
Safe Speculation for CHERI
Franz A. Fuchs∗, Jonathan Woodruff∗, Peter Rugg∗, Alexandre Joannou∗,

Jessica Clarke∗, John Baldwin‡, Brooks Davis†,
Peter G. Neumann†, Robert N. M. Watson∗, Simon W. Moore∗

∗Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
†SRI International, Menlo Park, CA, USA ‡Ararat River Consulting, Ashland, VA, USA

{franz.fuchs, jonathan.woodruff, peter.rugg, alexandre.joannou}@cl.cam.ac.uk
{jessica.clarke, robert.watson, simon.moore}@cl.cam.ac.uk
{neumann, brooks}@csl.sri.com john@araratriver.com

Abstract—We present an architectural Capability Speculation
Contract (CSC) for CHERI implementations, test for violations in
the CHERI-Toooba microarchitecture, and develop and evaluate
a conforming implementation. The CHERI capability instruction-
set extension promises proven architectural guarantees for mem-
ory safety and pointer provenance. However, superscalar and
out-of-order CHERI implementations will need to contend with
microarchitectural transient-execution side-channel attacks. To
ensure the safety of all CHERI implementations, we articulate
CSC: a universal architectural speculation contract for the
CHERI architecture that maintains key capability invariants in
speculation. We then develop tests against sub-classes of CSC, and
discover violations in CHERI-Toooba that lead to a new class of
transient-execution attacks, Meltdown-CF (Capability Forgery)
for which we develop a user-mode exploit that allows reads of
secret data. We then develop strategies to fully enforce CSC in
CHERI-Toooba. We find that simplistic, strong enforcement in-
curs a low performance overhead of only 3.43% in SPECint2006
benchmarks, with promise for more optimal designs in the future.
Our architectural recommendations to mitigate Meltdown-CF
have been accepted by the upstream CHERI architecture and
are included in current CHERI-RISC-V drafts for ratification.

Index Terms—transient-execution attacks, instruction-set ar-
chitectures, testing, guarantees, microarchitecture, CHERI

I. INTRODUCTION

CHERI (Capability Hardware Enhanced RISC Instructions)
extends instruction sets with unforgeable, bounded pointers to
augment ring and page-table memory protection [1]. CHERI
instruction sets constrain each memory access to the intended
object, and have been formally proven to compartmentalize
a program within the set of pointers it possesses [2]. The
promise of CHERI protection has inspired experimental Arm
and RISC-V extensions. Arm’s Morello is a CHERI research
prototype SoC that with a 4-way superscalar, out-of-order

This project was supported by the NCSC under the UK RISE Initiative.
This work was supported in part by the Engineering and Physical Sciences
Research Council EP/S030867/1. The authors gratefully acknowledge support
from Arm Limited. This work was sponsored by the Air Force Research
Laboratory (AFRL) and by the Defense Advanced Research Projects Agency
(DARPA) under Contracts No. FA8750-24-C-B047 (“DEC”), HR0011-18-C-
0016 (“ECATS”), and HR0011-22-C-0110 (“ETC”). Any opinions, findings
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the Air Force
Research Laboratory (AFRL) or the Defense Advanced Research Projects
Agency (DARPA). Distribution Statement A: Approved for public release:
distribution is unlimited. For the purpose of open access, the author(s) has
applied a Creative Commons Attribution (CC BY) license to any Accepted
Manuscript version arising.

pipeline enables research and evaluation [3]. CHERI-RISC-
V is in the process of being ratified, and has been announced
in a commercial product [4].

Since 2017, researchers have repeatedly demonstrated
transient-execution attacks bypassing traditional architectural
security mechanisms such as privilege rings and address space
separation [5]–[13], and also specialized security architectures
such as pointer authentication [14] and enclaves [15]. It is
abundantly clear that superscalar, out-of-order CHERI imple-
mentations will need to consider how to maintain CHERI
guarantees in the face of transient-execution attacks.

Prior work on Hardware-software contracts [16] and Archi-
tectural Speculation Contracts [17] have laid the groundwork
for specifying how hardware should be constrained to allow
safe reasoning about speculation without unduly limiting per-
formance. In this paper, we define the Capability Speculation
Contract (CSC) to provide similar protections for CHERI
implementations.

In this paper, we investigate how the contract can be tested
and enforced using the CHERI-Toooba implementation. This
process demonstrates the utility of an architecturally defined
contract to constrain the limits of speculative execution; the
CSC specification with the test generator was sufficient to
expose serious transient-execution violations and support the
development of a safe implementation.

We make the following contributions:

• We define the Capability Speculation Contract (CSC)
for CHERI capability enforcement in speculation, while
allowing high-performance implementations.

• We develop a suite of test generators in the TestRIG
framework [18] to test critical aspects of CSC, and
discover violations in CHERI-Toooba.

• We describe Meltdown-CF, a new family of transient-
execution vulnerabilities for CHERI implementations.

• We develop a working Meltdown-CF exploit in a user
process in CheriBSD, breaking CHERI’s spatial memory
safety guarantees in CHERI-Toooba.

• We design a mitigation strategy for Meltdown-CF that
includes adjusting the CHERI-RISC-V architecture to
clear tags on illegal capability manipulations rather than
throw exceptions. This change is included in drafts for
ratification.

• We implement this protection in CHERI-Toooba.



• We further implement SinglePCC, enforcing safe bounds
for the program counter. This provides complete enforce-
ment of CSC in CHERI-Toooba.

• We compare both safety properties and performance cost
of the modified CHERI-Toooba implementation against
Arm’s Morello prototype microarchitecture. Despite be-
ing a simplistic implementation that reduces logic com-
plexity, our modification incurs only 3.43% cycle over-
head for full CSC enforcement compared with Morello’s
10.7% cycle overhead for (unintentional) partial CSC
enforcement.

II. BACKGROUND

A. CHERI

CHERI has been recognized in a recent White House
report “Back to Building Blocks: A Path Toward Secure and
Measurable Software” [19], which highlights memory safety
as a key tenet to improve security. CHERI executables rely on
hardware-supported spatial safety for stack, heap, and global
objects, with heap temporal safety also built on top of the
capability guarantees [20].

CHERI capabilities double pointer size; for a 64-bit address,
CHERI adds 64 bits of compressed bounds and permission
metadata as shown in Figure 1. Capabilities not only describe
a region of address space, but also authorize access according
to the permissions field. Each 128-bit word has a hidden
validity tag (a 129th bit) to distinguish a valid capability from
data; these tag bits are stored atomically with capabilities,
both in registers and in memory. CHERI supports sealed
capabilities, which are immutable and are used for software
compartmentalization among other use cases.

063

perms’16 experimental bounds’27

address’64

 128 bits

Fig. 1: Bit representation of a 128-bit capability.

Memory cannot be addressed without a valid capability.
Furthermore, capability register-to-register operations never
increase the privilege of a capability, and would-be violations
must either clear the validity tag or throw an exception. These
two properties imply that execution is entirely constrained to
the memory addresses authorized by the capabilities in the
register file and to those transitively reachable through them.

CHERI defines general-purpose capability registers used
for data access, and also the Program Counter Capability
(PCC) used for instruction access. A pure-capability pro-
gram represents all pointers using capabilities; each access
is constrained to its intended object, providing intra-process
protection. Programs can also be constrained to a subset of
the address space by limiting the capabilities provided to them.
This natural compartmentalization offers promise for isolating
untrusted components in both the kernel (e.g., drivers or
Berkeley Packet Filter programs) or userspace programs (e.g.,
JavaScript or application plugins). The promise of CHERI

protection has inspired experimental MIPS, RISC-V, and Arm
extensions, with the latter being developed into an ASIC in
the Arm Morello research project [3]. While there have been
formal proofs of the CHERI protection mechanism [2], these
proofs are confined to the architectural level and explicitly
do not consider information leaks via timing channels from
transient execution or otherwise.

B. Hardware-Software Contracts

In Hardware-Software Contracts for Secure Speculation,
Guarnieri et al. present a framework for specifying contracts
that guarantee memory safety properties for programs running
on a simple speculation-aware model of a processor [16].
Revizor [21] tested Hardware-Software contracts using an
expanded speculation model on sophisticated out-of-order x86
processors which were able to detect a set of transient-
execution vulnerabilities. One of the greatest challenges of
this work was to sanitize the test bench such that execution
approximated their simplified model of execution, exposing
that the model used in their work was missing many of the
possibilities of an actual implementation. This work produced
a promising demonstration that the safety of programs can
be proven with respect to a model of speculative execution.
However, we believe that the full potential of this approach re-
quires a model of speculative execution that is collaboratively
developed with processor implementors and enshrined in the
architecture.

C. Architectural Contracts for Safe Speculation

Fuchs et al. present a framework for contracts for safe
speculation on the instruction-set architecture level [17]. They
research the feasibility of testing and enforcing contracts for
the most common forms of speculation in general-purpose
ISAs. These Architectural Contracts architecturally formalize
the computation models required to reason about Hardware-
Software Contracts so that implementations can target a con-
crete set of guarantees. These contracts are carefully designed
to align with the common case of current high-performance
microarchitectures; performance is not generally impacted,
although certain corner cases are disallowed in speculation
if their security implications are difficult to reason about.

This style of contract need not reason about side-channels,
which are perhaps impossible to fully enumerate. Instead, it
prevents private information from entering the core where
computation might leave traces for a side-channel attack.

III. THREAT MODEL

Conventional architectures usually define their security
model over two primitives: privilege rings and address spaces.
CHERI additionally defines in-memory capabilities equipped
with permissions and bounds information.

The microarchitecture of a processor should enforce the
memory-protection mechanisms of its ISA specification.
Threat models for such processors assume an attacker who
can execute arbitrary bit patterns, but is nonetheless expected
to be entirely constrained to reading and writing memory



mapped in its address space and accessible in its ring. While
side-channels were previously excluded from the de-facto
mainstream threat model, Spectre and Meltdown combined
side-channel attacks and transient-execution [5], [6] to achieve
arbitrary read access. These prompted a large-scale response
from both software and hardware, demonstrating clearly that
the threat model for processor vendors has shifted to include
transient-execution attacks [22].

Throughout this paper, we therefore assume a threat model
where an attacker has arbitrary code execution and can observe
timing information, e.g., through the cache hierarchy, and other
side channels to exfiltrate information. The attacker and the
victim are architecturally isolated using CHERI capabilities,
preventing explicit reads and writes of code or data. We
assume that the victim is not collaborating with the attacker,
as in the case of a covert channel. Given these restrictions,
we do not expect any secret of the victim to be observable to
the attacker through transient execution; no visibility of failed
speculation in the attacker can reveal a secret from the victim.

We recommend addressing this threat model by adding
contracts to the instruction-set architecture that constrain ca-
pability speculation (in the style of Architectural Speculation
Contracts [17]) to allow reasoning about CHERI program
safety on all implementations. Such capability architectural
contracts both enable microarchitectural threat models and
support enforcement of software threat models. For microar-
chitectures, the speculation contract embodies the transient-
execution threat model, enabling testing and even formal
verification against clear properties. For software, the spec-
ulation contract provides basic building blocks that allow
reasoning about software security against transient-execution
attacks with respect to their higher-level threat model.

Definitions

We will use the following terminology in our contracts:
a) Committed Register State: Our contract for capa-

bility speculation argues about the committed register state in
a processor. While determining the committed register state
in an in-order processor is easy, this is not as straightforward
in an out-of-order processor. We define a value part of the
committed register state if the instruction producing this value
is non-squashable. A non-squashable instruction is guaranteed
to commit, but might not be at the Commit pipeline stage yet.
This definition allows us to construct a capability contract
with security guarantees, but equally permits for as much
microarchitectural design freedom as possible.

b) Issued Memory Accesses: An issued memory access
is allowed to return data at any level. For example, memory
accesses might find data in the load queue, the store buffer, or
the L1 data cache. If the address selects data on any of these
levels, we consider the memory access issued. For example,
in an out-of-order processor, when a cached memory address
is delivered to the load queue, the operation is allowed to
proceed to index various structures, including the store queue,
the store buffer, and the L1 data cache.

IV. A CAPABILITY SPECULATION CONTRACT (CSC)

To ensure safe, high-performance CHERI implementations,
we must define an architectural contract for safe speculation
with CHERI capabilities. In CHERI, bounds and permissions
checks must not only be safe in non-faulting, in-order execu-
tion, but also in transient, faulting execution [23], [24]. CHERI
invariants include:

• CHERI capabilities are unforgeable; capabilities are de-
rived only from capabilities of greater or equal privilege.

• Memory can be addressed only through a capability
describing and authorizing access to that address.

The first requirement is naturally enforceable in speculation,
as pipelines generally forward values that are legitimately
calculated from register state. The second requirement is
also naturally enforceable, as capability metadata is bundled
with the address and can be verified before issuing requests
to memory. These two requirements together give rise to a
powerful emergent property we call the Capability Speculation
Contract (CSC):

Capability Speculation Contract (CSC)

All instruction and data-memory accesses issued in spec-
ulation must be authorized by capabilities either:

1) in the committed register file;
2) in memory transitively reachable through 1.

In other words, a CHERI processor should act – even in
speculation – only with rights transitively reachable from its
architecturally committed register file. CSC does not forbid
speculation on capabilities, but it does forbid using specu-
latively manipulated capabilities that cannot be found in the
architectural register file and its transitive closure. As with
previous speculation contracts [17], CSC obviates side-channel
concerns by preventing memory accesses to illegal addresses
from being issued. This approach prevents illegal data from
entering the core before it might be exfiltrated by a side-
channel.

CHERI capabilities separately authorize data access and
instruction fetch, so we may distinguish between data-CSC
and instruction-CSC.

Data-CSC requires aggressive enforcement of both memory
bounds and capability provenance (i.e., the valid derivation of
capabilities). Checking bounds before data-memory access is
reasonable and can be done in parallel to memory translation,
which must also succeed before the access is issued [17].
Capability provenance is also reasonable to enforce, as data
values are generally forwarded results of a valid data flow
from the committed register state.

Instruction-CSC enforcement is challenging, as instruction
addresses are generally predicted with no dependency on com-
mitted register state. Nevertheless, instruction-CSC is highly
desirable, as it leverages the PC bounds metadata provided
by CHERI executables to constrain execution to the current
compartment.



Instruction-CSC and data-CSC are closely related, and a
violation of one can lead to a subsequent violation of the other.
For example, code capabilities usually also allow loading data
with an example demonstrated in Section VII-B. Therefore,
enforcement of both forms of CSC is highly desirable in high-
performance CHERI implementations.

V. SECURITY EVALUATION

We must evaluate our contracts ability to enforce CHERI’s
security guarantees in the face of transient execution. Pub-
lished CHERI guarantees comprise: bounds, permissions,
encapsulation, provenance validity, monotonicity, and in-
tegrity [1].

The Capability Speculation Contract (CSC) does not ar-
gue directly about speculative capability rights, but rather
about speculative memory accesses. CSC states that mem-
ory accesses must be authorized by architectural capabilities
(i.e., capabilities in the committed register state), but does
not otherwise limit the existence of illegal capabilities in
speculation. While this freedom is likely to be appreciated
by microarchitects who are optimizing for performance, we
must be certain that CSC is sufficient. Consider the following
example:

1 cincoffset ca0, ca1, a0
2 clb a0, 0(ca0)

This CHERI-RISC-V assembly code loads a byte from
an array at an offset (i.e., arr[i] in C). Following our
contract, cincoffset ca0, ca1, a0 is permitted to
speculatively produce an illegal capability, e.g., using sophisti-
cated value prediction [9]. This speculation, however, must be
resolved before clb a0, 0(ca0) (a load byte instruction
through a CHERI capability) accesses memory in order to
avoid violating CSC by issuing an illegal memory access. This
level of constraint must be sufficient to enforce all expected
CHERI security properties.

CHERI Bounds and permissions primarily relate to memory,
and direct violations of these cases (e.g., an out-of-bounds
load) are trivially excluded by CSC. The remaining category
of permissions and bounds control types and sealing. It could
be possible to transiently manipulate permissions to allow
unsealing without causing an illegal memory access. However,
the only advantage of an unsealed capability is to access
memory, which is prevented by CSC. Therefore, even an
illegally unsealed capability cannot expose new data to the
core unless it can by used to access memory.

Provenance validity ensures that valid capabilities are al-
ways derived from other valid capabilities; integrity ensures
that all such derivations are valid, in particular enforcing
monotonicity such that derived capabilities never have greater
privilege than their forbears. Similarly to above, if no memory
access is allowed through fabricated or expanded capabilities,
then no advantage can be gained from transiently possessing
provenance-breaking or non-monotonic capabilities.

Encapsulation is the mechanism CHERI provides for soft-
ware compartmentalization, and relies on sealing permissions

ALU

Fetch Execute Commit

Fetch 1

Fetch 2

Fetch 3

Decode

FPU 

ALU

n/2

n

MEM

Rename

n

Commit

D $

TLB

I $

BTB

R
e
o
rd

e
r 

B
u
ff

e
r

IQ 

IQ IQ 

IQ 

R
e
g

is
te

r 
Fi

le
/F

o
rw

a
rd

in
g

ALU/CAP

widened for capabilities

R
e
g

is
te

r 
Fi

le
/F

o
rw

a
rd

in
g

ALU/CAP

R
e
o
rd

e
r 

B
u
ff

e
r

MEM

BTB

Fig. 2: Pipeline diagram of CHERI-Toooba with n=2.

mentioned above. Changing compartments enables both ex-
ecuting instructions and accessing data from the new com-
partment, both of which require memory access. Thus, an
attacker cannot gain any advantage by unsealing code and data
transiently without violating CSC.

Thus, the memory-centric specification of CSC is sufficient
to uphold CHERI security guarantees while allowing transient
register-to-register violations. Incidentally, however, the path
we took for microarchitectural enforcement of data-CSC was
to guard all capability transformations as discussed in Sec-
tion IX. This is not likely to be true for all microarchitectures,
as extra performance can be gained from optimistically for-
warding a result before all checks at the cost of the complexity
of validating checks before issuing the memory request.

VI. CHERI-RISC-V EVALUATION PLATFORM

In this work, we use CHERI-Toooba [25] for our exper-
iments and evaluation. Toooba is a branch of RiscyOO – a
parameterizable superscalar out-of-order RISC-V core written
in Bluespec SystemVerilog [26] – that has added compressed
instructions, a debug unit, and prefetching. CHERI-Toooba
adds support for the CHERI-RISC-V instruction-set exten-
sion [1]. All general-purpose registers and datapaths have
been extended by Rugg et al. to support full 128-bit CHERI
capabilities [27]. We configure CHERI-Toooba with a commit-
width of two instructions per cycle with an out-of-order win-
dow of 64 instructions. In this configuration, CHERI-Toooba
employs two integer pipelines, one floating-point pipeline, and
one memory pipeline. The L1 instruction and data cache are
each 32KiB and 8-way associative. The L2 last-level cache has
a capacity of 1MiB and is 16-way associative. The CHERI-
Toooba pipeline diagram is depicted in Figure 2. The CHERI-
RISC-V project currently supports two FGPA platforms for
research: the VCU118 board as well as the DE10Pro board.

VII. HARDWARE TESTING

For any speculation contract to be useful, it must be verifi-
able during hardware development. We evaluate the testability
of CSC using generators in the TestRIG framework [18],



which injects instruction sequences into CHERI-Toooba and
collects traces of the resulting execution, allowing assertions
on its behavior. The assertions used in this testing approach
are asserting that architecturally visible state does not change
during the execution of a test. If the architecturally visible
state changes, a violation of a constraint has been found.

A. Data-CSC Testing

To test data-CSC, we developed a single TestRIG generator
that was able to produce examples of all known data-CSC
violations in the CHERI-Toooba core. This generator arranges
for the data-cache miss counter to indicate accesses not
authorized by capabilities in the committed register file. Each
sequence starts with a full reset, which clears all caches. A
prelude then prepares a capability granting access to a single
word of memory, and loads that word. Henceforth, any cache
misses will indicate a memory access not allowed by this
capability. A random stream of capability instructions is then
fed to the processor, followed by a read of the data-cache miss
counter. If the counter shows unexpected misses, a violation
is reported.

The three initialized operand registers used in the examples
below are:

• rOneWord: The original, 1-word capability
• rInvalid: A capability pointing to another location, but

with the tag cleared
• rDest: The destination register of all instructions, and the

address of any loads
A register operand used as a capability will be prepended

with “c”, e.g. cDest. One counterexample our generator dis-
covered was:

CBuildCap

1 lb.cap rDest, cDest[0]
2 cbuildcap cDest, rInvalid, cInvalid
3 lb.cap rDest, cDest[0]

While the first lb.cap is waiting to commit, CBuildCap
transiently constructs a valid capability from an untagged value
and loads through that capability. The load through the forged
capability will miss the L1 data cache and thus increase the
miss counter indicating a violation.

In addition, this generator produces counterexamples for
variants of CSetBounds as well as CUnseal and CInvoke that
illegally dereference sealed capabilities in transient execution.

Analysis of Data-CSC Violations

These data-CSC violations allow trivial circumvention of
capability protection using transient execution. Allowing fault-
ing addresses to proceed to issue memory requests is a
classic Meltdown-style vulnerability, similar to forwarding
data during a page permissions fault in the original Meltdown
attack [5]. Thus, we dub this new family of transient-execution
vulnerabilities Meltdown-CF: Meltdown Capability Forgery.

The data-CSC violations in CHERI-Toooba are due to
loading through forwarded capabilities without accounting for

exception checks. Several crucial CHERI exceptions require a
full bounds check, which is not performed until the cycle after
the execution result has been forwarded, as shown in Figure 3.

R
e
g
is
te
rF
ile

ExeALU
CapMod

speculative
capability
values

trap
code

FinishALU
CapCheck R

e
o
rd
e
rB
u
f

Fig. 3: The CHERI-Toooba ALU with late exception checks.

To enforce data-CSC, an implementation must either per-
form all capability checks before forwarding the register result,
or must develop a new mechanism to prevent issuing memory
operations that depend on a pending capability check. We
evaluate the seriousness Meltdown-CF with a user-level exploit
in a pure-capability process on CheriBSD in Section VIII, and
present as well as evaluate a solution in Section IX-A.

B. Instruction-CSC Testing

Instruction-CSC is violated if we execute instructions not
allowed by the committed PCC and register state. Our
instruction-CSC counterexample generator trains the BTB with
a sequence of jumps within a PCC with permissive bounds.
It then restricts the bounds of PCC and executes a similar
sequence to trigger mispredictions with permissive bounds.

Instruction-CSC is defined to allow any instruction to be
fetched, but we must detect if CSC-violating instructions are
executed. In our generator, we used the auipcc instruction,
which copies the current PCC into a register, as a portable
mechanism for observing PCC in Execute without requiring
special-purpose counters. We found this counterexample:

1 cjalr x0, x23
2 auipcc x25, 0
3 lb.cap x24, x25[0]

This counterexample triggers a misprediction with cjalr,
and then with auipcc loads the current PCC into a register.
This capability is then used to perform a load (lb.cap)
– allowing us to count unexpected data cache misses. This
strategy violates data-CSC using an instruction-CSC violation.

Analysis of Instruction-CSC Violations

CHERI-Toooba violates instruction-CSC due to predicting
the entirety of PCC, including the bounds and permissions.
While this design minimizes performance overhead relative to
the base Toooba microarchitecture, it allows transient execu-
tion into foreign compartments. Two microarchitectural solu-
tions for solving instruction-CSC violations are presented with
implementations and performance overheads in Section IX-B.

C. Evaluation of Instruction Generators

Our test generators are reasonably efficient at discover-
ing CSC counterexamples. As described in Section VII-A,



cb
ui

ld
ca

p

cs
et

bo
un

ds

cs
et

bo
un

ds
ex

ac
t

cs
et

bo
un

ds
im

m
ed

ia
te

cu
ns

ea
l

ci
nv

ok
e

0.10% 0.05% 0.20% 0.20% 0.20% 1.80%

TABLE I: Distribution of sequences that produce counterex-
amples for the data-CSC generator during 2000 runs. Overall,
2.55% of runs produced a counterexample.

the data-CSC generator produces the six classes of coun-
terexamples listed in Table I, with an overall probability of
2.55% of discovering a counterexample for any sequence in
2000 runs. The skew towards the CInvoke counterexamples
can be explained by a bias in the shrinking mechanism of
TestRIG [18]. The instruction-CSC generator produced one
class of counterexamples with a chance of 0.35% measured in
2000 runs.

In this section, we presented a guided testing approach for
the CSC. We have validated our findings with a full transient-
execution attack presented in Section VIII. Furthermore, we
have conducted manual inspection of the HDL code and code
to better understand our findings and to discover whether
there could be other sources of CSC violations. While we
did not find additional sources of violations, our testing is
not exhaustive and might have potentially missed some cases.
This is future work, which has to formally specify contracts
and then can exhaustively test them.

VIII. MELTDOWN-CF ATTACK

In this section, we present a successful Meltdown-CF attack
on the CHERI-RISC-V platform we used for the previous
evaluation.

A. Attack Setup

We ran all our experiments on the CHERI-Toooba platform
presented in Section VI. Our goal in this attack is to show how
Meltdown-CF can break spatial memory safety on CHERI [1]
in a vulnerable implementation. We execute two protection
domains in the same address space, which is a common use
case for CHERI processors [28]. In this attack, one domain
attempts to access the memory of the other domain without
having a valid capability to it.

B. Conducting the Attack

We selected the cbuildcap variant of Meltdown-CF for
this demonstration, though we could have used any other vari-
ant presented in Section VII to demonstrate that we can break
CHERI’s spatial memory safety in speculation. Our approach
is to illegally build a capability from bits in speculation, i.e.,
without deriving it legally from any valid capability. We then
use this capability to illegally access memory through this
forged capability and encode it in the cache side channel.

First, we assemble the bit pattern of the capability by
simply writing two 64 bit data words to memory to produce
an invalid, untagged capability. We then load these 128-bits

into a capability register, and feed it to cbuildcap with an
insufficient authorizing capability. When running on CHERI-
Toooba, the hardware optimistically sets the tag and forwards
this capability in the pipeline, as explained in Section VII-A.
We then use this forwarded capability and access the memory.
Next, we encode the data through the cache by accessing an
array and probing it later.

Normally, executing the illegal cbuildcap instruction
non-speculatively would lead to an exception that terminates
the process. In order to sustain a long-running attack, we take
inspiration from previous Meltdown-style attacks and embed
the code in an if statement [29]. This way, the cbuildcap
exception occurs only in control-flow misspeculation, and thus
will not lead to process termination on an exception. The core
of the attack code is depicted below:

1 meltdown_cf:
2 clb t0, 0(ca1) // load variable to ←↩

branch on
3 blt x0, t0, end // branch mispredicted ←↩

to next instruction
4 cbuildcap ct1, ca1, ca0 // generate ←↩

speculative capability
5 clb t2, 0(ct1) // load secret
6 and t2, t2, a6 // apply bit mask to get←↩

subset of secret
7 sll t2, t2, a7 // shift secret to ←↩

achieve cache line granularity
8 cincoffset ct2, ca5, t2 // add offset ←↩

to probing buffer
9 clb t2, 0(ct2) // transmit secret via ←↩

load to buffer
10 end:
11 cret // return to caller

We are conducting a classical flush+reload attack. First,
we need to have a high signal-to-noise ratio for the cache
side channel. This required evicting all cache lines of our
side-channel buffer, which needed particular care due to lazy
allocation of pages by the operating systems as well as
compiler optimizations. Second, we need to ensure that the
misprediction of the if statement guarding the cbuildcap
instruction is resolved as late as possible. Thus, we make the
if statement dependent on a load that will miss all caches.

In Figure 4, the steps of the Meltdown-CF attack presented
in this section are summarized.

C. Evaluation

We ran our attack on CHERI-Toooba with the CheriBSD
operating system. We measured a reading rate of approxi-
mately 1.4 bytes/second for our attack, with an error rate
of 0%, which means that we read out the correct secret in
every attack run. On an industry-scale processor, we expect
our attack to significantly scale up in speed compared to our
FPGA platform. Our attack demonstrates that Meltdown-CF
vulnerabilities can be applied to running CHERI systems in the
field. Our attack or similar ones can be used to considerably
harm CHERI applications running on vulnerable processors.



Secret

Branch cond
variable

Flush & Reload
Buffer

Secret

Branch cond
variable

Flush & Reload
Buffer

Secret

Branch cond
variable

Flush & Reload
Buffer

1 2 3

Secret

Branch cond
variable

Flush & Reload
Buffer

4

Encoded
secret

Victim
domain

Attacker
domain

Fig. 4: This figure summarizes the steps for the Meltdown-CF
attack. The first diagram shows the system in the start state,
where the attacker and victim are in two different protection
domains. In the second diagram, the access to the branch
condition variable will miss all caches to delay resolution of
misspeculation. In the third diagram, the attacker creates a
speculative capability covering the memory where the secret
is stored. In the final diagram, the attacker accesses the secret
and transmits it by loading a cache line.

IX. CSC ENFORCEMENT

Our TestRIG generators found that CHERI-Toooba had
multiple violations of both data-CSC and instruction-CSC. In
this section, we demonstrate that enforcing CSC in CHERI-
Toooba is possible at full performance.

A. Data-CSC Enforcement

CHERI-Toooba is vulnerable to Meltdown-CF due to for-
warding capabilities before exception checks. The CHERI-
Toooba exception check is split into two pipeline stages:
ExeALU and FinishALU as depicted in Figure 3. Result
values are forwarded from ExeALU, accelerating the common
case, but the exception is reported in FinishALU, marking the
instruction for cancellation at Commit. While a safer imple-
mentation could be imagined, faulting instruction semantics
generally imply a speculative result with a late flush, so it
is likely that other implementations would follow the same
dangerous pattern.

We propose to change the CHERI-RISC-V specification
to clear tags on capability violations to suggest microar-
chitectures that conform to data-CSC, preventing Meltdown-
CF vulnerabilities. This implies that implementations should
reflect failure atomically in the forwarded result, removing
the opportunity for transient, illegal capability. To implement
tag-clearing semantics in CHERI-Toooba, we moved the entire
exception check to the ExeALU stage so that forwarded tag of
the result could reflect any error conditions. We verified using
our data-CSC TestRIG generator that this change eliminated
all known Meltdown-CF violations. This modified design did
not change resource utilization, e.g., the VCU118 implementa-
tion, had a mean increase of +0.86% for look-up table (LUT)
usage and a mean decrease -0.5% in FF usage for the cores
within the range of synthesis variation. Our implementation
of this change did not introduce cycle delays under any

circumstances, and therefore does not affect performance.
While this design passing timing at 25MHz on the VCU118
prototype and at 50MHz on the DE10 prototype, a high-
performance ASIC implementation may need to implement
rare capability operations using multiple cycles.

We responsibly disclosed our discovery of Meltdown-CF
to the CHERI-RISC-V team and the Arm Morello team. The
CHERI-RISC-V team responded by transitioning the CHERI-
RISC-V specification to tag-clearing semantics to increase
robustness against transient-execution attacks. A version of
CHERI-RISC-V with our proposed tag-clearing semantics is
now in the process of being ratified by RISC-V International.
The Morello team had inadvertently already taken this ap-
proach in their specification for consistency with the Arm
architecture, but reviewed their in-progress microarchitectural
design.

B. Instruction-CSC Enforcement

Instruction-CSC constrains what instructions can be exe-
cuted to those that lie within capabilities in the committed
state of the register file, e.g., the program-counter capability
(PCC). However, CHERI-Toooba stores the bounds of previ-
ous PCC targets in the Branch Target Buffer (BTB) and freely
predicts PCC bounds when the Fetch stage encounters a jump.
This provides ideal performance, but leads to violations of
instruction-CSC, as foreign targets with their own bounds are
reintroduced from the BTB. Another solution to this problem
in an in-order core is predicting only the address of PCC and
forwarding the bounds from the last-executed branch. This is
possible because the bounds of PCC are not needed in the
early stages of the pipeline, such that bounds can be read
and checked in the Execute stage of the pipeline when all
previous jumps have executed. Thus, an in-order core can
forward PCC bounds for efficiency and performance, while
incidentally enforcing instruction-CSC.

For superscalar out-of-order pipelines such as CHERI-
Toooba, a straightforward, safe, and efficient strategy to en-
force instruction-CSC is to simply predict that the bounds of
the PCC did not change. If we allow only those instructions
to execute that lie within the PCC written by the latest-
executed branch (which in turn must be derived legally ac-
cording to data-CSC), then an implementation will comply
with instruction-CSC.

We call this implementation strategy SinglePCC, illustrated
in Figure 5. We removed bounds from all program-counter
state everywhere in the pipeline and replaced them with a
single PCC register. Any logic in the pipeline that needs
the complete PCC simply appends the bounds from the PCC
register to the current instruction address, thus speculating that
the bounds of PCC have not changed. Any jump to a capability
with different bounds will trigger a flush at the Commit stage
to ensure all older instructions commit with the correct bounds.
We verified that this design eliminates known instruction-CSC
vulnerabilities using our TestRIG generators.

We synthesized the SinglePCC design for two FPGA
boards: the VCU118 board and the DE10Pro board. Sin-



ALU

Fetch Execute Commit

Fetch 1

Fetch 2

Fetch 3

Decode

FPU 

ALU

n/2

n

MEM

Rename

n

Commit

D $

TLB

I $

BTB

R
e
o
rd

e
r 

B
u
ff

e
r

IQ 

IQ IQ 

IQ 

PCC
Bnds

PCC bounds

Decode
PCC √

R
e
g

is
te

r 
Fi

le
/F

o
rw

a
rd

in
g

ALU/CAP

widened for capabilities
R

e
g

is
te

r 
Fi

le
/F

o
rw

a
rd

in
g

ALU/CAP

R
e
o
rd

e
r 

B
u
ff

e
r

MEM

Fig. 5: CHERI-Toooba with SinglePCC prediction, n=2.

-10%

0%

10%

20%

30%

40%

50%

bz
ip2

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum h2

64
om

ne
t

as
tar

xa
lan

c

Arith
. M

ea
n

Morello CHERI-Toooba SinglePCC

Fig. 6: SPECint2006 cycle overhead of Morello bounds
forwarding and CHERI-Toooba with SinglePCC over full-
prediction baseline.

glePCC simplifies the design by deriving all instances of
PCC bounds in the pipeline from a single register, reducing
register and LUT elements used. We measure a reduction
of approximately 4.89% for LUTs on both boards as well
as 5.48% and 6.67% fewer registers on the DE10Pro board
and VCU118 board respectively. This constitutes a significant
reduction in area, eliminating over 15% of the logic required
to add CHERI support to the Toooba core [27].

We compare with Arm’s Morello implementation of
CHERI, which takes a version of the bounds-forwarding
approach, but in a superscalar out-of-order pipeline. Unfortu-
nately, PCC readers in Morello must block until the previous
jump is executed, causing delay in many common cases. While
transient-execution vulnerability mitigation was not a design
goal for Morello, this design partially enforces instruction-
CSC by preventing wild PCCs from being used for data access,
but still allows wild execution.

Figure 6 compares the cycle overhead of SinglePCC, which
fully enforces instruction-CSC, against Morello’s bounds for-
warding. The overhead for Morello’s bounds forwarding is
measured using an unsafe compiler workaround that uses

Ex
tra

 fl
us

he
s p

er
 1

00
0 

in
st

ru
ct

io
ns

0

2

4

6

8

bz
ip2

go
bm

k

hm
mer

sje
ng

lib
qu

an
tum h2

64
om

ne
t

ast
ar

xa
lan

c

Arith
. M

ean

Fig. 7: Extra pipeline flushes due to capability jumps that
change bounds when using SinglePCC in SPECint2006 with
distinct bounds for each dynamically loaded library.

legacy integer jumps in place of pure capability control flow
to eliminate stalls on PCC bounds dependencies [30]. Despite
flushing on every cross-library call, SinglePCC incurs only
3.43% overhead on average, versus 10.7% for Morello’s
bounds forwarding. While a pipeline flush is much more
expensive than a single pipeline dependency stall, reads of
PCC values prove far more common in dynamic execution than
cross-library jumps. Figure 7 shows the number of flushes per
1000 instructions in the benchmarks; only Omnet sees more
than 2 flushes per 1000 instructions, and is the only benchmark
with a cycle overhead greater than 5%. On average, our results
show less than 1.2% extra flushes per 1000 instructions in
SPECint2006.

Future implementations have several options for achieving
greater performance than SinglePCC while still respecting
instruction-CSC. For example, rather than a full pipeline flush
on every change of PCC bounds, we could predict jumps that
would change PCC, and pause the following instructions in
Rename until the jump has committed. Assuming effective
prediction, this should cut cycle overhead in half. Beyond
this, more sophisticated solutions might develop a full bounds
prediction engine that respects committed register state.

CONCLUSION

We have articulated the Capability Speculation Con-
tract (CSC) that precludes transient-execution attacks against
CHERI protection, and have demonstrated complete enforce-
ment at a 3.43% performance loss in a superscalar, out-of-
order implementation, with hope for further optimizations in
the future. Our discovery of CSC violations in the CHERI-
Toooba implementation, resulting in the Meltdown-CF vul-
nerability, is ample proof that such a clearly defined and
testable contract is necessary to develop safe superscalar out-
of-order CHERI processors. This work has paved the way for a
standardized CHERI-RISC-V extension (ratification pending)
with tag-clearing semantics, to encourage implementations that
are safe from Meltdown-CF.



REFERENCES

[1] R. N. M. Watson, P. G. Neumann, J. Woodruff, M. Roe, H. Almatary,
J. Anderson, J. Baldwin, G. Barnes, D. Chisnall, J. Clarke, B. Davis,
L. Eisen, N. W. Filardo, F. A. Fuchs, R. Grisenthwaite, A. Joannou,
B. Laurie, A. T. Markettos, S. W. Moore, S. J. Murdoch, K. Nienhuis,
R. Norton, A. Richardson, P. Rugg, P. Sewell, S. Son, and H. Xia,
“Capability Hardware Enhanced RISC Instructions: CHERI Instruction-
Set Architecture (Version 9),” University of Cambridge, Computer
Laboratory, Tech. Rep. UCAM-CL-TR-987, Sep. 2023.

[2] K. Nienhuis, A. Joannou, T. Bauereiss, A. Fox, M. Roe, B. Campbell,
M. Naylor, R. M. Norton, S. W. Moore, P. G. Neumann et al., “Rigorous
engineering for hardware security: Formal modelling and proof in the
CHERI design and implementation process,” in 2020 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, 2020, pp.
1003–1020.

[3] R. Grisenthwaite, G. Barnes, R. N. Watson, S. W. Moore, P. Sewell,
and J. Woodruff, “The Arm Morello evaluation platform—validating
CHERI-based security in a high-performance system,” IEEE Micro,
vol. 43, no. 3, pp. 50–57, 2023.

[4] “CHERI security technology,” https://codasip.com/solutions/riscv-
processor-safety-security/cheri/, November 2023.

[5] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium, August 2018.

[6] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Sym-
posium on Security and Privacy. IEEE Computer Society, 2019, pp.
1–19.

[7] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. B. Abu-
Ghazaleh, “Spectre returns! Speculation attacks using the return
stack buffer,” in 12th USENIX Workshop on Offensive Technologies,
WOOT 2018, C. Rossow and Y. Younan, Eds. USENIX Association,
2018. [Online]. Available: https://www.usenix.org/conference/woot18/
presentation/koruyeh

[8] G. Maisuradze and C. Rossow, “ret2spec: Speculative execution
using return stack buffers,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
ser. CCS ’18. New York, NY, USA: Association for Computing
Machinery, January 2018, pp. 2109–2122. [Online]. Available:
https://doi.org/10.1145/3243734.3243761

[9] J. V. Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D. Genkin,
Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “LVI: Hijacking transient
execution through microarchitectural load value injection,” in 2020 IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2020,
pp. 54–72.

[10] J. Stecklina and T. Prescher, “LazyFP: Leaking FPU register state
using microarchitectural side-channels,” CoRR, vol. abs/1806.07480,
2018. [Online]. Available: http://arxiv.org/abs/1806.07480

[11] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. V. Bulck, and
Y. Yarom, “Fallout: Leaking data on meltdown-resistant CPUs,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2019, London, UK, November
11-15, 2019, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds.
ACM, 2019, pp. 769–784. [Online]. Available: https://doi.org/10.1145/
3319535.3363219

[12] M. Schwarz, M. Lipp, D. Moghimi, J. V. Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-privilege-boundary
data sampling,” in Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019, L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, Eds. ACM, 2019, pp. 753–768. [Online]. Available:
https://doi.org/10.1145/3319535.3354252

[13] J. Horn, “speculative execution, variant 4: speculative store bypass,”
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, Febru-
ary 2018.

[14] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “PACMAN:
Attacking arm pointer authentication with speculative execution,” in
Proceedings of the 49th Annual International Symposium on Computer
Architecture, ser. ISCA ’22. New York, NY, USA: Association

for Computing Machinery, 2022, pp. 685–698. [Online]. Available:
https://doi.org/10.1145/3470496.3527429

[15] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium, W. Enck and A. P. Felt,
Eds. USENIX Association, 2018, pp. 991–1008. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck

[16] M. Guarnieri, B. Köpf, J. Reineke, and P. Vila, “Hardware-software
contracts for secure speculation,” in 2021 IEEE Symposium on Security
and Privacy. IEEE Computer Society, 2021.

[17] F. A. Fuchs, J. Woodruff, P. Rugg, M. van der Maas, A. Joannou,
A. Richardson, J. Clarke, N. W. Filardo, B. Davis, J. Baldwin, P. G.
Neumann, S. W. Moore, and R. N. M. Watson, “Architectural contracts
for safe speculation,” in 2023 IEEE 41st International Conference on
Computer Design (ICCD). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2023, pp. 578–586.

[18] A. Joannou, P. Rugg, J. Woodruff, F. A. Fuchs, M. van der Maas,
M. Naylor, M. Roe, R. N. M. Watson, P. G. Neumann, and S. W.
Moore, “Randomized testing of RISC-V CPUs using direct instruction
injection,” IEEE Design & Test, 2023.

[19] The White House, “Back to building blocks: A path toward
secure and measurable software,” Tech. Rep., February 2024.
[Online]. Available: https://www.whitehouse.gov/wp-content/uploads/
2024/02/Final-ONCD-Technical-Report.pdf

[20] N. W. Filardo, B. F. Gutstein, J. Woodruff, J. Clarke, P. Rugg, B. Davis,
M. Johnston, R. Norton, D. Chisnall, S. W. Moore, P. G. Neumann,
and R. N. M. Watson, “Cornucopia reloaded: Load barriers for cheri
heap temporal safety,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, pp. 251–268.

[21] O. Oleksenko, C. Fetzer, B. Köpf, and M. Silberstein, “Revizor: Testing
black-box CPUs against speculation contracts,” in Proceedings of the
27th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. New York, NY, USA:
Association for Computing Machinery, 2022, pp. 226–239.

[22] Arm Limited, “Cache speculation side-channels,” Tech. Rep. 2.5,
June 2020. [Online]. Available: https://developer.arm.com/support/arm-
security-updates/speculative-processor-vulnerability

[23] R. N. M. Watson, J. Woodruff, M. Roe, S. W. Moore, and P. G.
Neumann, “Capability Hardware Enhanced RISC Instructions (CHERI):
Notes on the Meltdown and Spectre Attacks,” University of Cambridge,
Computer Laboratory, Tech. Rep. UCAM-CL-TR-916, February 2018.
[Online]. Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-916.pdf

[24] F. A. Fuchs, J. Woodruff, S. W. Moore, P. G. Neumann, and R. N.
Watson, “Developing a test suite for transient-execution attacks on
RISC-V and CHERI-RISC-V,” in Workshop on Computer Architecture
Research with RISC-V (CARRV), 2021.

[25] J. Woodruff, P. Rugg, J. Clarke, F. A. Fuchs, R. S. Nikhil, and M. van der
Maas, https://github.com/CTSRD-CHERI/Toooba, 2024.

[26] S. Zhang, A. Wright, T. Bourgeat, and Arvind, “Composable
building blocks to open up processor design,” in 51st Annual
IEEE/ACM International Symposium on Microarchitecture, (MICRO).
IEEE Computer Society, 2018, pp. 68–81. [Online]. Available:
https://doi.org/10.1109/MICRO.2018.00015

[27] P. D. Rugg, “Efficient spatial and temporal safety for microcontrollers
and application-class processors,” University of Cambridge, Computer
Laboratory, Tech. Rep. UCAM-CL-TR-984, Jul. 2023.

[28] D. Gao and R. N. M. Watson, “Library-based compartmentalisation on
CHERI,” in Programming Languages for Architecture 2023, Orlando,
FL, USA, Jun. 2023.

[29] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in Proceedings of the 28th
USENIX Conference on Security Symposium, ser. SEC’19. USA:
USENIX Association, August 2019, pp. 249–266.

[30] R. N. M. Watson, J. Clarke, P. Sewell, J. Woodruff, S. W. Moore,
G. Barnes, R. Grisenthwaite, K. Stacer, S. Baranga, and A. Richardson,
“Early performance results from the prototype Morello microarchi-
tecture,” University of Cambridge, Computer Laboratory, Tech. Rep.
UCAM-CL-TR-986, Sep. 2023.


