypotheses, using Capsicum as the sandboxing platform.
We fork a persistent sandbox at the start of main() and use
UNIX IPC to send data between the privileged parent and
the sandboxes. For the net sandbox, we proxy the privi-
leged calls identified by SOAAP: connect(), fopen(), stat(),
utimes(), mkstemps(), rename(), symlink() and unlink().
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Figure 3: Overhead of compartmentalization vs. file size.

We tested our compartmentalization by using the ktrace

tool to check for benign attempts at violating the sandbox
policy. To our surprise, we saw violations that were not
detected by an early version of SOAAP:

CALL open(0x801c29100 ,0<O_RDONLY > ,...)
CAP restricted VFS lookup
RET open -1 errno 94 Not permitted in
capability mode

These violations result from calls to getservbyname(), a func-
tion that returns a service entry for a given name and pro-
tocol, and timegm(), a function that converts a time value to
UTC. The implementation of these functions on FreeBSD
read the network services file and UTC time zone file re-
spectively on first call. This is a subtle failure, as any call
before sandbox creation to functions that rely on network
services or the time zone will cause libc to cache copies of
them, making subsequent calls safe even after sandbox entry.

Other implementations of libc make timegm() safe to call
at any time. For example, Solaris libc implements locale
support via shared libraries, with the default C locale and
UTC time zone information compiled into libc by default.
To address this issue, we extended the platform description
with information about sandbox-safe functions.

In Figure 3, compartmentalized versions have the prefix
c- and SOAAP simulations are prefixed with s-. The graph
shows that SOAAP’s simulations are 0.4–0.6 ms less than
the actual performance. This could be due to not simulating
the compartmentalized code in a separate process and thus
incurring less context-switching overhead. One surprising
result is that the c-net compartmentalization is faster than
c-parse when downloading files of size 2048 KB, despite per-
forming significantly more IPC. Using manual source code
instrumentation as well as FreeBSD’s dtrace, we have been
able to determine that this performance anomaly is disk-
IO–related and not associated with either the sandboxing
mechanism or the decomposition strategies implemented.
SOAAP’s simulation, executed on the same system, repli-
cated this anomaly. This unexpected outcome shows that
performance emulation, rather than static model-based pre-
diction, is able to capture non-deterministic performance ef-
fects caused by hardware or the OS.

4.2 Okular: complex compartmentalization
The fetch case study demonstrated the SOAAP tool in

a simple application. We now investigate using SOAAP to
add compartmentalization to something much larger: Oku-
lar, the document viewer of the KDE desktop environment.
Okular is around 80KLOC (plus 4MLOC from external li-
braries that were also analyzed).



Figure 4: Okular compartmentalization: grey code executes
with ambient authority; green code is sandboxed.

Okular has a modular structure with rendering plugins
(“renderers”) for each supported document format. We de-
cided to use this plugin interface to draw the compart-
mentalization boundary, which allows us to support both
sandboxed and unsandboxed plugins. Okular currently has
16 different renderers and we do not wish to have to add
sandboxing support to all of them simultaneously. This
highlights one of the key requirements for a tool such as
SOAAP: aiding incremental compartmentalization. For this
case study we focused on the commonly-used PDF renderer.
This renderer is implemented using the libpoppler library,
which has had 38 known vulnerabilities [35] in the last 10
years. Of these, 19 are code execution vulnerabilities.

In the case of fetch, we were able to annotate a single
function as the sandbox entry point. This was not possi-
ble here because Okular dynamically loads renderer plugins
at run time – which equates to creating a single C++ ob-
ject that implements the Okular::Generator interface. Our
proposed sandbox scope would be to include every member
function of that class and the base classes. As this was not
easily expressible with the existing SOAAP annotations, we
introduced a new __soaap_sandboxed_class(name) annotation
to annotate the PDFGenerator class.

One interesting issue found by SOAAP was that the KDE
translation system may lazily load a shared library when
translating messages into certain languages. The dlopen()

call will fail when in the sandbox, however as the library
is not required for most languages, this error is unlikely to
be observed when using dynamic analysis or testing. This
problem of lazy initialization was also encountered when
compartmentalizing fetch (see Section 4.1.3) for the calls
to getservbyname() and timegm().

These findings, as well as the broken rhosts support in
OpenSSH (see Section 4.3), show that static analysis with
SOAAP can find compartmentalization errors that other-
wise might go unnoticed for years. However, being able to
find compartmentalization bugs caused by lazy initialization
can come at the cost of an increase in false positives. When
analyzing Okular, SOAAP showed 9 false positives due to
lazy initialization that performs I/O but which had already
been executed before entering the sandbox. There was also
one such finding that was a legitimate issue. The PDF ren-
derer would lazily attempt to load a configuration file from

within the sandbox. These issues demonstrate that lazy ini-
tialization is a real anti-pattern when compartmentalizing
applications as it must be ensured that all the initialization
code has run before the sandbox is entered.

By moving libpoppler into a sandbox we have not only
removed code with a history of vulnerabilities from the TCB
but also reduced the total amount of code that runs at full
privileges by over 180,000 lines – which is more than the
whole Okular source tree with 80,000 lines.

We have now submitted our changes, created with the
benefit of SOAAP, to the upstream Okular project for re-
view. The changes amount to fewer than 2,500 lines. Of
these 2,500 lines, 1,800 are adding new classes required
for proxying the calls to Okular::Generator functions to the
sandbox running in a separate process. Almost all other
changes are related to moving classes from .cpp files to .h

files so that the serialization code can access the required
fields. The only changes to the existing source were 30 lines
to enable loading of sandboxed renderers and 100 lines to the
PDFGenerator class. Figure 4 provides a visualization of the
implemented compartmentalization. Green indicates code
within a sandboxed compartment and grey is ambient code.

Compared to the ad-hoc nature of the OpenSSH privilege
separation which introduced changes across many files, the
use of object oriented interfaces makes it possible to have
almost all code related to compartmentalization in one lo-
cation (in this case the proxy class that implements the re-
quired interface). This makes it much easier to reason about
the correctness of the compartmentalization than in a large
C program without a modular design.

4.3 OpenSSH: long-term maintenance
OpenSSH [36] has had privilege separation since 2002,

with gradual refinements over time, making it an excellent
case study for long-term compartmentalization maintenance
using SOAAP. Of particular concern is the risk of silent se-
curity regression: previously mitigated vulnerabilities might
become unmitigated, confidentiality goals might no longer
be met, or performance overhead might become intolerable.
A recent example [2] is a bug discovered in NetBSD’s pkgsrc
patch for sshd that mistakenly disabled privilege separation
on all platforms except Interix. The intention was the op-
posite but this error was only detected nine years later!

OpenSSH uses a two-stage sandboxing strategy: a com-
pletely unprivileged process prior to authentication called
preauth followed by a process running with the rights of the
authenticated user, called postauth [36]. Table 5a shows
several releases of OpenSSH, from the latest version (6.8)
back to the first privilege-separated version (3.2.2). For each
version, we annotated the sandboxing boundaries, past vul-
nerabilities, confidentiality requirements, cross-domain com-
munication, assertions of functions that should only run
privileged and those that should only run sandboxed.

We observed that OpenSSH’s compartmentalization has
not changed significantly over time, supporting our supposi-
tion that such maintenance is difficult in practice. We also
discovered functionality that had silently regressed due to
compartmentalization. For example, by applying SOAAP
to OpenSSH v3.2.2 we discovered that the preauth sand-
box was performing multiple stat() calls on rhosts files in-
side auth_rhosts2_raw(). As this sandbox runs in a chroot

environment, these accesses would always fail, breaking
RhostsAuthentication when compartmentalization was en-



Ver. Year LOC Functions Annotations
P/S/P&S CDC Assert Vuln. All

3.2.2 2002 43.6K 197/454/84 80 64 23 192
3.5 2002 45.4K 200/454/83 88 67 34 211
3.7 2003 48.7K 212/463/90 113 73 34 247
5.3 2009 63.8K 367/667/182 117 75 58 287
6.0 2012 73.9K 433/691/196 117 76 65 298
6.5 2014 82.6K 578/764/251 117 76 68 308
6.8 2015 96.7K 617/880/276 117 74 65 300
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Figure 5: (a) Table showing OpenSSH code changes between versions. P: privileged; S: sandboxed; CDC: cross-domain
communication. (b) Graph showing the number and types of SOAAP warnings across OpenSSH versions.

abled. This was never fixed, but rhosts-based authentication
was already a vestigial feature by the time OpenSSH came
into widespread use and it was removed in v3.7.

We were able to carry our the initial annotations forward
with only trivial merge conflicts. However, shown in Ta-
ble 5a, SOAAP reports that the ratio between total code
and code executing in sandboxes has decreased from 69%
to 59% — the TCB has been getting larger. One major
change is the use of multiple sandboxing platforms such as
seccomp-bpf (added in 6.0) and Capsicum (added in 6.5).

We also examined the change in SOAAP’s warnings across
OpenSSH versions, shown in Figure 5b. We looked at un-
mitigated vulnerabilities, system call warnings and functions
that execute outside their intended domains. System call
warnings tell us which system calls are not permitted by a
given sandboxing platform. SOAAP correctly warned about
stat() calls, and these warnings disappeared when rhosts

support was removed in 3.7. We also see the warnings drop
when Capsicum support was added in 6.5. Along with the
rise in privileged code, SOAAP shows us that there is a cor-
responding rise in the number of unmitigated vulnerabilities.

SOAAP also gave insights into how the execution of code
annotated as being privileged or sandbox-only has changed
over time. Sandbox-only code (likely to be riskier) executes
almost only in sandboxes whereas privileged code is increas-
ingly being executed in sandboxes. If the security policy
for the sandbox is not correctly defined, the sandbox could
perform operations it is not supposed to. Conversely, if the
policy is correct then privileged operations will fail.

4.4 Chromium: analysis scalability
We tested SOAAP’s scalability by applying it to the

Chromium web browser [37], a large, complex, compartmen-
talized application with a history of security vulnerabilities
and a variety of vulnerability mitigation techniques. We
used SOAAP’s risk annotation and data-flow analysis ca-
pabilities to investigate the separation of “risky” code and
data from each other. We were able to observe at least one
instance in which risky code could be exposed to risky data,
potentially leading to critical security vulnerabilities as have
been previously reported in released versions of Chromium.

4.4.1 Risky code
The Chromium web browser, which is the open source

variant of Google Chrome, has complex security require-
ments and incorporates code from many sources. In addi-
tion to core browser code written by Google and community
developers, Chromium incorporates code from vendors and

open-source libraries with varying security track records.
For instance, the WebKit rendering framework has suffered
over 200 publicly-reported security vulnerabilities since it
was spun off from the KHTML framework [1], and through
a dedicated fuzzing effort, Google security developers found
over one thousand security vulnerabilities in the FFmpeg
media libraries in the span of a year [17]. Code that has
previously suffered from multiple vulnerabilities often deals
with the interpretation of complex data and is therefore an
excellent candidate to be compartmentalized and isolated
from privilege and ambient authority (see Section 2.3).

SOAAP facilitates reasoning about the exposure of
risky code by allowing developers to annotate previously-
vulnerable code. We identified risky code in Chromium by
searching Chromium’s historical bug database for security
vulnerabilities in extant code. Due to constant code churn,
many historic vulnerabilities applied to code that no longer
exists. However, we did find 21 historic Chromium vulnera-
bilities that have been patched and made public but applied
to extant code in the WebKit rendering engine, Skia graphics
library, FFmpeg media transcoder, v8 JavaScript engine and
internal HTTP or URL handling code. From these vulner-
ability descriptions, we annotated ten previously-vulnerable
functions (__soaap_vuln_fn) and 18 locations within other
functions that were previously vulnerable (__soaap_vuln_pt).
These annotations are a machine-readable formalization of
a common practice in the Chromium code base: referencing
bug IDs from comments in source code. We found 1,803 in-
stances of such references within C++ comments, some of
which we were able to formalize with SOAAP annotations:

__soaap_vuln_pt("Cr issue #425035");
CHECK(HasBeenSetUp ()); // crbug.com /425035

Annotating the locations of previous vulnerabilities allows
SOAAP to statically enumerate the call graphs of risky code.
Chromium is designed to execute risky code inside compart-
ments, using platform-specific compartmentalization tech-
nologies. To analyze the effectiveness of Chromium’s sand-
boxing, we needed to expose the details of the compart-
mentalization scheme to SOAAP. We re-implemented the
sandboxing model using Capsicum [42] and found it to
be an excellent fit for the compartmentalization models of
both SOAAP and Chromium: the Linux compartmental-
ization requires 13,821 lines of code and Windows requires
28,239, but the Capsicum model requires only 406 lines of
source code and two sets of SOAAP annotations. The first
was a pair of annotations (__soaap_sandboxed_region_start
and __soaap_sandboxed_region_end) within RendererMain to
expose the extent of the sandbox. The second was
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Figure 6: Simplified SOAAP-generated call graphs of unmitigated (red) and mitigated (yellow) vulnerabilities in Chromium.

base::trace_event::TraceEvent::AppendPrettyPrinted( [...])

cc::TracedPicture::AppendAsTraceFormat( [...])

trace_event_impl.cc:785 (libbase.a.bc)

SkMask::computeImageSize() co [...])
[[Cr issue #10736]]

ChromeMain

SkDraw::DrawToMask(SkPath con [...])

SkDraw.cpp:2260 (libskia_library.a.bc)

main

chrome_exe_main_aura.cc:17 (chrome.bc)

Figure 7: A simplified call graph produced by SOAAP that
demonstrates how a previously-vulnerable function can be
called from main in an unsandboxed (i.e., privileged) context.

a __soaap_limit_fd_syscall annotation to describe how
Chromium limits a sandbox’s authority on particular file
descriptors according to the Capsicum model.

After annotating Chromium to describe both its risky
code and its compartmentalization strategy, SOAAP was
able to statically check which risky functions could be exe-
cuted outside of a sandbox. The results, shown in Figure 6,
are surprising at first glance: almost all of the risky functions
are executed in both the privileged browser process and the
least-privileged renderer process. For example, debug trac-
ing in the privileged browser process can call a previously-
vulnerable image parsing function within Skia, as shown in
Figure 7. However, this static call graph does not tell the
whole story of code and data risk.

A reliance on static call graphs can lead to large num-
bers of false-positive results. Figure 7 does show that the
previously-vulnerable function SkMask::computeImageSize()

might execute outside of the sandboxed renderer process,
but if it only computes the sizes of browser chrome images
distributed by Google, there is a much lower risk than if it
is exposed to content from arbitrary web pages. In order
to better understand the real risk of running risky code, we
added risky data annotations and combined the above static
call graphs with SOAAP’s information flow analysis.

4.4.2 Risky data
In addition to annotating risky (previously-vulnerable)

code, we also annotated risky data: data that is obtained
from the network and which may therefore be dictated by an
attacker. We annotated Chromium’s net::URLRequest::Read

method, telling SOAAP to treat the read buffer as private
to the renderer sandbox:

bool Read(__soaap_private("renderer")
IOBuffer* buf ,
int max_bytes , int* bytes_read);

We then enabled SOAAP’s information flow tracking to
determine all of the locations where this network-originated
data was accessed outside of a sandbox. SOAAP detected
1.88 M such accesses, a number too large to manually sift for
false positives. We are able to cope with this scale of problem
in two ways. First, our SOAAP graph manipulation tools
are able to compute useful operations on combined call/data
flow graphs, such as intersections to a certain depth and
leaf node filtering. For example, we can trace back a fixed
number of calls or data flows from a vulnerability or private
data access to compute a set of ancestor nodes, then only
include that node in the new intersection graph if it shares
at least one ancestor with the ancestors of another graph.
This allows us to reduce the graph of all private accesses to
the graph of private accesses (risky data) that occur in some
proximity to a previously-vulnerable function (risky code).

The result of intersecting the vulnerability and private-
access graphs is still too large for manual exploration. Such
exploration was important when iteratively investigating lo-
cations for network data annotation (net::HttpStreamParser,
net::HttpNetworkTransaction, net::URLRequest, etc.). There-
fore, for initial data exploration, SOAAP is able to treat
private accesses probabilistically. We found that randomly
selecting 0.01% of private access allowed us to perform ex-
ploratory data analysis and rapidly identify suspicious data
flows. We then filtered large graphs by leaf nodes (vulner-
abilities or private accesses) to produce the simple call and
data-flow graphs shown in Figures 8 and 10 (see Section A).

Using SOAAP’s static call graphs of previously-vulnerable
code, information flow propagation analysis, sandbox an-
notations, graph intersection and filtering, we were able
to identify network-tainted data (risky data) flowing to
previously-vulnerable functions (risky code). For example,
Figure 8 depicts a highly elided call and data flow graph that
shows resources loaded by URL and presented to MIME type
detection code that has suffered security vulnerabilities in
the past. This is precisely the type of interaction that appli-
cation authors might prefer to occur within a least-privileged
compartment; SOAAP makes it visible to the authors so
they can take appropriate mitigation steps.

After intersection and filtering SOAAP graphs, we still en-
countered many false positives caused by Chromium’s var-
ied network use. For instance, Chromium’s HTTP and URL
handling code is used both to retrieve data from the network
and to manage transport between its privileged and unpriv-
ileged components. We saw many data flows from, e.g.,
net::HttpStreamParser to code in the remoting::protocol

namespace, and then on to previously-vulnerable WebKit
code. We view this as a false-positive result: it is part of a
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was annotated with __soaap_vuln_pt due to a previous critical security vulnerability (see http://crbug.com/239580).
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Figure 9: SOAAP’s run time is similar to that of linking the
Chromium bitcode using llvm-link. With a restricted set of
private-access annotations, leading to 28 detected private ac-
cesses, it is 0.68 that of llvm-link. With the annotation used
in Section 4.4.2, which causes 1.8 M private access warnings,
the run time is 1.48 times that of llvm-link.

carefully-managed interaction between browser components
for the purpose of enabling compartmentalization.

Such false positives could be managed by introducing
more selective annotations, e.g., on content::ResourceLoader

rather than the general-purpose net::URLRequest, but our
goal in this work was to explore as many variations of data
flowing to risky code as possible. That is, we had very little
tolerance for false negatives, so we erred on the side of false
positives and developed tools to cope with them.

4.4.3 Performance
As a whole-program analysis, SOAAP’s run-time cost

when targeting Chromium is comparable to other whole-
program LLVM-based tasks. Figure 9 compares the run
time of four whole-program compilation and analysis tasks:
linking Chromium’s object files and static archives into an
executable ELF binary, linking its individual LLVM IR ob-
ject files into a complete bitcode file with llvm-link, run-
ning SOAAP with some private data accesses and running
SOAAP with the annotations described in Section 4.4.1.

The following measurements were performed on a sys-
tem running FreeBSD 10.1-RELEASE-p16, with a ZFS ARC
(adaptive replacement cache) of 20–60 GiB (out of a total of
128 GiB of system RAM) and no memory pressure: the en-
tire working set was able to fit into the ARC rather than be
retrieved from disk on-demand. Our system has dual Xeon
E5-2667v3 CPUs with 32 logical processors, but SOAAP
does not currently exploit their parallelism.

Figure 9 shows, as we would expect, that linking
Chromium as a 985 MiB LLVM bitcode file is slower than
linking a 141 MiB ELF executable. LLVM IR is a higher-
level representation with explicit types and other informa-
tion that is not included in machine code. SOAAP’s run-
time cost is either just over or just under this LLVM linking
time, depending on the complexity of the data flows that
SOAAP must track. Loading this 985 MiB bitcode file into
memory required over 10 GiB of memory, approximately the
same amount of memory required by llvm-link. Processing
the class hierarchy, finding sandboxes and adding informa-
tion about previous vulnerabilities pushed memory usage
to just over 12 GiB, and adding the details of 1.5 M pri-
vate accesses increased memory usage to just over 14 GiB.
The difference in run time between the two SOAAP cases in
Figure 9 is due to the private accesses that were detected,
according to the _soaap_private annotations that were ap-
plied. The outcome of SOAAP’s analysis was a 978 MiB
JSON file that we initially explored with jq [12] and finally
processed with our SOAAP graph manipulation tools.

Combining SOAAP’s sandbox, vulnerability and data flow
annotations allowed us to detect the interaction of risky code
and risky data outside of least-privileged compartments, cre-
ating risk for Chromium’s users. These complex analyses
can be used to immediately inform application authors of
potential risks and inform their decisions about where to in-
vest compartmentalization effort. Even on a large, complex

http://crbug.com/239580


Program Version LOC Running time (secs)
IR Null Vuln. Correct Info All

fetch r252375 5K 1.17 0.05 0.05 0.06 0.06 0.06
OpenSSH 3.2.2 44K 3.8 0.3 0.3 0.3 0.3 0.3
OpenSSH 6.8 96K 8.7 1.15 1.15 1.15 1.15 1.15

Okular e03e6f 4.2 M 2970 14.28 14.66 14.73 14.74 15.37
Chromium 42 13.1 M 7300 195 261 2156 1028 3048

Table 2: The running times of various SOAAP modes of execution for each of our case studies.

piece of software such as Chromium, SOAAP was able to
produce these data in eight minutes, or approximately the
time required to link Chromium as LLVM bitcode.

4.5 SOAAP tool performance
Table 2 shows the time taken to run SOAAP on each of

the case studies in three different modes. These modes are
selected to correspond to different stages in the development
cycle for compartmentalized applications:

Vulnerability analysis checks which of the annotated
vulnerabilities would be mitigated within sandboxes. This
mode is used for the first cut at describing a sandbox, to
check that dangerous code is not run with ambient authority.

Sandbox correctness checks whether each of the sand-
boxes tries to access resources (global variables, system calls,
and so on) without being explicitly granted capabilities for
them. This mode is used to check that all of the communica-
tion between sandboxes is explicit. Once a program passes
this mode, all points that need modifying are annotated.

Information flow analysis is the final check, which en-
sures that sensitive information is not leaked between sand-
boxes. This is the final step before implementing a chosen
compartmentalization strategy, which checks that the secu-
rity goals are met. This also includes the same checks as the
vulnerability analysis and would be run as part of a contin-
uous integration build to check for sandboxing regressions.

We distinguish between the cost to compile to LLVM IR
and the cost to perform the initial analysis setup of loading
the IR and building a call graph. We represent these as the
two modes IR Compilation and Null analysis.

We also focus on the Chromium case study, as the one with
the longest running time, to provide more detail on where
the time is being spent. Table 2 shows a breakdown of the
SOAAP run according to the time spent in different phases
of the analysis, generated from a profiling build of SOAAP.
Note that there is some potential for optimization here, for
example 10% of the total time is spent on formatting JSON
output and 35% on reading in the LLVM IR. These can
both be improved, for example by constructing the JSON
concurrently with the main thread and by demand-loading
the LLVM IR from separate files using some of the infras-
tructure for more efficient link-time optimization support in
LLVM that is currently under development at Google [39].

5. FUTURE WORK
SOAAP has proven to be a useful tool for analyzing and

compartmentalizing programs in our environment. A natu-
ral next step would be to investigate fully automated com-
partmentalization – which requires significantly more work
than a simple analysis tool: RPC stubs must be generated,
and current false positives and negatives in analysis will be-
come actual bugs in generated code. Another valuable ex-

ploration would be wider deployment of SOAAP into the
software development community; with increasing adoption
of the Clang/LLVM suite in the FreeBSD community, and
that community’s heavy use of the Clang static analyzer as
part of regular tinderboxing, it is easy to imagine a “tinder-
sandbox” that regularly reviews sandboxing tradeoffs and
checks that past and new vulnerabilities are properly miti-
gated. This notion of integrating SOAAP into a continuous
integration cycle, as is done with other types of static anal-
ysis (e.g., Coverity Prevent) and testing seems promising.

6. RELATED WORK
The principle of least privilege and other security goals

(such as protecting integrity, confidentiality, and avail-
ability) were enumerated in Saltzer and Schroeder’s 1975
article, The Protection of Information in Computer Sys-
tems. Karger’s 1987 article on Trojan horse mitigation [19]
lays the conceptual groundwork for privilege separation,
and later application compartmentalization, which became
mainstream techniques applied to system-level applications
in the early 2000s, with Provos’s work on OpenSSH [36],
and Kilpatrick’s Privman [20]. Application compartmental-
ization is applied to user-level applications by Gong et al. in
Java [13], Reis et al. in the Chromium web browser [37],
and by Watson et al. in Capsicum [42] – where the focus
is on intra-application security concerns rather than system
privileges. All of these projects have reported difficulty in
applying compartmentalization to C-language applications;
we draw particularly on our own experience in developing
Capsicum. The interfaces between separated components
have also been studied for their security implications – in
particular, those of cryptographic security APIs [4], whose
lessons are also applicable to general-purpose compartmen-
talization. The analysis of Beurdouche et al. [6] suggests
the need for further compartmentalization of the client and
server sides of OpenSSL and JSSE to mitigate surprising
compositional vulnerabilities.

Brumley and Song’s Privtrans [9] and Bittau et al.’s
Wedge [7] explore techniques for assisting programmers in
identifying and exploiting compartmentalization opportuni-
ties. Privtrans takes a code-oriented view, focusing on di-
viding operation between privileged and unprivileged pro-
cesses through program annotation, whereas Wedge relies
on programmer-provided memory type information. Har-
ris et al.’s secure programming by parity games [16] reasons
about the defense characteristics of Capsicum compartmen-
talization, representing policies as automata.

SOAAP benefits from the object-capability philosophy
explored in HYDRA [23] and rigorously extended by
Miller [28]. It is also comparable to Miller et al.’s or Met-
tler et al.’s imposition of object-capability semantics on Java
in DarpaBrowser [40] or Joe-E [27] – albeit in the uncon-



strained execution environment of UNIX processes rather
than a type-safe and already object-oriented language, and
so requiring the imposition of an object-oriented structure.
SOAAP incorporates decentralized information flow-control
techniques [34], past vulnerability information, and source-
code risk analysis, allowing object-capability boundaries to
align with critical security constructs in the application and
its libraries. Rather than implementing separation policies,
SOAAP is an exploration tool for programmers who may
not fully understand the code that they are separating, rec-
ognizing the complexity of large-scale applications.

Software decomposition for robustness (and sometimes se-
curity) has a long history, seeing early exploration in mi-
crokernel designs [24], but performance concerns have dis-
couraged widespread use. Growing compartmentalization
reflects two changes: improvement in hardware performance,
and a pressing need for vulnerability mitigation. Klein et
al.’s SeL4 microkernel [21] offers a contemporary take on
microkernel design, achieving both performance and high as-
surance as a compartmentalization substrate. Hardware vir-
tualization extensions can support more efficient separation
via hypervisors [33], and extensions to the process model
such as Belay et al.’s Dune [5]. Research architectures such
as CHERI [43] may support vastly more scalable compart-
mentalization in the future. SOAAP’s model and analy-
sis spans a broad range of compartmentalization substrates,
and can assist developers in making safe and effective use of
new facilities as they become mainstream.

7. CONCLUSION
Application compartmentalization is a key vulnerabil-

ity mitigation technique that addresses a broad range of
known (and unknown) attack vectors. Despite increasingly
widespread deployment, it is also an approach that is rife
with subtlety: we have demonstrated that developers are
challenged by the need to develop and maintain compart-
mentalizations that adequately trade off correctness, secu-
rity, complexity, and performance. SOAAP’s conceptual
framework, and practical tools, have assisted us in analyzing
current compartmentalizations, and develop new ones, with
greater understanding and confidence. SOAAP is scalable
to multi-million LoC code bases, and we are hopeful that
this approach will facilitate greater deployment of compart-
mentalization as a strong mitigation feature.

8. AVAILABILITY
For further details, refer to an extended version of this

paper [14]. Our prototype is available as open source:

https://www.cl.cam.ac.uk/research/security/ctsrd/soaap/
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A. ADDITIONAL GRAPH DETAIL

Figure 10 provides a larger example of a call and data
flow graph emitted by SOAAP tools than could be included
in Section 4.4. This particular graph is an example of a
false-positive result that was obtained by annotating a low-
level networking method that is used by several Chromium
subsystems, not just communication with remote hosts.
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Figure 10: An example of a false positive result (cropped to fit: we have elided nine calls and eight flows). Here, data flows from
URLRequest::Read towards previously vulnerable code, which we deem to be “risky” code. However, these data flows go through
IPC interfaces that are used for communicating between the browser and renderer processes. Rather than exposing privileged
code to arbitrary data, this data flow passes highly constrained data for the purpose of enabling compartmentalization.
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