End to End Formal Verification
of the CHERIoT-1bex Processor

PROFESSOR TOM MELHAM

Gaed UNIVERSITY OF
>\ {88)

=’ OXFORD

Why FV of RISC-V CHERI Processors?

= Correctness of the processor implementation is
the indispensable foundation of CHERI.

" Novelty of the ISA extensions and
microarchitecture mean bugs, innovation.

" Full specification in Sail is available - we just
have to get it into the FV tool.

= RISC-V is relatively tractable for formal. Full
proofs, not bounded.

© 2024 University of Oxford

FV of CHERIoT-1bex

" Research programme at Oxford to verify
increasingly complex CHERI processors:

- CHERI-RISC-V Flute (FMCAD 2021). CherloT-ibex: reference implementation of
- CHERIoT-ibex (ongoing). the ISA

January 27, 2023

. . cheriot-ibex is a RTL implementation of CHERI ISA based on
B RTL 1M plementatlon Of a CHERI ISA baSEd on LowRISC's Ibex core. More specifically, cheri-ibex is a 32-bit RISC-V

) . . microcontroller which implements the CheriloT ISA extension in
LOWR I SC >0 pe N-50urce | bex COre. addition to RV32IMCB. Same as the original ibex core, the design

- 32-bit RISC-V microcontroller: RV32IMCB. can be configured either with a 2-stage or a 3-stage pipeline.

- 3 stage pipeline.

J Download Data

- Implements the CHERIoT ISA extension.

https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/

" Comes with CHERIoT Sail

- A complete formal specification of the ISA in
Cambridge’s Sail specification language.

© 2024 University of Oxford 3

FV of CHERIoT-1bex

= Research programme at Oxford to verity = Qur principles:
increasingly complex CHERI processors: - Full coverage of entire ISA.
- CHERI-RISC-V Flute (FMICAD 2021). - Cover both CHERI extensions and RISC-V part.

- No FV-driven modifications to Sail spec.
- Complete proofs, not bounded.
- As “end to end” as possible.

- CHERIloT-ibex (ongoing).

= RTL implementation of a CHERI ISA based on - Regression as fast as possible.
LowRISC’s open-source ibex core:
- 32-bit RISC-V microcontroller: RV32IMCB. » Qutcomes:
- 3 stage pipeline. - Found numerous bugs, some serious.
- Implements the CHERIoT ISA extension. - Higher confidence in correctness/security guarantees.

- New methodology and tools.
- Fully open-source example with permissive license.

= Comes with CHERIoT Sail

- A complete formal specification of the ISA in - Eventually... a configurable proof kit for RISC-V.
Cambridge’s Sail specification language. - Maybe... full integration of Sail (or similar) into EDA.

© 2024 University of Oxford 4

Sail to Verilog Compiler

https://www.cl.cam.ac.uk/~pes20/sail/

Sail ISA models and tooling] . _ o
. > = CHERloT-ibex FV is driving development
Arm-A WS CHERIRISC-V GHERI-MIPS x86 & . . .
- + s 5 of a Sail to Verilog compiler.
r;n—_ CMEO;rle/IIF?M = X g " "
A o N » Cambridge lead — Alasdair Armstrong,

ool Ercontor g ST . with contributions from Oxford team.

e . Documentation
— LaTeX : CHERI-RISC-V

Sequential : -
Emulator (C) \ . fragments E CHERI-MIPS
Sequential / \ i Prover Definitions

Emulator (OCamI)
R RREREEE ' isla SMT

" This allows Sail specifications — for the

ISA Tests / symbolic evalugtor :
Test """""" I . Isabelle . . .
Generation isIa—aZomati{ RM+EM \ \ Ve ry ﬁ rSt tl me o to be used In
e | concurrencyl concurrency . HOL4 | . 5
ool — - commercial, best-in-class formal

S10RJIY Palelausk)

I
+ ISA Security Properties

(Machine-checked proof verification software tools.

Proofs above Ir|s+Coq Condurrent Execution
I
:
[. = Overcomes the severe barrier to
. \ . productivity in previous CHERI RISC-V
Sail mm) \Verilog e L.
verification efforts.
\ % \
L Jasper from Cadence.

© 2024 University of Oxford 5

CHERIoT-1bex Sail Specification

" Purely combinational: state in - state out
4) 4
CHERIOT .
Sail [Verilog = Elaborated size is quite large
- / -
- ~20mins to load the entire thing into Jasper.
- Proofs noticeably slower if everything is included.
" This means we can’t realistically instantiate the
°ce spec several times.
CherloT Sail: formal specification of the ISA - Could be improved with better abstraction.

January 27, 2023

- Or symbolic trajectory evaluation!

This repository contains an implementation of the CHERIoT ISA in
Sail. It contains an executable description of the CHERIOT
instruction set that can be used to build an instruction set

:lrjr::)lz':rand also prove properties of the ISA using Sail's SMT 0 FOr develcpment’ We have a Script to Ca rve Out
ny-ee—— only the instructions we want to work on.

https://www.microsoft.com/en-us/research/publication/cheriot-rethinking-security-for-low-cost-embedded-systems/

© 2024 University of Oxford 6

CHERIoT Pipeline

n cycles m cycles
~~~~~~~~~~~~~~~ ) N
—
I-Mem IF — RVC » ID ¥ EX » WB
4—
_’
' CSRs
- No branch predictor by default.
AEn Precictorby S LSU
- Exception handling not shown. - -~
- Misaligned memory accesses allowed.
- 16 registers, 16 capability registers by default. . D-Mem
- Pipeline can stall waiting for memory.
RF

© 2024 University of Oxford 7



Sail Spec Placement (5pe)
pec )
= Architectural state updated all over the pipeline.
—
I-Mem IF ——{ RVC » ID ¥ EX » WB
4—
_’
CSRs
" The pipeline follower - LSU
- Instantiate the spec during ID/EX and compare output of EX and WB S 4

with the compiled specification.
- LSU results decided in advance.
- Data accumulated and carried through the pipeline with instruction. — D-Mem——-
- Single or multiple points of comparison.

" |nstruction fetch verified separately RF

© 2024 University of Oxford 8



CHERI Microarchitacture — Data Caching

" Problem: top_cor, base cor not cached in the Sail, but cached in CherloT-ibex.

// Decompressed (execute) capability type
typedef struct packed {
logic valid;
// Compressed (regFile) capability type _‘Og}c :EXP—W'l G): <XP
Logic |ADDR W :0) top33;
typedet struct packed { logic [ADDR W-1 :0] base32;
logic valid; logic [OTYPE W-1 :0] otype;
logic [1:0] top_cor; logic [PERMS W-1: 0] perms;
logic [1:0 base cor; logic [1:0] top cor;
logic [EXP W-1 O] exp; logic [1:0] base cor;
logic [TOP W-1 :0] top; logic [TOP_W-1 0] top;
logic [BOT W-1  :0] base; togic [BOT W-1 :0] base;
logic [OTYPE W-1 :0] otype; _.og}c :CPERMS_W-I:(D_ cperms,
logic [CPERMS W-1:0] cperms; -091¢ :31'0] maska;
Logic [31:0] rien;
} reg_cap_t; } full cap t;

9

© 2024 University of Oxford 9



Solution — Prove a Global Data Type Invariant

I-Mem IFF 1 RVC » ID "  EX » WB




Solution — Analyse the Flow of Capabilities

LSU

l

WB

A

I

CSRs » EX
J_ y

RF




Solution — An Inductive Argument, 1n a Model Checker

logic rf_s; // Internal state satisfies DTI

| assign rf_s = regCapSatsDTI(rf_cap_ql[1], rf_reg_q[l]) &
(X k&

regCapSatsDTI(rf_cap_ql31], rf_reg_ql31]);

logic rf_in; // Input satisfies DTI
assign rf_in = regCapSatsDTI(wcap_a_i, wdata_a_i);

logic rf_a, rf_b; // Output satisfies DTI
assign rf_a = regCapSatsDTI(rcap_a_o, rdata_a_o);
assign rf_b = regCapSatsDTI(rcap_b_o, rdata_b_o);

DTIInt_Rf: assert property (rf_s & rf_in |=> rf_s);
DTIExt_Rf: assert property (rf_s |-> rf_a & rf_b);
DTI_Rf: assert property (rf_s):;

© 2024 University of Oxford 12



Memory

We'd like to verify under an unbounded liveness assumption about memory.

~~~~~~~~~~~~~~~~~ J e T
—
-Mem IF ¥ RVC ¥ 1D yEX » WB
4—
_}
| CSRs
= Memory may respond at any time after a request. W Lsu
= Assertions can be set up using the follower. 1 1
" But we're still struggling to prove them. L D-Merm
* For now, assume a bounded memory response time.
RF

© 2024 University of Oxford 13

A Rich Harvest of Bugs

= Approx. 25 bugs have been found and
reported by the Oxford team.

" At least 4 bugs break montonicity.

= At least one bug has a software exploit
allowing us to move the bounds of a
capability, breaking CHERI security.

" Formal has also prompted a discussion
of exactly what, in CHERloT-ibex, is a
valid capability.

© 2024 University of Oxford 14

lllegal CLC memory load (breaks monotonicity)

CLC tag bit leak

CSeal otypes

CJALR alignment check

CSEQX memory vs decoded

MTVEC, MEPC legalisation

CSC alignment checks

CSC decoding

Store local violation

Memory capability layout

PCC.address /' PC

CJAL/CJALR differences

Memory bounds check overflow (breaks monotonicity)
CLC tag/perms clearing (breaks monotonicity)
MSHWM/MSHWMB boundary updates 16. tvec_addr alignment (spec bug?)
Sealed PCC

IF overflow

CSetBounds lower bound check (breaks monotonicity)
Countless exception priority issues

Progress to Date

= All CHERI, memory and some RISC-V ({IRUB}-
TYPE) instructions verified with fully
conclusive unbounded proofs.

- Includes GPRs + CSRs in both exception and non-
exception cases.

- Memory proofs are under bounded response time
assumptions. The proofs check addresses, write
enable, and write data.

- Includes RISC-V compressed variants, though the
solution is hacky.

" Fetch (PCC) checks and exceptions, and
instruction fetch correctness.

" |[RQ handling.

= A handful of to-dos:

SHIFTIOPs (similar to other R-TYPEs)
MTYPE (multi+div - classic data path)

CSR / ECALL / MRET / SRET / EBREAK (all fiddly but
certainly doable)

WEFI (unclear how difficult that will be)
FENCEs (already proving, but essentially as no-ops)

" How do we know we have proved everything?
- trace equivalence...

= Next: verify the OS/software stack on top

© 2024 University of Oxford 15

Progress to Date

= All CHERI, memory and some RISC-V ({IRUB}- = Potential compiler/tool improvements.
TYPE) instructions verified with fully
conclusive unbounded proofs. - DAG in-lining (even just on a per instruction basis).

- Generated stopats (abstractions).
- Automatic compressed instruction splitting.

* [ncluding them increases elaborated size a lot
(lots of repeated logic).

- Includes GPRs + CSRs in both exception and non-
exception cases.

- Memory proofs are under bounded response time
assumptions. The proofs check addresses, write

enable, and write data. * Map decoded ASTs into uncompressed ASTs,
- Includes RISC-V compressed variants, though the then execute (reuses the same logic).
solution is hacky. - Better debuggability (or tools for it).
. * Modules and muxes for better whys.
" Fetch (PCC) checks and exceptions, and « Convert traces into Sail inputs.
instruction fetch correctness. - Dealing with RISC-V configurability.
" |[RQ handling.

© 2024 University of Oxford 16

The Oxtord CHERIoOT FV Team

.v i L 0

Lead FV Engineer 3rd-Year UG Project Pioneer Haolong Wang Anastasi

a Courtney
Louis-Emile Ploix Ray Lin MPhil ACS, Cambridge MEng CS, Cambridge
Second year CS, Oxford Fourth year CS, Oxford

© 2024 University of Oxford 17

Thank You for Listening

r
v (2
3 »
. - :
- ~ 1 -
- 3 -r»)
\
el
1 J
- ——
. 5
. T-

1

rrwe

. [
e —

|

-4 %
ff

Liiiif

T

