Exploring Memory-Safety Techniques
on a SIMT-style RISC-V GPGPU

Matthew Naylor
University of Cambridge
23 April 2024

CAPcelerate Project (DSbD)

Is memory safety an issue for GPGPUs?

__device void overread () {
int data = Oxdala;
int secret = OxcOde;
int* ptr = &data;
printf("%x\n", ptr[l]);

A study from AMD Research looked at 175
applications from standard benchmark suites

and found 13 kernels with buffer overflows*®
[Erb et al. 2017]

*Incomplete: uses canaries, on global buffers only

Memory safety bugs have been found in several
GPU applications and benchmark suites using
Oclgrind* [Price et al. 2015]

* Slow: an interpreter for SPIR (LLVM IR variant)
* Finds data races, sync issues, as well as mem safety issues

Tool

Oclgrind
cuda-memcheck
clArmour

GMOD

Completeness Overhead

Good Poor
Good Poor
Poor Good

Poor Good

Are these types of bugs exploitable?

Buffer overflows on GPUs can lead to:

data corruption on the stack and heap
control-flow hijacking

code Injection

arbitrary code execution

YYVYY

[Di et al. 2016, Miele 2016, Park et al. 2021]

CHERI on GPGPUs?

CHERI on GPGPUs: Challenges

Problem 1: Adding CHERI to an existing GPU
instruction set & toolchain would be a major effort
(at least for a small research project).

Problem 2: Massively threaded GPUs depend
on a small amount of architectural state per
thread, which CHERI would potentially double.

Recent development: RISC-V GPUs

Simty: generalized SIMT execution on RISC-V

Caroline Collange

Inria

caroline.collange@inria.fr

ABSTRACT

We present Simty, a massively multi-threaded RISC-V processor
core that acts as a proof of concept for dynamic inter-thread vector
ization at the micro-architecture level Simty runs groups of scalar
threads executing SPMD code in lockstep, and assembles SIMD
instructions dynamically across threads. Unlike existing SIMD or
SIMT processors like GPUs or vector processors, Simty vector
izes scalar general-purpose binaries. It does not involve any in
struction set extension or compiler change. Simty is described in
synthesizable RTL. A FPGA prototype validates its scaling up to
2048 threads per core with 32-wide SIMD units. Simty provides an
open platform for research on GPU micro-architecture, on hybrid
CPU-GPU micro-architecture, or on heterogeneous platforms with
throughput-optimized cores.

and programming languages to target GPU-like SIMT cores. Be
side simplifying software layers, the unification of CPU and GPU
instruction sets eases prototyping and debugging of parallel pro
grams. We have implemented Simty in synthesizable VHDL and
synthesized it for an FPGA target.

We present our approach to generalizing the SIMT model in
Section 2, then describe Simty's microarchitecture is Section 3, and
study an FPGA synthesis case Section 4.

2 CONTEXT
We introduce some background about the generalized SIMT model
and clarify the terminology used in this paper.

2.1 General-purpose SIMT

“It does not involve any instruction set extension
or compiler change” [Collange 2017]

What is SIMT?

Execute multiple hardware threads (a warp) in
lockstep (where possible) exploiting regularity
between them, e.qg.

> control-flow regularity
> memory-access regularity
> value regularity

Seminal work on value regularity

Dynamic detection of uniform and affine vectors
in GPGPU computations

Caroline Collange!. David Defour' and Yao Zhang®

Seminal study [Collange 2009] reports:

> 27% of register reads yield the same value for
each thread in a warp (uniform vectors)

> 44% vyield values separated by a constant stride
(affine vectors)

Where does value regularity come from?

In data-parallel programming, each thread typically:

> uses its thread index within a block
> and its block index within a grid

to determine which part of the input to read and which
part of the output to write. For threads in a warp:

> the thread index is affine
> and the block index is uniform
> and uniform/affine vectors often propagate

CHERI on GPGPUs

Idea 1. Completely reuse existing CHERI ISA and
toolchain in a SIMT-style RISC-V GPGPU.

> RISC-V also an existing target for Rust
> RISC-V also likely to support MTE at some point

We can reuse various existing CPU solutions to
memory safety on GPGPUs

CHERI on GPGPUs

Idea 2: Exploit value regularity to reduce register
storage cost of CHERI.

for (i = threadIdx.x; i < len; i += blockDim.Xx)
sum += input[i];

> After compilation, each thread in the block may
hold a different pointer into the input array

> But this pointer will likely have the same
bounds, permissions, etc. in each thread

Which RISC-V GPGPU to use?

Should we build on top of Simty [Collange 2017]
or Vortex [Tine et al. 2021]7

Simty was not reporting benchmark results
Vortex was reporting poor benchmark results
Neither were supporting shared local memory
Neither were exploiting value regularity

VY VY

We decided to develop our own: SIMTight.

VYVYY

A

What is SIMTight?

Single RV32IMAXCHERI streaming multiprocessor
64 warps and 32 threads per warp (2048 threads)
Fully synthesisable (high perf. density on FPGA)
Ships with CUDA-like library and 14 benchmarks
(C++ and Rust versions of both)

C++ benchmarks run purecap without modification

SIMTight exploits value regularity

SIMTight detects uniform and affine vectors in
hardware and exploits them:

> Register file and cache compression
(reducing on-chip storage)

> Parallel affine and vector pipelines
(improving throughput)

> Entirely microarchitectural
(no ISA or compiler changes)

Results

Register file storage requirements

VREF Size Total Storage Compression Cycle Main Memory
(Vector Registers) (Kilobits) Ratio Overhead Access Overhead

1024 1202 1:0.57 1.0% 0.0%
512 672 140.52 1.1% 1.3%
256 407 1.510:19 9.7% 47.9%

D

Reduces integer register file storage by 68%
(178KB per SM) for a geomean 1% cycle overhead

Instruction throughput

B Baseline Parallel Scalar and Vector Pipelines

o
O
>
O
-
()
o
0
o
)
n
L=

> Baseline |IPC often approaches warp size (32)
> Parallel pipelines reduce runtime by 20%
geomean at low hardware cost

Register file compression with CHERI

Il Integer Reg File Capability Meta-Data Reg File

> Rarely need vectors of capability meta-data

> Compressing cap metadata reduces storage
requirement of CHERI by 90%: 26KB per SM
rather 270KB

> Storage overhead of CHERI is 31%

CHERI runtime and area overheads

IEm Baseline

©
c
Lo
=5
2
€90
O><
i

=2

> (Geomean 3% cycle overhead
> (Geomean 5% wall-clock overhead
> Area cost ~ 1 pipelined divider per vector lane

Rust overheads

B C++ (Clang)

D c
n O
=4O
3
€9
S
=2

> Both compilers based on LLVM 18.1.3
> (Geomean 52% cycle overhead
> (No area overhead, of course)

Rust bounds checking costs

B Rust with Bounds Checks Disabled on Local/Global Buffers

Execution
Time

©
()
0
©
=
-
O
<

Rust bounds checks on local and global buffers
introduce a geomean 29% runtime overhead

Future Work

Logic area overhead of CHERI

This has been a challenge in SIMTight:

YYVYY

Hard to avoid a bounds check per lane

Not just one bounds check per lane, but two
Bounds must be decompressed

Sharing decompression cost not easy: uniform
compressed bounds does not imply uniform
decompressed bounds

MTE (Memory Tagging Extension)

> 0On CPUs, drawbacks of MTE occur due to large
numbers of small buffers, leading to colour
reuse and fine granules (4 tag bits per 16 bytes)

> But GPGPU code typically uses a small number of
large buffers

> MTE’s simple bounds check should have very low
area cost per vector lane

Expressiveness

Rust and MTE support memory safety within a
compute kernel

But other mechanisms are needed to isolate

untrusted code, e.qg.
e multitasking of mutually distrusting compute kernels
e calling untrusted code in a third-party library

CHERI can do both, but so far unexplored

Closing remarks

With a RISC-V GPGPU, we can easily reuse
various CPU memory-safety solutions.

On GPGPUs:
> Runtime overhead of CHERI is low, much

lower than Rust
> Storage overhead of CHERI is much lower

than expected
> Logic area overhead of CHERI is notable

Engineering and
Physical Sciences
Research Council

CAPcelerate (EP/V000381/1)

Funded by the Digital Security by Design (DSbD) Programme
delivered by UKRI to support the DSbD ecosystem.

References

Erb et al. 2017] Dynamic buffer overflow detection for GPGPUs
Price et al. 2015] Oclgrind: an extensible OpenCL device
simulator

Di et al. 2016] A Study of Overflow Vulnerabilities on GPUs
‘Miele 2016] Buffer overflow vulnerabilities in CUDA: a preliminary
analysis

[Park et al. 2021] Mind control attack: Undermining deep learning
with GPU memory exploitation

Collange 2017] Simty: generalized SIMT execution on RISC-V
Collange 2009] Dynamic Detection of Uniform and Affine Vectors
in GPGPU Computations

Tine et al. 2021] Vortex: Extending the RISC-V [ISA for GPGPU
and 3D-Graphics

