Capable VMs

23 Apr 24 - CHERITech '24

pejice Jacob,

allis

Virtual machines (VMs, also known as managed language runtimes) are ubiquitous
components 1n the modern software stack. They power the web, running 1n client-side
browsers, server-side applications, and smartphone apps. In any ranking of popular
programming languages, at least half of the top ten languages run on VMs (e.g.
Python, Java, C#, JavaScript, PHP).

A key problem 1s that VM security has traditionally been a secondary concern
relative to performance. Industrial strength VMs have large, complex code-bases, and
large numbers of hand-crafted optimizations. Not only are they beyond any one
person's ability to understand, but security has tended to be treated reactively: mature,
widely used VMs such as HotSpot (the standard Java VM) regularly have 50-100
CVE:s per year.

The CapableVMs project hypothesises that CHERI hardware-enforced capabilities
are the first realistic technique to make VM security proactive.

Why are virtual machines special?

rrrnri @
lots of low—lev.e‘l inter.lsive @
platform-specific allocation and

systems code DO\/ \é garbage collection runtime code
generation

lll'

multiple interacting
dynamic
components

Why are virtual machines special?

’ .
/ \
\ /
\ ,
N\ /

lll'

lots of low-level o intensive
platform-specific allocation and
systems code garbage collection
multiple interacting
dynamic

components

runtime code
generation

Why are virtual machines special?

’ .
/ \
\ /
\ ,
N\ /

lll'

lots of low-level o intensive
platform-specific allocation and
systems code garbage collection
multiple interacting
dynamic

components

runtime code
generation

1. Low-level system-specific code

CHERIfication
Specific porting process

Measure proportion of LoC
alterered

KDE: 0.026%

higher for systems code
* 0.18% for MicroPython

* 1% for snmalloc

Cherifying Linux: A Practical View on using CHERI

Kui Wang Vincent Ahlrichs Jan-Erik Ekberg
Dmitry Kasatkin Lukas Auer jan.erik.ekberg@huawei.com
leaiz ol : x 1xx 1 Huawei Technalagiec

Morello MicroPython: A Python Interpreter for CHERI

Duncan Lowther Dejice Jacob Jeremy Singer
University of Glasgow University of Glasgow University of Glasgow

Glasgow, United Kingdom

Abstract

Arm Morello is a prototype system that supports CHERI
hardware capabilities for improving runtime security. As
Morello becomes more widely available, there is a grow-
ing effort to port open source code projects to this novel
platform. Although high-level applications generally need
minimal code refactoring for CHERI compatibility, low-level
systems code bases require significant modification to com-
ply with the stringent memory safety constraints that are
dynamically enforced by Morello. In this paper, we describe
our work on porting the MicroPython interpreter to Morello
with the CheriBSD OS. Our key contribution is to present a
set of generic lessons for adapting managed runtime execu-
tion environments to CHER], including (1) a characterization
of necessary source code changes, (2) an evaluation of run-
time performance of the interpreter on Morello, and (3) a
demonstration of pragmatic memory safety bug detection.
Although MicroPython is a lightweight interpreter, mostly
written in C, we believe that the changes we have imple-
mented and the lessons we have learned are more widely
applicable. To the best of our knowledge, this is the first
published description of meaningful experience for scripting
language runtime engineering with CHERI and Morello.

Glasgow, United Kingdom
duncan.lowther@glasgow.ac.uk dejice.jacob@glasgow.ac.uk

Glasgow, United Kingdom
jeremy.singer@glasgow.ac.uk

1 Introduction

In 2021, Arm released a prototype platform code-named
‘Morello’ [2, 9] which realizes the CHERI hardware capabil-
ity concept [22, 25] in an industrial strength microprocessor.
A capability is a double-width ‘fat’ pointer that includes
metadata for address bounds and access permissions. Ad-
ditionally, CHERI capabilities have an out-of-band tag to
ensure pointer validity. The premise of hardware capabili-
ties is that entire classes of memory vulnerabilities can be
eliminated, including spatial bugs (i.e. out-of-bounds reads
and writes) and temporal bugs (i.e. use-after-free bugs) [12].

In this paper, we describe our experience and lessons
learned during a full port of the MicroPython framework to
Morello. We modify the C source code of MicroPython in
order to provide runtime awareness of CHERI capabilities.
There were two logical stages to this work: firstly the Mi-
croPython code was refactored to eliminate compiler errors
and warnings, as described in Section 3; secondly memory
safety enforcement of capabilities was leveraged to generate
tight bounds on runtime allocations, as described in Section
4. In Section 5, we analyse test coverage for MicroPython on
the Morello CheriBSD platform, which has almost identical
results to the AArch64 FreeBSD platform. Section 6 charac-

ise
epa-
(68
port
of
ctly
tem
h on
ksed

[The
iled
and
Fam

e to
unt

import dodgylib print (tinyl.decode ('utf-8"'))

tinyl = bytearray (3) dodgylib.dodgy (tinyl)
tiny2 = bytearray (12) print (tiny2.decode('utf-8"'))

setup 'Oh' raw string
tinyl[0] = Ox4f # O
tinyl[l] = Ox68 # h

tinyl[2] = 0x00 # \O root@amarena:~ #
./micropython-hybrid

setup 'Hello' raw string exploit.py

tiny2[0] = 0x48 # H

tiny2[1] = 0x65 # e

tiny2[2] = Ox6c # 1 Oh

tiny2[3] = Ox6c # 1 HACK! !

tiny2[4] = 0x6f # o

tiny2[5] = 0x00 # \O

import uctypes as uct

def dodgy (x) :

ptr = uct.addressof (x)

unsafe =

uct.bytearray at(ptr, 2000)

i=20

while unsafe[i] =
Ox6¢c:

unsafe[i+l] !=
i+=1

if i > 2000:
break

0x41

= 0x43

unsafe[i] =
unsafe[i+1]
unsafe[i+2]
unsafe[1+3]
unsafe[i1+4]
unsafe[i+5]
return

Ox4b
0x21
0x21
0x00

0x65 or

print(tinyl.decode('utf-8"'))
dodgylib.dodgy (tinyl)
print (tiny2.decode ('utf-8'))

root@amarena:~ #
. /micropython-purecap
exploit.py

Oh

In-address space security
exception (core dumped)

JXCVE-2023-7158 Detail

Description

A vulnerability was found in MicroPython up to 1.21.0. It has been classified
as critical. Affected is the function slice_indices of the file objslice.c. The

manipulation leads to heap-based buffer ove
the attack remotely. The exploit has been dis
be used. Upgrading to version 1.22.0 is able t
recommended to upgrade the affected comp
vulnerability is VDB-249180.

IXCVE-2023-7152 Detail

Description

A vulnerability, which was classified as critical, has been found in
MicroPython 1.21.0/1.22.0-preview. Affected by this issue is the function
poll_set_add_fd of the file extmod/modselect.c. The manipulation leads to
use after free. The exploit has been disclosed to the public and may be
used. The patch is identified as
8b24aa36ba978eafc6114b6798b47b7bfecdca26. It is recommended to apply
a patch to fix this issue. VDB-249158 is the identifier assigned to this
vulnerability.

Other findings from MicroPython

* Pointer size assumptions

* don't affect correctness only
* they also have an impact on performance

* Porting to a variety of platforms

* Morello: github.com/glasgowPLI/micropython
* working on CHERIoT RISC-V Ibex core

0183E046354

LD7 LD6 O C¢D
IS 2co B oo I he ':"323
l =)
BIR p72.1 "p21: 953

@R (O

OVS8Z11462S

[R5

me|) 54
1055m°’5116
sr:]mo‘m

==AVNE 1'®

0C173C174
C172C175 ,

N
(4}
N

Why are virtual machines special?

’ .
’
’
\
N /
N /

lll'

lots of low-level o intensive
platform-specific allocation and
systems code garbage collection
multiple interacting
dynamic

components

runtime code
generation

2. Multiple interacting components

* compartmentalization (c18n) is lightweight isolation
* hybrid code enables DDC-based isolation

* need a compartment switcher

* need a libc per compartment

* need clever tricks to handle dynamic loading

* overhead - how small should each compartment be?
* compartment per function
e compartment per shared object
 alternative compartment boundaries?

Alternative c18n strategy

* For purecap MicroPython code

* We isolate at FFl boundaries

* e.g. calls to external C libraries
* (work in progress)

Why are virtual machines special?

’ .
/ \
\ /
\ ,
N\ /

lll'

lots of low-level o intensive
platform-specific allocation and
systems code garbage collection
multiple interacting
dynamic

components

runtime code
generation

3. Malloc and GC

Complications include:

* finding and tracing the root set
* scanning the full heap

* moving objects

* We have studied BDWGC
* Morello & RISC-V: github.com/capablevms/bdwgc

Observations about purecap GC

* Can't afford to lose capability tags

e conservative -> precise

* overhead reduction!

* issue with sealed caps in userspace code

* issue with coalescing

))

int main() {
int 1, size, *buffer;

srand (SEED) ;

for (i=0; i<NUM_ALLOCS; i++) {
size = rand() % 1024;
// printf("alloc buffer size %d\n", size);
buffer = (int *)malloc(size * sizeof(int));

// confuse conservative collector?
savebuffer[i%(NUM_ALLOCS>>5)] = (long int)buffer;

}

return 0;

Why are virtual machines special?

’ .
/ \
\ /
\ ,
N\ /

lll'

lots of low-level o intensive
platform-specific allocation and
systems code garbage collection
multiple interacting
dynamic

components

runtime code
generation

4. Runtime code generation

RDUINC

* Several baseline interpreters ported to Morello purecap: a
WARDuino, MicroPython, JSC

* Some investigations on runtime code generation: T
JSC (& Vv8)

* This is work-in-progress

-

Summary

* Our Capable VMs project has demonstrated that
CHERI does provide defence-in-depth against VM-based exploits
Challenges include:

1. how to quantify additional defence?
2. how to measure performance?

3. how to encourage adoption?

