
End to End Formal Verification
of the CHERIoT-ibex Processor

PROFESSOR TOM MELHAM

2© 2024 University of Oxford

Why FV of RISC-V CHERI Processors?
§ Correctness of the processor implementa1on is

the indispensable founda1on of CHERI.

§ Novelty of the ISA extensions and
microarchitecture mean bugs, innova1on.

§ Full specifica1on in Sail is available - we just
have to get it into the FV tool.

§ RISC-V is rela1vely tractable for formal. Full
proofs, not bounded.

3© 2024 University of Oxford

FV of CHERIoT-ibex
§ Research programme at Oxford to verify

increasingly complex CHERI processors:
- CHERI-RISC-V Flute (FMCAD 2021).
- CHERIoT-ibex (ongoing).

§ RTL implementation of a CHERI ISA based on
LowRISC’s open-source ibex core:
- 32-bit RISC-V microcontroller: RV32IMCB.
- 3 stage pipeline.
- Implements the CHERIoT ISA extension.

§ Comes with CHERIoT Sail
- A complete formal specification of the ISA in

Cambridge’s Sail specification language.

h$ps://www.microso0.com/en-us/research/publica8on/cheriot-rethinking-security-for-low-cost-embedded-systems/

4© 2024 University of Oxford

FV of CHERIoT-ibex
§ Our principles:

- Full coverage of enMre ISA.
- Cover both CHERI extensions and RISC-V part.
- No FV-driven modificaMons to Sail spec.
- Complete proofs, not bounded.
- As “end to end” as possible.
- Regression as fast as possible.

§ Outcomes:
- Found numerous bugs, some serious.
- Higher confidence in correctness/security guarantees.
- New methodology and tools.
- Fully open-source example with permissive license.

- Eventually… a configurable proof kit for RISC-V.
- Maybe… full integraMon of Sail (or similar) into EDA.

§ Research programme at Oxford to verify
increasingly complex CHERI processors:
- CHERI-RISC-V Flute (FMCAD 2021).
- CHERIoT-ibex (ongoing).

§ RTL implementation of a CHERI ISA based on
LowRISC’s open-source ibex core:
- 32-bit RISC-V microcontroller: RV32IMCB.
- 3 stage pipeline.
- Implements the CHERIoT ISA extension.

§ Comes with CHERIoT Sail
- A complete formal specification of the ISA in

Cambridge’s Sail specification language.

5© 2024 University of Oxford

Sail to Verilog Compiler
§ CHERIoT-ibex FV is driving development

of a Sail to Verilog compiler.
§ Cambridge lead – Alasdair Armstrong,

with contribu1ons from Oxford team.

§ This allows Sail specifica1ons – for the
very first 1me – to be used in
commercial, best-in-class formal
verifica1on soNware tools.

§ Overcomes the severe barrier to
produc1vity in previous CHERI RISC-V
verifica1on efforts.

h$ps://www.cl.cam.ac.uk/~pes20/sail/

Sail Verilog

Jasper from Cadence.

6© 2024 University of Oxford

CHERIoT-ibex Sail Specification
§ Purely combina1onal: state in → state out

§ Elaborated size is quite large
- ~20mins to load the enMre thing into Jasper.
- Proofs noMceably slower if everything is included.

§ This means we can’t realis1cally instan1ate the
spec several 1mes.
- Could be improved with be[er abstracMon.
- Or symbolic trajectory evaluaMon!

§ For development, we have a script to carve out
only the instruc1ons we want to work on.

CHERIoT
Sail Verilog

h$ps://www.microso0.com/en-us/research/publica8on/cheriot-rethinking-security-for-low-cost-embedded-systems/

7© 2024 University of Oxford

CHERIoT Pipeline

- No branch predictor by default.
- ExcepMon handling not shown.
- Misaligned memory accesses allowed.
- 16 registers, 16 capability registers by default.
- Pipeline can stall waiMng for memory.

IF IDRVC EX WB

CSRs

LSU

RF

D-Mem

I-Mem

m cyclesn cycles

8© 2024 University of Oxford

Sail Spec Placement
§ Architectural state updated all over the pipeline.

§ The pipeline follower
- Instantiate the spec during ID/EX and compare output of EX and WB

with the compiled specification.
- LSU results decided in advance.
- Data accumulated and carried through the pipeline with instruction.
- Single or multiple points of comparison.

§ Instruction fetch verified separately

IF IDRVC EX WB

CSRs

LSU

RF

D-Mem

I-Mem

Spec CMPCMP

9© 2024 University of Oxford

CHERI Microarchitacture – Data Caching
§ Problem: top_cor, base_cor not cached in the Sail, but cached in CherIoT-ibex.

9

10© 2024 University of Oxford

Solution – Prove a Global Data Type Invariant

IF IDRVC EX WB

CSRs

LSU

RF

D-Mem

I-Mem

11© 2024 University of Oxford

EX

RF

CSRs

LSU

WB

Solution – Analyse the Flow of Capabilities

12© 2024 University of Oxford

RF

Solution – An Inductive Argument, in a Model Checker

13© 2024 University of Oxford

Memory
We’d like to verify under an unbounded liveness assump1on about memory.

§ Memory may respond at any 1me aNer a request.
§ Asser1ons can be set up using the follower.
§ But we’re s1ll struggling to prove them.
§ For now, assume a bounded memory response 1me.

IF IDRVC EX WB

CSRs

LSU

RF

D-Mem

I-Mem

14© 2024 University of Oxford

A Rich Harvest of Bugs
§ Approx. 25 bugs have been found and

reported by the Oxford team.

§ At least 4 bugs break montonicity.

§ At least one bug has a soNware exploit
allowing us to move the bounds of a
capability, breaking CHERI security.

§ Formal has also prompted a discussion
of exactly what, in CHERIoT-ibex, is a
valid capability.

Illegal CLC memory load (breaks monotonicity)
CLC tag bit leak
CSeal otypes
CJALR alignment check
CSEQX memory vs decoded
MTVEC, MEPC legalisaHon
CSC alignment checks
CSC decoding
Store local violaHon
Memory capability layout
PCC.address ≠ PC
CJAL/CJALR differences
Memory bounds check overflow (breaks monotonicity)
CLC tag/perms clearing (breaks monotonicity)
MSHWM/MSHWMB boundary updates 16. tvec_addr alignment (spec bug?)
Sealed PCC
IF overflow
CSetBounds lower bound check (breaks monotonicity)
Countless excepHon priority issues

15© 2024 University of Oxford

Progress to Date

§ All CHERI, memory and some RISC-V ({IRUB}-
TYPE) instruc1ons verified with fully
conclusive unbounded proofs.

- Includes GPRs + CSRs in both excepMon and non-
excepMon cases.

- Memory proofs are under bounded response Mme
assumpMons. The proofs check addresses, write
enable, and write data.

- Includes RISC-V compressed variants, though the
soluMon is hacky.

§ Fetch (PCC) checks and excep1ons, and
instruc1on fetch correctness.

§ IRQ handling.

§ A handful of to-dos:
- SHIFTIOPs (similar to other R-TYPEs)
- MTYPE (multi+div - classic data path)
- CSR / ECALL / MRET / SRET / EBREAK (all fiddly but

certainly doable)
- WFI (unclear how difficult that will be)
- FENCEs (already proving, but essentially as no-ops)

§ How do we know we have proved everything?
- trace equivalence…

§ Next: verify the OS/software stack on top

16© 2024 University of Oxford

Progress to Date
§ Poten1al compiler/tool improvements.

- DAG in-lining (even just on a per instrucMon basis).
- Generated stopats (abstracMons).
- AutomaMc compressed instrucMon spliing.

• Including them increases elaborated size a lot
(lots of repeated logic).

• Map decoded ASTs into uncompressed ASTs,
then execute (reuses the same logic).

- Be[er debuggability (or tools for it).
• Modules and muxes for be[er whys.
• Convert traces into Sail inputs.

- Dealing with RISC-V configurability.

§ All CHERI, memory and some RISC-V ({IRUB}-
TYPE) instruc1ons verified with fully
conclusive unbounded proofs.

- Includes GPRs + CSRs in both excepMon and non-
excepMon cases.

- Memory proofs are under bounded response Mme
assumpMons. The proofs check addresses, write
enable, and write data.

- Includes RISC-V compressed variants, though the
soluMon is hacky.

§ Fetch (PCC) checks and excep1ons, and
instruc1on fetch correctness.

§ IRQ handling.

17© 2024 University of Oxford

The Oxford CHERIoT FV Team

3rd-Year UG Project Pioneer
Ray Lin
Fourth year CS, Oxford

Lead FV Engineer
Louis-Emile Ploix
Second year CS, Oxford

Haolong Wang
MPhil ACS, Cambridge

Anastasia Courtney
MEng CS, Cambridge

Thank You for Listening

