
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2023, No. 4, pp. 344–366. DOI:10.46586/tches.v2023.i4.344-366

Low Trace-Count Template Attacks on 32-bit
Implementations of ASCON AEAD

Shih-Chun You1, Markus G. Kuhn1, Sumanta Sarkar2 and Feng Hao2

1 University of Cambridge, Cambridge, UK, {scy27,mgk25}@cl.cam.ac.uk
2 University of Warwick, Coventry, UK, {firstname.lastname}@warwick.ac.uk

Abstract. The recently adopted Ascon standard by NIST offers a lightweight
authenticated encryption algorithm for use in resource-constrained cryptographic
devices. To help assess side-channel attack risks of Ascon implementations, we
present the first template attack based on analyzing power traces, recorded from an
STM32F303 microcontroller board running Weatherley’s 32-bit implementations of
Ascon-128. Our analysis combines a fragment template attack with belief-propagation
and key-enumeration techniques. The main results are three-fold: (1) we reached
100% success rate from a single trace if the C compiler optimized the unmasked
implementation for space, (2) the success rate was about 95% after three traces if the
compiler optimized instead for time, and (3) we also attacked a masked version, where
the success rate was over 90% with 20 traces of executions with the same key, all after
enumerating up to 224 key candidates. These results show that suitably-designed
template attacks can pose a real threat to Ascon implementations, even if protected
by first-order masking, but we also learnt how some differences in programming style,
and even compiler optimization settings, can significantly affect the result.
Keywords: ASCON · power analysis · template attack · SASCA

1 Introduction
Ascon [DEMS21], a family of algorithms for authenticated encryption with associated
data (AEAD) and secure hashing, designed for resource-constrained devices, was in 2019
selected as a prime choice for lightweight applications in the CAESAR competition. In
2023, after multiple review rounds over five years, the National Institute of Standards and
Technology (NIST) finally chose Ascon as the winner of NIST’s lightweight cryptography
standardisation process [LWC]. One may expect that Ascon could soon be implemented
on millions of authentication chips, RFID tags and radio-controlled devices.

As Ascon becomes a new NIST standard, it is important to understand not only its
theoretical properties but also potential implementation challenges, such as side-channel
attacks (SCA). The designers of Ascon have already carefully considered side-channel
protection. For example, Ascon does not use conditional branches or require any look-up
table, which naturally prevents many timing attacks [DEMS21]. Furthermore, Ascon’s
permutation uses S-boxes of degree 2, which facilitates threshold implementations and
masking as efficient countermeasures against some side-channel attacks [SD17]. And
Ascon’s mode of operation supports a so-called leveled implementation [BBC+20, VCS23],
where counter-measures against Differential Power Analysis (DPA) are only required for
its initial and final steps, and not for the processing of each message block, which reduces
their performance impact.

Compared to the extensive published cryptanalysis work on Ascon, practical ex-
periments on side-channel leakage have received less attention so far. Samwel and
Daemen [SD17] presented Correlation Power Analysis (CPA) attacks and a threshold

Licensed under Creative Commons License CC-BY 4.0.
Received: 2023-04-15 Accepted: 2023-06-15 Published: 2023-08-31

https://doi.org/10.46586/tches.v2023.i4.344-366
mailto:scy27@cl.cam.ac.uk,mgk25@cl.cam.ac.uk
mailto:Sumanta.Sakar@warwick.ac.uk,Feng.Hao@warwick.ac.uk
http://creativecommons.org/licenses/by/4.0/

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 345

implementation of a toy-sized 20-bit version of Ascon. Gross et al. [GWDE17] showed
that Ascon could resist first-order DPA based on simulated leakage. Abdulgadir et
al. [ADK19] presented threshold implementations of Ascon on an Artix7 FPGA and
demonstrated that they were effective in preventing DPA attacks. Diehl et al. [DAF+18]
compared the cost of threshold implementations of Ascon and other selected authenti-
cated ciphers against DPA. Recently, Luo et al. [LWL+22] presented a Soft Analytical
Side-Channel Attack (SASCA) on Ascon based on simulation, using Hamming weights
(HW) of 8-bit values with independent, identically distributed, added Gaussian noise as
a leakage model. While attacks using simulated HWs can provide useful insights, real
power traces can provide more information in the form of likelihoods for specific values.
But real traces also require additional processing, such as interesting-point selection and
dimensionality reduction, to deal with the much larger amount of leakage data, the longer
word size, and potentially correlated switching noise from a real processing pipeline.

In this paper, we present template attacks using power traces from a 32-bit microcon-
troller STM32F303, with ARM Cortex-M4 core, running several Ascon-128 AEAD
implementations. Our attack strategy combines three techniques: firstly, we use a
fragment template attack [YK22], which uses a form of Linear Discriminant Analysis
(LDA) [SA08, CK14a] modified for observing larger register sizes (Sec. 2.2), to obtain
side-channel information leaked from this 32-bit device. Secondly, we use belief propagation
(SASCA) [VCGS14] (Sec. 2.3) to improve the likelihood tables obtained from the template
matches, by considering algebraic dependencies between the intermediate values observed.
Finally we use key enumeration [VCGRS12] (Sec. 2.4) as an optimized brute-force search
technique, to deal with residual errors. Combined, these measures optimize our analysis
for the design of Ascon and the targeted 32-bit implementations.

We attack both unmasked (Sec. 3 and 4) and masked implementations (Sec. 6), and
also consider the effect of two different compiler optimization settings on the success
rate of key recovery (Sec. 5). We achieved fast key-recovery success rates of over 95%
with fewer than 10, in some cases even single, power traces (Figure 9) based on the
unmasked implementation [Wea21, ASCON/]. When it comes to the attack on the masked
implementation [Wea21, ASCON_masked/], single traces did not help much, however, we
succeeded in fast key recovery with 10 to 20 traces (Figure 13).

2 Preliminaries
2.1 Ascon
Ascon AEAD is based on a sponge mode, similar to MonkeyDuplex [BDPA12], but with
stronger keyed initialization and finalization phases. The underlying permutations, denoted
pa and pb, are obtained by iterating a 320-bit round function p for a or b times, respectively.
Ascon AEAD first takes as inputs an initial vector IV (to identify the algorithm), a key
K, and a nonce N , which it then combines with permutation pa applied as a non-invertible
key derivation function (KDF). It then invokes permutation pb for blocks of associated
data A and plaintext P , to absorb their content and generate the key stream for producing
the blocks of ciphertext C. A final invocation of pa serves as a tag generating function
(TGF) to produce a message-authentication tag T . The encryption process of Ascon is
illustrated in the following figure:

Initialization Associated Data Plaintext Finalization

AsA1 P1

IV ‖K‖N 0∗‖K K

T

0∗‖1 K‖0∗

PtCtCt−1C1 Pt−1

pa pb pb pb pb pa
⊕ ⊕ ⊕

⊕
⊕ ⊕

⊕ ⊕⊕

r

c

346 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

Table 1: Recommended parameters for Ascon
Cipher Variants Bit size of Rounds

State (S) Rate (Sr) Capacity (Sc) Key (K) Nonce (N) Tag (T) a b

Ascon-128 320 64 256 128 128 128 12 6
Ascon-128a 320 128 192 128 128 128 12 8

During the execution of the AEAD mode, the output of the permutation is divided
into two parts called rate (Sr) and capacity (Sc). The size of the rate is equal to the
maximum number of data bits that an invocation of permutation will process. The two
Ascon variants Ascon-128 and Ascon-128a differ according to their rate, capacity and
number of rounds a and b (see Table 1). In this paper, we focus on Ascon-128 since it is
the primary recommendation by the Ascon designers [DEMS21].

2.1.1 Ascon permutation

The permutation operates on a 320-bit state (S) that is divided into five 64-bit words (or
five lanes), as in S = L0‖L1‖L2‖L3‖L4.

The round function p follows the substitution and permutation network (SPN) design
principle, and consists of three operations: constant addition pC, substitution pS and linear
diffusion pL, as p = pL ◦ pS ◦ pC.

Constant Addition: The operation pC updates the state by XORing an 8-bit round
constant to the least significant byte of L2, where the round constant in each round is

Constant: 0xf0 0xe1 0xd2 0xc3 0xb4 0xa5 0x96 0x87 0x78 0x69 0x5a 0x4b

round of
p12 0 1 2 3 4 5 6 7 8 9 10 11
p8 – – – – 0 1 2 3 4 5 6 7
p6 – – – – – – 0 1 2 3 4 5

Substitution operation: Step pS is a nonlinear operation applying a 5-bit S-box, which
operates on (L0[k], L1[k], L2[k], L3[k], L4[k]) in parallel for bits 0 ≤ k ≤ 63, as in

L0 ← L0 ⊕ L4, L4 ← L4 ⊕ L3, L2 ← L2 ⊕ L1

L′0 ← L0 ⊕ ((¬L1) ∧ L2)
L′1 ← L1 ⊕ ((¬L2) ∧ L3)
L′2 ← L2 ⊕ ((¬L3) ∧ L4)
L′3 ← L3 ⊕ ((¬L4) ∧ L0)
L′4 ← L4 ⊕ ((¬L0) ∧ L1)
L′1 ← L′1 ⊕ L′0, L′0 ← L′0 ⊕ L′4, L′3 ← L′3 ⊕ L′2, L′2 ← ¬L′2

(1)

This S-box has the following cryptographic properties: maximum differential and linear
probability 1

4 , differential and linear branch number 3 and algebraic degree 2. This
substitution operation allows an efficient bit-sliced implementation and its low degree also
facilitates efficient threshold implementations and masking.

Linear Diffusion operation: Step pL provides diffusion by applying five different linear
operations Σi for 0 ≤ i ≤ 4, and each Σi performs XOR (⊕) and right rotations (≫) on

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 347

the word Li as in

L′0 ← Σ0(L0) = L0 ⊕ (L0 ≫ 19)⊕ (L0 ≫ 28)
L′1 ← Σ1(L1) = L1 ⊕ (L1 ≫ 61)⊕ (L1 ≫ 39)
L′2 ← Σ2(L2) = L2 ⊕ (L2 ≫ 1)⊕ (L2 ≫ 6)
L′3 ← Σ3(L3) = L3 ⊕ (L3 ≫ 10)⊕ (L3 ≫ 17)
L′4 ← Σ4(L4) = L4 ⊕ (L4 ≫ 7)⊕ (L4 ≫ 41)

(2)

In later sections, we refer to the internal states of the Ascon p12 permutation as

Input = β−1
pC,pS−−−→ α0

pL−→ β0
pC,pS−−−→ α1

pL−→ β1
pC,pS−−−→ · · · pL−→ β11 = Output.

We will use symbols L0, L1, L2, L3, L4 to represent the five lanes in intermediate states
αΩ or βΩ, where Ω represents the round index in the p12 permutation.

2.2 Template attack
The Template Attack (TA), introduced by Chari et al. [CRR03], is a powerful profiled
side-channel exploitation technique. The attacker first profiles the target device, while
operating it in a training mode where they know the data being processed. Traces are
recorded at this stage to build Gaussian multivariate trace templates that model the
leakage of each of the different known values being processed. Then, during the attack
stage, the attacker records an attack trace while an unknown secret is being processed,
and compares that trace against each template. The unknown secret is obtained based on
the candidate template that is most similar to the attack trace.

Several variants of the template attack have been proposed to improve the efficiency
and accuracy of the profiling procedure. Schindler et al. [SLP05] introduced their F9
“stochastic model”, where each bit in a targeted byte is treated as an independent vari-
able of a multivariate linear-regression model, to predict the expected values of single
points on a trace. Standaert and Archambeau [SA08] proposed using Fisher’s Linear
Discriminant Analysis (LDA) in template attacks for dimensionality reduction. Choudary
and Kuhn [CK14a] combined both techniques to provide a predicted probability for each
possible value for a target byte, instead of only the probability for the HW of possible values.
Such LDA-based dimensionality reduction has several benefits: the projection can increase
the signal-to-noise ratio, the reduced dimensionality leads to better covariance estimates,
and LDA-based templates have shown better portability across different devices [CK14b].

Template attack with LDA In this template building approach, we first group the
profiling traces according to the targeted byte value b ∈ {0, . . . , 255}. A profiling trace
observing target value b is denoted as xb,t, where t ∈ {1, . . . , nb} enumerates the traces
in group b. With the F9 stochastic model, we treat each member bit (b[0] to b[7]) as an
independent variable in a multivariate linear regression to calculate coefficients c0 to c7 ∈ R
and a constant c8 ∈ R to predict the expected values of samples as x̄b =

∑7
`=0(b[`] · c`) + c8

for each possible value b. To represent the expected vector of an entire m-sample trace, we
write x̄b =

∑7
`=0(b[`] · c`) + c8, where c0, . . . , c8 ∈ Rm.

Next, we perform LDA dimensionality reduction to project longer traces to shorter
vectors. To prepare this step, we first build two covariance matrices, B and Σ, which
represent the signal and noise, respectively, as

B = 1∑
b nb

∑
b

nb(x̄b − x̄)(x̄b − x̄)T, Σ = 1∑
b nb

∑
b

nb∑
t=1

(xb,t − x̄b)(xb,t − x̄b)T,

where x̄ denotes the average of all 256 vectors x̄b. We then project all the m-sample traces,
including profiling traces xb,t, expected traces x̄b, and the attack trace xa, onto the m′

348 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

(m′ � m) eigenvectors with the largest eigenvalues of Σ−1B, to obtain m′-sample traces
xb,t,proj, x̄b,proj,xa,proj ∈ Rm′ .

In this new subspace, where the signal-to-noise ratio is larger, we can now build a
pooled covariance matrix [CK14a]

S = 1∑
b nb

∑
b

nb∑
t=1

(xb,t,proj − x̄b,proj)(xb,t,proj − x̄b,proj)T,

such that the probability density of the attack trace xa,proj can be modelled as

L(xa,proj|x̄b,proj,S) = 1√
(2π)m′ |S|

exp
(
−1

2(xa,proj − x̄b,proj)TS−1(xa,proj − x̄b,proj)
)
.

Having this likelihood calculated for all 256 possible values of b, we can sort them in
descending order to generate a ranking table of all candidates; alternatively, we can
normalize these likelihoods to build a probability table.

Fragment template attack on 32-bit devices While we can directly enumerate all 8-bit
values in a target byte this way, many embedded target devices today use 32-bit buses.
Recently, Cassiers et al. demonstrated how to efficiently build LDA-based templates that
directly target a 32-bit word as a whole [CDSU23]. However, as belief propagation on
probability tables with 232 values is very time consuming, we followed You and Kuhn’s
earlier fragment template attack [YK22] to separate the 32-bit value into a few fragments
(e.g., four bytes or two 16-bit fragments) and build a template targeting one fragment at a
time, using a different LDA projection for each fragment to treat signals from the other
fragments as noise.

For example, we can split a target value v ∈ Z232 into four byte fragments v 7→
(F0(v), . . . , F3(v)) with Ff (v) =

∑7
`=0 v[8f + `] · 2`. Let Vf,b = {v |Ff (v) = b} be the set

of all 32-bit values where fragment number f has value b. For each f , we apply the F9
stochastic model to obtain the 256 expected trace vectors x̄f,b =

∑7
`=0 b[`] · cf,` + cf,8,

from the traces xv,t with v ∈ Vf,b, respectively. For the LDA procedure, we calculate B
and Σ separately for each fragment:

Bf =
255∑
b=0

∑
v∈Vf,b

nv(x̄f,b − x̄)(x̄f,b − x̄)T

/ 255∑
b=0

∑
v∈Vf,b

nv,

Σf =
255∑
b=0

∑
v∈Vf,b

nv∑
t=1

(xv,t − x̄f,b)(xv,t − x̄f,b)T

/ 255∑
b=0

∑
v∈Vf,b

nv,

where nv represents the number of traces in group v. Bf only contains signals from
fragment number f , and signals from the other three bytes no longer count here, but
instead contribute to Σf . In other words, they are considered to be switching noise in this
model.

After projecting the profiling traces and attack traces to the m′-dimensional subspace
(e.g., we used m′ = 8 for byte and m′ = 16 for 16-bit fragments) via these two matrices, we
can (as before) calculate the pooled covariance matrix and combine it with the projected
expected traces into the template for this byte fragment of the target word.

Due to the noise sensitivity of the template attack, the correct candidate will not
always top the ranking table. We can use two additional steps to make the attack more
resilient to noise: 1) belief propagation, which takes algorithmic dependencies between the
targeted values into account, and 2) key enumeration, which tests more combinations of
target values than just the top-ranked ones. We elaborate these techniques in the following
sections.

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 349

2.3 Belief propagation and SASCA
Veyrat-Charvillon et al. [VCGS14] introduced Soft Analytical Side-Channel Analysis
(SASCA), an inference technique for template attacks on cryptographic algorithms based
on the belief-propagation algorithm [Mac03, Chapter 26]. The idea behind SASCA is that
all the probability information available to the attacker is represented as a factor graph,
where there are two types of nodes: 1) variables, which represent the intermediate states
of the cryptographic algorithm, and 2) factors, which represent how these intermediate
states depend on each other and the observed traces. Information can flow bidirectionally
through edges that connect variables with factors. We choose a factor graph to reflect the
mathematical relations between the target parts in the cryptographic algorithm.

The variable nodes represent the intermediate values in the cryptographic algorithm.
You and Kuhn distinguish two types of factor nodes [YK22]. Observation factors fm(xn)
represent observed probabilities of the values of their only connected variable xn, here
usually from a template-based likelihood. Constraint factors fm(xm) are connected to
more than one variable (xn1 , . . . , xnkm

) = xm (where N (m) = {n1, . . . , nkm} denotes the
set of indices of these variables) with a mathematical equation as the constraint (see
example in Figure 1).

The information flow can be thought of as messages passed between variable nodes xn
and factor nodes fm, which in practice are stored in a table, and from which the marginal
probabilities of all the candidate values of each variable can be calculated. A message
from a variable xn to a factor fm is denoted as qn−→m, and a message from a factor fm
to a variable xn as rm−→n. Each of these messages is a function of a value ξ of xn. The
probability of a candidate xn = ξ in message qn−→m is

qn−→m(xn = ξ) =
∏
m′ 6=m

rm′−→n(xn = ξ).

Meanwhile, the probability of a candidate xn = ξ in the message rm−→n is

rm−→n(xn = ξ) =
∑

w

fm(xn = ξ,xm\xn = w)
∏

n′∈N (m)\n

qn′−→m(xn′ = wn′)

 ,
where

fm(xm = v) =
{

1, constraint holds with xm = v,
0, otherwise.

For the special case of an observation factor, this reduces to

rm−→n(xn = ξ) = fm(xn = ξ),

where fm(xn) is the probability table observed from the templates, instead of a constraint
function. Finally, we obtain the probability Pn of candidates xn = ξ by normalizing

Pn(xn = ξ) = Zn(xn = ξ)∑
ξ′ Zn(xn = ξ′) , where Zn(xn = ξ) =

∏
m

rm−→n(xn = ξ)

is the product of the probabilities of ξ in all the messages r passed to the same variable xn.
If the graph is a tree structure, all the r and q probabilities can be calculated by travers-

ing the tree recursively, visiting each edge once. However, factor graphs for cryptographic
algorithms often feature loops, where this recursion would not terminate.

MacKay [Mac03, Chapter 26] describes a solution called loopy belief propagation
(loopy BP). The main idea is to initialize all the values in the table for all messages q
with one, then alternatingly update all the messages in the table for r and then q, with
renormalization to prevent the probability values from becoming too small. Then the
procedure terminates when it reaches a steady state. We count one update of all r followed
by one update of all q as one iteration.

350 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

xc

xb

f2f1

xa

f3

f⊕

f1(xa) =
{

0.8, xa = 0
0.2, xa = 1,

f2(xb) =
{

0.7, xb = 0
0.3, xb = 1,

f⊕(xa, xb, xc) =
{

1, if xa ⊕ xb = xc

0, otherwise,
f3(xc) =

{
0.9, xc = 0
0.1, xc = 1.

Figure 1: An example of the factor graph for the operation xc = xa ⊕ xb. Circular nodes
represent variables and square nodes represent factors. The three observation factors
f1, f2, f3 represent the template likelihoods and one constraint factor f⊕ represents the
operation.

s̃1,1 s̃1,2 s̃1,3 s̃1,N

s̃0,1

s̃0,2

s̃0,M

. . .

.
.

.

(a) The most likely combination must be the
top-left element when a search begins.

s̃1,1 s̃1,2 s̃1,3 s̃1,N

s̃0,1

s̃0,2

s̃0,M

. . .

.
.

.

(b) The frontier F , blocks labeled in red, when
the gray blocks have been enumerated.

Figure 2: The key enumeration array

2.4 Key enumeration
While the belief-propagation step reduces the impact of noise on the ranking tables, the
correct candidates may still not top the tables, and more candidates further down will
have to be tested as well. Veyrat-Charvillon et al. [VCGRS12] introduced an optimal key
enumeration algorithm to search the correct key across independent ranked likelihood
tables.

Assume that there are two independent secret variables s0 and s1 withM andN possible
values, respectively. Through some side-channel analysis, we have already obtained their
ranked (sorted) probability tables. Here themth and nth most likely candidates of these two
variables are denoted as s̃0,m and s̃1,n, respectively, and their corresponding probabilities
are denoted as p0,m and p1,n. Figure 2a shows an M ×N joint ranked probability table,
where each block represents the joint probability, p0,m× p1,n, of a combination (s̃0,m, s̃1,n).

Since p0,m and p1,n are from sorted tables, we have the following partial order of the
joint probabilities p0,m × p1,n of (s̃0,m, s̃1,n):

p0,m > p0,m′ ∧ p1,n > p1,n′ =⇒ p0,m × p1,n > p0,m′ × p1,n′ , ∀m′ > m ∧ ∀n′ > n.

Therefore, the top-leftmost block, representing (s̃0,1, s̃1,1), is the combination with the
largest joint probability, and the combination with the second largest joint probability
will pertain to one of (s̃0,2, s̃1,1) or (s̃0,1, s̃1,2). They will both be added into a set called
frontier, F , which includes all possible candidates for the combination with the next largest
joint probability. Therefore, we only need to compare values from this set to find the next
value pair to be enumerated. In Figure 2b, once all the combinations marked in gray have
been enumerated, the frontier F , marked in red, will be the set of all the pairs at the
concave corners. While a combination (s̃0,m, s̃1,n) is being enumerated, we need to update
F by removing (s̃0,m, s̃1,n), and then considering whether (s̃0,m+1, s̃1,n) or (s̃0,m, s̃1,n+1)
or both shall be added to F , respectively, by checking if one occupies a concave corner in
the already enumerated gray part of the array.

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 351

Initialization Finalization

IV ‖K‖N

CP‖1‖07

C‖?8

(K‖K)⊕ (0255‖1)
T

p12 p12

64
K

256

⊕

⊕⊕

Figure 3: Ascon-128 with empty associated data A and seven-byte plaintext P .

Following this algorithm, the probability p1,n will only be queried after the combination
(s̃0,1, s̃1,n−1) has been enumerated and then we need to add (s̃0,1, s̃1,n) into F ; similar
operations apply to p0,m. This means that we do not need all the values in the proba-
bility tables initially, and therefore we can build a tree of iterators recursively to search
combinations of candidates from beyond two tables.

Key rank estimation In experiments aimed at evaluating the effectiveness of attacks,
we know the correct key and merely need to determine its rank. Faster techniques, such
as the histogram-based method by Glowacz et al. [GGP+15] can estimate the rank of a
correct key in cases where enumeration would be too time consuming.

3 Building templates for Ascon AEAD
Our attack strategy consists of three main steps: fragment template attack, belief propa-
gation, and key enumeration. In this section, we focus on the fragment template attack.

3.1 General experimental assumptions
We demonstrate a profiled fixed-length known-plaintext attack, only targeting the secret
key K. In the profiling stage, our attacker can provide varying K, N , A, P , and can
observe the corresponding C and T along with recorded power traces. In the attack stage,
they can obtain values of N , A, P , C, T , and recorded power traces, to recover the secret
key K. We demonstrate our attack by targeting Ascon-128. Note that while Ascon
AEAD allows arbitrary-length associated data and plaintexts, in this attack demonstration,
we used empty associated data and 7-byte plaintexts, to keep the traces aligned and
minimize their length when covering the entire encryption process. In other words, we
focus entirely on the two invocations of permutation p12 in the Initialization (KDF) and
Finalization (TGF) phases, which process K. Figure 3 depicts this target encryption
procedure.

3.2 Measurement setup
We targeted Weatherley’s Ascon-128 implementations1 [Wea21] with an optimized permu-
tation for Cortex-M4, compiled with arm-none-eabi-gcc (v9.2.1) and uploaded into the
32-bit microcontroller STM32F303 on the SCA platform ChipWhisperer-Lite [OC14, CWL].
We recorded AC-coupled power traces with an NI PXIe-5160 10-bit oscilloscope with its
highest sampling rate, 2.5 GHz, phase-locked to a function generator (NI PXIe-5423)
supplying the target board with a 5 MHz square-wave clock signal. Therefore, there were
exactly 500 points per clock cycle (500 PPC) on the raw traces.

Thanks to the lightweight structure of Ascon and our choice of short input size
(Figure 3), it is practical to record power traces covering the full AEAD mode. Therefore,
we built templates for target fragments of all the states α0, . . . , α11 and β−1, . . . , β11 of

1When we started these experiments in September 2021, they were the only open-source ARMv7m-
optimized 32-bit implementations we could find, referred to by both the Ascon and NIST web sites.

352 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

0.00

0.25

0.50

0.75

1.00

Σ
f
R

2 f

region 1 region 2 region 3 region 4
high word of L1

low word of L1

high word of L2

low word of L2

0 500 1000 1500 2000 2500

clock cycle

0.00

0.25

0.50

0.75

1.00

m
ax

S
N

R

region 1 region 2 region 3 region 4

Figure 4: The top plot shows the ΣfR
2
f results for each 32-bit word of the 128-bit K

for U-Os. The spikes lie in the marked regions corresponding to the four uses of K. The
bottom plot shows the maximum of the SNR values among the four fragments.

permutation p12 in both Initialization and Finalization, except for fragments of known
values: for IV , N , P , C, and T , we assign the probability of the actual fragment value to
be 1 and all others 0. The two lanes L1 and L2 of the Initialization input contain the key
fragments, which are our main targets.

For each experiment, we separated the recorded traces into the following categories, by
purpose:

Category #Traces Purpose
Detection 16 000 interesting-clock-cycle detection
Profiling 64 000 template building
Validation 1 000 template-quality evaluation
Attack 10 000 key recovery

We recorded these number of traces for each of three experiments, which we refer to
as U-Os, U-O3, and M-Os, respectively. The first two ran the unmasked implementation
[Wea21, ASCON/], compiled either optimized for space (gcc option -Os) or for time (option
-O3), whereas the third ran the masked implementation [Wea21, ASCON_masked/] optimized
for space (option -Os).

We recorded 10 attack traces each from encryptions with the same key K, which we
used for our experiments combining traces from multiple encryptions (Sec. 4.1). We varied
nonce N and plaintext P randomly. For the M-Os experiment, we increased the number
of recorded attack traces per key K to 100, i.e. there we recorded 100 000 attack traces
in total. For the other categories, we varied the inputs K, N , and P randomly for each
encryption recorded. In the rest of this section, we show data from the U-Os experiment.

3.3 Detecting interesting clock cycles
As the raw traces were very long, it is difficult to directly derive a distribution that
describes the power traces for our target intermediate values. As not all the clock cycles
are relevant to our target intermediate values, we can only consider the sample points of
the clock cycles that are clearly correlated to these intermediate values. We refer to these
as the interesting clock cycles.

We followed the method of finding interesting clock cycles for 32-bit key fragments from
[YK22]. We divided all the intermediate states (β−1, α0, . . . , β11) into 32-bit words and
further divided these into four byte fragments (numbered 0, 1, 2 and 3), and then applied
multivariate linear regression to model the correlation between the samples on power
traces and each byte. After we built the regression model, we calculated its coefficient of
determination R2 ∈ [0, 1], to see how well the samples fit the model. As we now have four
different R2 values, R2

0, R
2
1, R

2
2, R

2
3, we applied their sum

∑
f R

2
f to estimate the correlation

between the model and the power traces for a 32-bit word. We selected those interesting

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 353

Table 2: Number of interesting clock cycles detected for 32-bit intermediate words in U-Os.
The detection for IV and N is not needed since they are known values.

lane L0 L1 L2 L3 L4
32-bit word high low high low high low high low high low

Init.

input (β−1) IV 244 230 310 252 N
α0 32 27 111 128 43 36 34 24 89 90
β0 18 19 19 22 19 25 23 21 30 32
α1 17 17 17 13 33 31 23 24 27 23
β1 13 19 19 20 22 22 18 19 34 32
α2 17 19 12 13 29 30 29 19 25 21
β2 12 14 19 20 24 23 21 20 37 32
α3 18 19 12 15 29 27 24 24 22 22
β3 13 16 20 21 23 27 24 21 33 31
α4 18 39 16 18 33 29 23 23 24 27
β4 15 15 21 20 26 22 20 21 30 32
α5 17 17 15 14 33 27 20 21 50 28
β5 12 14 21 18 21 21 20 20 34 33
α6 18 20 16 13 30 28 23 22 23 24
β6 17 21 23 23 22 21 19 18 35 31
α7 17 18 14 19 29 32 24 18 23 24
β7 17 14 18 22 25 27 21 23 38 34
α8 17 17 17 11 29 27 25 25 25 22
β8 13 15 21 22 22 23 24 21 35 30
α9 19 17 16 14 29 27 21 28 23 22
β9 13 28 22 21 26 23 20 21 34 32
α10 23 18 16 12 30 27 22 19 23 21
β10 15 17 26 22 23 26 22 21 33 33
α11 20 17 13 14 33 29 25 23 31 27
β11 30 101 28 36 67 62 26 24 48 46

lane L0 L1 L2 L3 L4
32-bit word high low high low high low high low high low

Fin.

input (β−1) 102 133 40 41 45 46 40 41 76 80
α0 20 30 14 17 35 30 25 22 23 23
β0 18 14 21 20 25 25 25 20 31 32
α1 17 17 15 16 29 30 24 21 24 26
β1 12 13 20 20 21 22 20 21 34 31
α2 20 18 13 14 30 27 22 22 25 23
β2 21 15 21 23 23 23 18 29 32 32
α3 17 18 17 19 32 27 25 23 22 21
β3 16 12 24 19 22 21 22 19 31 33
α4 16 15 16 14 32 30 31 21 24 22
β4 15 17 22 19 20 25 28 21 33 30
α5 18 20 14 17 31 28 21 23 27 25
β5 19 17 22 21 23 22 20 19 35 34
α6 17 18 11 15 30 27 24 22 23 26
β6 15 15 20 20 26 22 23 22 32 35
α7 18 21 15 12 29 28 20 32 26 22
β7 18 16 22 34 22 21 26 20 36 33
α8 16 21 14 15 28 25 26 23 24 23
β8 17 15 24 22 23 22 21 22 34 35
α9 18 24 16 15 32 28 23 24 27 22
β9 15 13 30 21 21 25 19 19 37 33
α10 18 17 13 19 28 28 24 23 25 24
β10 11 15 21 20 18 23 19 21 33 34
α11 17 22 16 14 28 27 26 22 31 27
β11 65 63 62 65 63 65 98 99 116 124

clock cycles where
∑
f R

2
f > 0.004.2

Our target [Wea21, ASCON/] implements a bit-interleaved [DEMS21, Sec. 4.1.1] version
of Ascon, where a 64-bit lane is not just separated into a high and a low 32-bit word,
but also sliced into its odd and even parts during the permutation, such that one 64-bit
rotation becomes two 32-bit rotations. Therefore, data bits, especially the input and
output, can be stored separated into both high and low words (H/L words), as well as
sliced into even-bit and odd-bit words (E/O words). We decided to detect the interesting
clock cycles for both the H/L and E/O words for a lane, and use their union set as the
interesting clock sets for this lane, to consider both situations.

Table 2 shows the number of detected interesting clock cycles for each target 32-bit,
H/L word of the intermediate states for the full AEAD process. We can see that there
were more interesting clock cycles detected for those words closer to input or output (i.e.,
β−1 or β11), as some of their interesting clock cycles were related to operations outside
of the Ascon permutation, such as loading the initial states, XORing with P or K, or
calculating T .

Among all the words, we detected the highest number of interesting clock cycles for
L1 and L2 in β−1 of Initialization, since these two lanes are loaded with K, which is used
four times in the full encryption. Figure 4 shows the ΣfR2

f values for the H/L words from
L1 and L2 in β−1 of Initializaion with the corresponding clock cycles. We found that the
spikes were mainly located in four separate regions, indicating the clock cycles related to
the four times when Ascon AEAD uses the key K.

We downsampled the selected interesting clock cycles from 500 to 10 PPC by replacing
each 50 consecutive samples with their average, and concatenate them to form the traces
x used for LDA-based template building (see Sec. 2.2).

3.4 Results of fragment template profiling
We evaluate the quality of our templates using two metrics defined by Standaert et

2We used the R2 value as the selection metric rather than the more commonly used SNR, not only
because it is a natural fit for a linear-regression model, but it also better fits a fragment-template attack,
where we have to combine the quality metrics of multiple fragments. Here, the R2 values of each fragment
can simply be added up, whereas this is not meaningful for signal-to-noise ratios, as the noise is different
for each fragment. For readers interested in comparing values: had we used the maximum SNR value
among the four member bytes for each clock cycle, a threshold of SNR ≥ 0.02 would have given the closest
results (see Figure 4 for both metrics side-by-side).

354 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

Table 3: Quality evaluation of selected templates from the U-Os experiment, using both
the top-rank success rate (1-SR) and the base-2 logarithm of the guessing entropy (LGE).

word high low
byte 0 1 2 3 4 5 6 7

L1 of Init. input 1-SR 0.859 0.809 0.852 0.733 0.804 0.684 0.751 0.619
(1st lane of K) LGE 0.182 0.278 0.203 0.415 0.295 0.500 0.362 0.666
L2 of Init. input 1-SR 0.791 0.758 0.820 0.766 0.868 0.777 0.758 0.647
(2nd lane of K) LGE 0.294 0.341 0.225 0.321 0.167 0.318 0.341 0.566

word even odd
byte 0 1 2 3 4 5 6 7

L3 of Fin. β11
1-SR 0.126 0.095 0.165 0.165 0.137 0.144 0.170 0.119
LGE 3.048 3.387 2.770 2.861 3.000 3.110 2.723 3.042

L4 of Fin. β11
1-SR 0.099 0.095 0.193 0.195 0.158 0.112 0.186 0.202
LGE 3.287 3.644 2.621 2.479 2.833 3.295 2.440 2.427

L0 of Init. α6
1-SR 0.003 0.006 0.008 0.009 0.009 0.012 0.004 0.006
LGE 6.229 6.140 5.907 6.311 6.096 6.168 6.226 6.199

Table 4: Quality evaluation of fragment templates for the key of Ascon AEAD with
either all or only one part of the interesting clock cycles (U-Os experiment).

lane L1 L2
word high low high low
byte 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

all interesting 1-SR 0.859 0.809 0.852 0.733 0.804 0.684 0.751 0.619 0.791 0.758 0.820 0.766 0.868 0.777 0.758 0.647
clock cycles LGE 0.182 0.278 0.203 0.415 0.295 0.500 0.362 0.666 0.294 0.341 0.225 0.321 0.167 0.318 0.341 0.566

region 1 only 1-SR 0.090 0.112 0.125 0.090 0.088 0.069 0.082 0.057 0.075 0.083 0.094 0.070 0.145 0.065 0.092 0.118
LGE 3.480 3.363 2.933 3.577 3.599 4.031 3.643 4.161 3.801 3.526 3.573 3.963 2.778 3.825 3.578 3.066

region 2 only 1-SR 0.100 0.085 0.093 0.051 0.166 0.112 0.141 0.089 0.150 0.166 0.203 0.158 0.175 0.177 0.149 0.098
LGE 3.551 3.706 3.627 4.421 2.659 3.332 2.726 3.656 2.711 2.821 2.384 2.854 2.462 2.620 2.857 3.576

region 3 only 1-SR 0.135 0.095 0.088 0.061 0.103 0.104 0.110 0.065 0.098 0.066 0.127 0.070 0.152 0.137 0.121 0.066
LGE 2.955 3.317 3.467 4.073 3.414 3.450 3.320 4.170 3.370 3.977 2.975 3.921 2.668 2.916 3.174 3.913

region 4 only 1-SR 0.114 0.112 0.124 0.091 0.099 0.083 0.119 0.091 0.068 0.077 0.093 0.089 0.096 0.103 0.130 0.050
LGE 3.264 3.006 2.984 3.176 3.337 3.336 3.020 3.401 3.675 3.445 3.202 3.324 3.286 3.178 2.827 4.021

al. [SMY09]: the nth-order success rate (n-SR), which is the fraction of trials where the
correct candidate has rank not larger than n, and the guessing entropy (GE), which is the
expected value of the rank of the correct candidate (1 being the top rank). The logarithmic
guessing entropy (LGE) is the arithmetic mean of the base-2 logarithm of those ranks.

After first shortening the traces according to the results of the interesting-clock-cycle
detection and then building the LDA-based template parameters (S, x̄b,proj for all 256
values b of a fragment, etc.), we determined for the 1000 traces in our validation set
both the LGE and 1-SR value, the latter being the fraction of those traces where the
correct fragment (byte) candidate tops the ranking table of all 256 likelihood values
L(xa,proj|x̄b,proj,S).

Table 3 shows these 1-SR and LGE values for a few example templates, while Figure 5
plots the results for all the target templates. Note that we built the H/L templates
for the key, but E/O templates for the other intermediate values, to better match the
implementation.

As we had expected, templates for the key fragments had the best quality among all
the templates, as K fragments were built from the highest numbers of clock cycles. The
results for templates of fragments in the last two lanes in state β11 in Finalization were also
satisfactory, considering that these two lanes are part of the permutation output and then
XORed with the key for the tag T , leading to more interesting clock cycles detected. The
1-SRs for fragments from the middle rounds, α6 in Initialization for example, were much
lower, while the corresponding LGEs were much higher than those values from either K or
β11 in Finalization, as the optimized implementation of Weatherley appears to reduce the
clock cycles that operate on a single intermediate value inside the permutation, whereas
the input and output of a permutation will be involved in more operations across the
permutations for AEAD mode.

We also show the results of quality evaluation when we built the templates for the key
fragments with only one of the four regions of interesting clock cycles in Table 4. These

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 355

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Initialization

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Finalization

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Initialization

0 5 10 15 20 25 30 35

byte

0

5

10

15

20

st
at

e

Finalization

0.0 0.2 0.4 0.6 0.8 1.0

first-order success rate (1-SR)

0 1 2 3 4 5 6 7 8

logarithmic guessing entropy (LGE) for bytes

Figure 5: First-order success rate (left) and logarithmic guessing entropy (right) of all
target fragment templates from U-Os. Each row represents a 40-byte state, e.g. state 0
is β−1, state 1 is α0, state 2 is β0, etc., in chronological order. The red blocks represent
bytes of the known values IV , N , for which no templates were needed.

results provide evidence that using the same key more than once in an Ascon AEAD
significantly helps the attackers to build better templates.

4 Belief propagation and key enumeration for Ascon AEAD
Once we have obtained probability tables from the normalized likelihoods of attack traces
matched against our fragment templates, we then apply belief propagation and key
enumeration.

4.1 Factor graph for bitwise loopy BP across all intermediate states
In a factor graph covering the full Ascon AEAD mode with our assumptions, the
connections within a single permutation and the connections across permutations form a
loopy structure, so we apply a loopy-BP procedure to update the probability tables for K.
With such a complicated loopy structure, we have to marginalize all the probability tables
estimated by fragment templates into bitwise tables and perform belief propagation on
individual bits as variables for efficiency. As for the tables from E/O templates, we only
need a simple transposition step to move the bits to their original places in the H/L words
after marginalization.

Graph for single encryptions We first build the factor graph covering a single round
of the Ascon permutation. This small factor graph (Figure 6) includes three variable
states and their corresponding observed factors: βΩ−1, αΩ, βΩ, and two types of constraint
factors: fS and fL.

356 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

βΩ−1 fS αΩ fL βΩ

prob.
table

prob.
table

prob.
table

Figure 6: The factor graph for round Ω of the Ascon permutation. State variables βΩ−1,
αΩ, and βΩ shown here each represent 320 single-bit variable nodes, respectively.

Initialization Finalization

K fS

IV

N

fL fS fL β11

f⊕

f⊕

f⊕

β11

C‖?8

P‖1‖07fmext

Tf⊕

Figure 7: The factor graph at state level covering a full Ascon-128 encryption, with
empty associated data and seven-byte plaintext (observation factors omitted).

Since αΩ = pS(pC(βΩ−1)), the fS constraint factors should update the information
following the mathematical relations in functions pC (constant addition) and pS (non-linear
substitution). We followed how Kannwischer et al. designed their constraint factors for
the non-linear step and the constant addition step in Keccak [KPP20, Sec. 4.1]: for the
factors of pS, we connect their five input bits and five output bits and use the S-box table
as the mathematical constraint, while for pC, we swap the probability values of the two
candidates (0 and 1) when the value of the corresponding constant bit is 1. On the other
hand, constraint factors fL update the information following the mathematical relations in
the linear function pL, which are all XOR functions with three inputs and one output at
the bitwise level (see eq. (2)). For example, L′0 ← Σ0(L0) can be realized by the constraint
βΩ[0, 0] = αΩ[0, 0]⊕αΩ[0, 64− 19]⊕αΩ[0, 64− 28] = αΩ[0, 0]⊕αΩ[0, 45]⊕αΩ[0, 36], where
αΩ[i, j] means bit j in lane i. Having built the factor graph for the first round of the
p12 permutation, we can simply repeat the same construction for the remaining eleven
rounds, only with different round constants, to cover all the states in one invocation of
this permutation.

Considering Ascon AEAD applies a sequence of pa and pb permutations, the overall
factor graph will be a concatenation of multiple factor graphs, one for each permutation,
connected by constraint factors f⊕ for XOR functions, and variables for the inputs or
outputs processed in between. Figure 7 shows the factor graph covering all the target
states in our experiment. According to the encryption shown in Figure 3, the input state
of the p12 in Finalization will be the output state (or state β11) of p12 in Initialization,
XORed with the state P‖(0x80)‖K‖K ′, where K ′ is the key K with the least significant bit
flipped. Therefore, via a constraint factor f⊕, the two variables, respectively representing
the bit in the first lane L0 of the input state of Finalization and its counterpart in the
output state of Initialization, will be connected with the corresponding variable for the
bit in the padded plaintext P‖(0x80). Similarly, bits from L1‖L2 of the two states will
be connected to the variables for K via constraint factor f⊕. Bits from L3‖L4 are also
linked to the variables for K via f⊕, but the probability values for the least significant bit
need to be swapped when the message is exchanged between the K variables and the f⊕.
Likewise, the variables for the last 128 bits of the Finalization output are connected with
the variables for K and T via f⊕.

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 357

Tβ11

f⊕

K K

β11

f⊕ f⊕ f⊕

β11 T

fmext

K K

β11 TT

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

prob.
table

Figure 8: Tree-shaped factor graphs for single (left) and multiple encryptions (right).

Graph for multiple encryptions with the same key Ascon allows reuse of a key with
different nonces. So for multiple encryptions with the same key, we introduce another
external constraint factor fmext , where the constraint is K1 = K2 = . . . = KN , to connect
each key variable from a separate factor graph for a single encryption.

Key enumeration Finally, we apply the key enumeration algorithm [VCGRS12], as
discussed in Sec. 2.4, to find the correct bit combination for the key, given the bit
probability tables obtained from the belief propagation procedure. We can simply check
the correctness of the enumerated key combinations since we know N , A, P , C, and T
according to our assumptions in Section 3.1.

4.2 Loop-free alternative factor graph
As we can see from the results of the template evaluation in Figure 5, the templates for
fragments in the middle states of both the permutations in Initialization and Finalization
provide only little information. It may not be worth to perform belief propagation with a
large factor graph covering all the middle states. Therefore, we also tried an alternative
factor graph, where we removed the nodes for those middle states from the loopy factor
graph, and only kept the nodes related to the XOR operation of the key K and the last
128 bits of β11 in Finalization to calculate the tag T . Figure 8 shows the new smaller
factor graph for single encryptions and its expanded version for multiple encryptions with
the same key. These smaller factor graphs will similarly output updated probability tables
for key enumeration.

There are two advantages of this smaller graph design. The first one is that it is no
longer a loopy structure, but a tree, so we can update the information recursively by
accessing each node only once. On the other hand, thanks to the simplicity of the XOR
operation, as well as the assumption that the tag T is already known by attackers, it will
still be practical to perform belief propagation on byte tables or tables for even larger
fragments, and therefore avoid the information loss caused by marginalization to bit tables.
In these cases, the belief propagation procedure will output the updated probability tables
for fragments instead of bits for enumeration.

4.3 Results for belief propagation and key enumeration
In the following, we report both the logarithmic guessing entropy and the nth-order success
rate as the evaluation metrics for our ability to recover the full key. For key ranks up
to 224, we determined these through actual key enumeration, whereas higher key ranks
we estimated using the histogram-based method of [GGP+15, Alg. 1]. We determined or
estimated this way the rank of each of the 1000 keys used in our attack traces, and then

358 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

Table 5: Base-2 logarithmic guessing entropy (LGE) achieved for our key-recover attacks
in the U-Os experiment with between 1 and 10 attack traces, using either no SASCA stage
(using byte fragments), or with a SASCA stage using either the loopy belief propagation
(using byte fragments marginalized into bits), or the tree-based belief propagation (using
either 8-bit or 16-bit fragments, not marginalized).

attack traces 1 2 3 4 5 6 7 8 9 10
no BP 8 bit 12.2189 4.9610 3.2118 2.4741 2.1625 1.9403 1.8147 1.7075 1.6175 1.5514

loopy BP 8 bit 11.6443 1.3345 0.1675 0.1069 0.0453 0.0516 0.0220 0.0000 0.0078 0.0261
tree BP 8 bit 4.4958 0.6850 0.2439 0.1176 0.0851 0.0690 0.0473 0.0379 0.0352 0.0322
tree BP 16 bit 2.3795 0.2850 0.1028 0.0498 0.0336 0.0316 0.0200 0.0156 0.0122 0.0076

20 24 28 212 216 220 224 228 232

combinations searched

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

loopy BP on marginalized bit tables

20 24 28 212 216 220 224

combinations searched

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on byte tables

20 24 28 212 216

combinations searched

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on 16-bit tables

1 trace

2 traces

3 traces

4 traces

5 traces

6 traces

7 traces

8 traces

7 traces

10 traces

Figure 9: Key-recovery success rate as a function of the search depth (2n-SR) for the U-Os
experiment when performing SASCA with either our loopy or tree-shaped factor graphs.

estimated the LGE as the arithmetic mean of the binary logarithm of the rank of each
key.

Table 5 shows the guessing entropy we achieved for all of our U-Os experiments, using
either no belief propagation step, or after applying SASCA using either the loopy or
tree-shaped factor graphs. Figure 9 plots for the latter experiments with SASCA the
success rates after key enumeration with a given search depth. The results show that with
loopy belief propagation on a single attack trace, a 232 key enumeration will achieve a
success rate of nearly 100%, and applying the tree-shaped belief propagation3 reduces the
cost of the key enumeration to well below 220 steps. (With two or more attack traces,
hardly any key enumeration is needed.)

To see whether a larger template-fragment size collects more information, we also
repeated the tree-BP experiment with 16-bit fragments instead of bytes. The bottom two
rows in Table 5 show that the guessing entropy drops very roughly by a factor two. Due
to the high quality of the templates for our key fragments, belief propagation was not
actually essential for extracting the key from the U-Os target.

5 Effect of compiler optimization on template attack
In the previous U-Os experiments, we left the gcc optimization set to option -Os (optimize
for space), which was the default for the ChipWhisperer platform software. To see whether
the compiler’s code generation affects the performance of our attack, we decided to repeat
the experiment with gcc option -O3 (optimize for time), resulting in the U-O3 recordings.
Note that the different optimization options will not affect the execution of Weatherley’s

3For tree-shaped belief propagation, without marginalization, probability tables from H/L and E/O
templates are difficult to combine in the same factor graph. Therefore, we used there only H/L templates.

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 359

Table 6: Base-2 logarithmic guessing entropy achieved for our key-recover attacks in the
U-O3 experiment with between 1 and 10 attack traces, using either no SASCA stage (using
byte fragments), or with a SASCA stage using the tree-based belief propagation (using
either 8-bit or 16-bit fragments, not marginalized). Cf. Table 5.

attack traces 1 2 3 4 5 6 7 8 9 10
no BP 8 bit 47.1043 37.9218 34.5498 32.6819 31.5794 30.8995 30.3895 29.9537 29.6220 29.4119

tree BP 8 bit 35.8763 23.6844 19.2180 16.8768 15.4783 14.6245 13.9832 13.5102 13.0639 12.7684
tree BP 16 bit 26.6637 15.2346 11.3605 9.4302 8.3368 7.6768 7.2024 6.8662 6.5471 6.3380

20 24 28 212 216 220 224 228 232 236 240

combinations searched

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on byte tables

1 trace

2 traces

3 traces

4 traces

5 traces

6 traces

7 traces

8 traces

9 traces

10 traces

20 24 28 212 216 220 224 228 232 236 240

combinations searched

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on 16-bit tables

Figure 10: Key-recovery success rates on Ascon-128 with both 8 and 16-bit fragments in
the U-O3 experiment. The little circle marks the success rate if the search depth is limited
to the respective guessing entropy from Table 6. Cf. Figure 9.

Ascon permutation [Wea21, ASCON/internal-ascon-armv7m.S], since its source code is
manually optimized assembly code, which bypasses the optimizer. However they do affect
the AEAD code outside the permutations, such as XORing the key K or calculating the
tag T , as these mode-level operations are written in C. (Thus, we focus here only on the
tree-BP experiment, as the middle rounds of the permutation won’t be affected.)

Table 6 and Figure 10 show the equivalent information as Table 5 and Figure 9,
respectively, but for compiler option -O3 instead of -Os. Compared to the very successful
single-trace attack in the U-Os experiment, the performance here is clearly worse: after
our tree BP with 16-bit fragments, we need to search about 227 key candidates to achieve
a success rate higher than 50% (compared to previously 22), and we need to search about
236 candidates with 8-bit fragments (compared to previously 24). In other words, the U-O3
attack would hardly be practical without both BP and key enumeration.

A look into both the C source code of Weatherley’s unmasked implementation, and the
assembler listing produced by the compiler (with option -Wa,-adhlns=file.lst), revealed
the reason. Although the handwritten assembler code for the permutation uses 32-bit
registers, the surrounding C code XORs the key K with the state of the duplex construct.

2470 2480 2490 2500 2510 2520 2530

clock cycle

0.0

0.2

0.4

0.6

0.8

1.0
ΣfR

2
f

R2
0

R2
1

R2
2

R2
3

(a) U-Os experiment

2420 2430 2440 2450 2460 2470 2480

clock cycle

0.0

0.2

0.4

0.6

0.8

1.0
ΣfR

2
f

R2
0

R2
1

R2
2

R2
3

(b) U-O3 experiment

Figure 11: The ΣfR2
f results and the R2

f values for each byte fragment (f = 0, 1, 2, 3) of
the high word of L1 in K

360 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

Table 7: This LGE table compares the single-trace attack performance between including
in the selected clock cycles only one of the four key-use regions 1, 2, 3, or 4, (from Figure 4,
respectively), as opposed to all four together, all using tree BP with byte fragments.

traces region all four 1 2 3 4
U-Os 4.4958 50.6751 44.5369 48.3660 41.6838
U-O3 35.8763 69.3538 76.4909 73.4121 88.3132

For example, it XORs two lanes of Finalization output (β11) with K, to generate the tag
T , using the macro lw_xor_block_2_src() in [Wea21, ASCON/internal-util.h], which
is actually a loop processing individual bytes. When compiled to optimize code space
(i.e., minimize the size of the executable) with gcc option -Os, the resulting ARMv7-M
assembler code looks pretty exactly like the source code suggests, i.e., a loop over 16 bytes,
which loads one byte from K and one from β11 into the 32-bit registers, XORs them, and
stores one byte of T per iteration. In contrast, if we instead ask the compiler to optimize
for time (-O3), it not only unrolls that loop, but also converts it into a sequence of just
four repetitions of the operations for loading, XORing and storing 32-bit words. In other
words, the optimizer converted here an 8-bit implementation of the key XOR operation
into a 32-bit implementation.

We can also observe this difference on the recorded traces. Figure 11a and 11b show
the results of the interesting clock-cycle detection for the high word of the first lane (L1)
of K during the calculation of T , when the code was compiled with options -Os and -O3,
respectively. For U-Os, the peaks of the R2

f values of each 8-bit fragment are located in four
different clock cycles, indicating that their operations were not executed simultaneously,
whereas for U-O3, the peaks are located in the same clock cycle.

Table 7 indicates how much the four-time use of the key in the Ascon AEAD mode
helped our single-trace attacks against the unmasked version to succeed. Building the
templates for key fragments with clock cycles related to only each single use of the key
at a time, compared to those from all four times, increased the key enumeration cost by
more than a factor 232 for both our unmasked experiments.

6 Attacking a masked version

6.1 Attack strategy
Following our experiments above on the unmasked Ascon implementation (recordings
U-Os and U-O3), we also tried to apply the combination of fragment template attack, belief
propagation, and key enumeration on an implementation with masking (recording M-Os).
Our target masked implementation of Ascon AEAD was from the same package by Weath-
erley [Wea21, ASCON_masked/]. This offers a C implementation of the permutation and
protects the inputs (key, nonce, plaintext, etc.) with first-order Boolean masking [CJRR99],
separating each of these values into two shares: one is the mask, varying per encryption,
provided by a pseudo-random generator based on ChaCha [Ber08], and therefore the other
share is the XOR of the input value and the mask. Throughout the encryption process, the
intermediate values all remain likewise split into two shares, to randomize all the register
values during execution. Compared to the unmasked version, this implementation also
avoids some problems that may help side-channel attacks on the former. For example, it
no longer XORs 8-bit values when calculating the tag T , and the two shares of the key are
only sliced once, rather than three times.

Bronchain and Standaert [BS21] attacked Boolean masked implementations of AES and

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 361

KA βB
11KB βA

11

f⊕ β11 f⊕ TB

TAf⊕Tf⊕Kfmext

Figure 12: Factor graph for our M-Os experiment. (Each variable node also connects to
an observation factor node, which is omitted in this graph.)

Clyde by extending the factor graph for the unmasked algorithm with nodes representing
the original values connected to their shares in the masked version via a f⊕ factor. Following
this idea, we introduce a multi-trace attack derived from the previous tree-shaped one,
where the factor graph (Figure 12) will also cover the two shares of the original target states.
Similar to the setting of the previous unmasked version, we use the empty associated data
A and fix the size of the plaintext P to seven bytes. In the profiling stage, we assume that
attackers can access all the input and output values (K, N , P , C, and T) as well as the
seed of the pseudo-random generator, so that they can produce fragment templates for the
key, its two shares, and all the other intermediate states in the factor graph. In the attack
stage, we only use the probability tables obtained from the templates, and the known T
values, to perform belief propagation and key enumeration, without knowledge of the seed.

Note that Figure 12 reflects the mathematical relations among the original values and
their shares, not the actual steps in this masked implementation to calculate T . The
implementation first calculates TA := KA⊕βA

11, TB := KB⊕βB
11, and finally T := TA⊕TB.

Therefore, we cannot build templates for the fragments of β11 since this value never appears.
Instead we assign them a probability table with a uniform distribution (i.e., no information
update). Besides, our assumption was that the attacker knows T , so we do not need the
templates or probability tables of TA and TB, given that they will not affect the belief
propagation.

6.2 Experiments
As mentioned in Sec. 3.2, while recording the M-Os traces from the masked version, we
kept the setup the same as for the U-Os traces, except for the larger number of attack
traces recorded, to have 100 encryptions each for the same key.

Table 8 shows the number of interesting clock cycles detected in the M-Os experiment,
while Table 9 shows the results of the quality evaluation of the fragment templates.
Here we built fragment templates for sliced registers (E/O words), since that is how the
implementation represents most of our target states. We can see that the masking does
protect the key K to some extent, as fewer interesting clock cycles (37 and 35 for the two
lanes, respectively) were detected compared to the unmasked experiments (see Table 2, β−1
in Init.), leading to lower quality templates as evident from the higher guessing-entropy
values for these fragments. However, for the two shares KA and KB, we still detected a
large number of interesting clock cycles (144 and 139 for two lanes of KA, 240 and 259
for KB), and therefore the quality of their templates is still promising once attackers can
calculate the random numbers for masking in the profiling stage. Note that there are more
interesting clock cycles for KB, the random mask, than for KA, because for the former we
can also detect leaks from where the masks are generated.

For the belief propagation and key enumeration, Figure 13 and Table 10 show the
key-recovery guessing entropy and success rates achieved with different numbers of attack
traces. Single-trace attacks did not succeed, however starting from around five attack
traces recorded with the same key, a 236 key enumeration is likely to succeed.

362 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

Table 8: Numbers of interesting clock cycle detected for the M-Os experiment.

target state K KA KB Fin. βA
11 Fin. βB

11

Lane 1
high/low 21 26 113 109 161 157 41 42 46 40
even/odd 16 28 113 106 213 207 36 33 28 39
union 37 144 240 50 58

Lane 2
high/low 20 26 107 109 203 174 36 36 44 43
even/odd 30 33 114 116 230 227 17 41 16 39
union 35 139 259 49 51

Table 9: Quality evaluation of the templates from in the M-Os experiment, using both the
top-rank success rate (1-SR) and the base-2 logarithm of the guessing entropy (LGE).

byte
Lane 1 Lane 2

even word odd word even word odd word
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

K
1-SR 0.006 0.004 0.012 0.016 0.013 0.018 0.020 0.011 0.003 0.006 0.012 0.013 0.016 0.016 0.013 0.021
LGE 6.011 5.929 5.964 5.967 5.756 5.819 5.659 5.844 6.034 6.066 5.858 5.780 5.944 5.964 5.792 5.537

KA 1-SR 0.179 0.112 0.245 0.206 0.115 0.108 0.129 0.162 0.177 0.099 0.246 0.149 0.142 0.102 0.173 0.214
LGE 2.541 3.254 2.068 2.306 3.237 3.292 3.139 2.761 2.494 3.518 2.135 2.938 3.027 3.257 2.555 2.289

KB 1-SR 0.308 0.400 0.440 0.511 0.354 0.535 0.340 0.598 0.330 0.390 0.419 0.509 0.313 0.431 0.307 0.622
LGE 1.704 1.296 1.204 0.872 1.453 0.822 1.535 0.662 1.664 1.178 1.229 0.890 1.634 1.244 1.762 0.649

Fin. βA
11

1-SR 0.014 0.014 0.021 0.017 0.013 0.016 0.013 0.026 0.017 0.011 0.016 0.019 0.011 0.015 0.014 0.023
LGE 5.659 5.816 5.236 5.149 5.761 5.856 5.322 5.117 5.660 5.883 5.539 5.299 5.894 5.905 5.790 5.232

Fin. βB
11

1-SR 0.007 0.010 0.014 0.015 0.016 0.016 0.018 0.019 0.014 0.011 0.007 0.007 0.011 0.007 0.010 0.020
LGE 5.852 5.963 5.465 5.474 5.766 5.781 5.367 5.034 5.960 6.144 6.062 5.828 5.619 5.717 5.375 5.018

Table 10: Logarithmic guessing entropy achieved by our key-recovery attack with 8-bit
fragment templates, using 1–100 encryption traces, respectively (tree BP, M-Os experiment).
(The no BP control experiment, using only templates for K, found hardly any exploitable
first-order leakage of K from the targeted implementation.)

attack traces: 1 2 3 4 5 7 10 20 50 100
tree BP 8 bit 82.2678 65.3453 51.6035 42.3151 35.8232 27.1959 20.2351 12.4211 8.2922 7.1706
no BP 8 bit 120.6646 119.7556 119.2906 118.9934 118.8436 118.6460 118.4844 118.2426 118.0507 117.9981

20 24 28 212 216 220 224 228 232 236 240 244 248

combinations searched

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s

ra
te

tree BP on byte tables
1 trace

2 traces

3 traces

4 traces

5 traces

7 traces

10 traces

20 traces

50 traces

100 traces

Figure 13: Key-recovery success rates in the M-Os experiments on the masked implementa-
tion as a function of the key-enumeration search depth. The little circle marks the success
rate if the search depth is limited to the respective guessing entropy from Table 10.

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 363

7 Conclusion

Ascon’s design supports a leveled implementation of side-channel countermeasures, mean-
ing that only its Initialization and Finalization phases (two key applications and one
permutation pa each) need to be protected against DPA attacks, whereas for the remaining
operations (message XORs and permutations pb), SPA countermeasures are sufficient
to ensure confidentiality of the encryption process, and no further countermeasures are
required to ensure integrity [BBC+20, VCS23]. This was achieved by applying the key four
times to the capacity, both before and after pa during both Initialization and Finalization.

However, our results demonstrate that if such countermeasures are either absent (U-Os,
U-O3), or not entirely effective against a template attack (M-Os), then this quadruple use
of the key in Ascon AEAD mode actually increases the exposure of the key in profiled
side-channel attacks (see Table 4), which may enable full key recovery (see Table 7),
compromising both confidentiality and integrity. That higher exposure of the key, which in
our loopy factor graph is directly connected to four different locations (Figure 7), enables
the belief propagation algorithm to pass messages between Initialization and Finalization.
Previous attack simulations by Luo et al. [LWL+22] did not exploit this higher key exposure
and used only the mathematical relations around the first use of the key, at the start of
Initialization.

Our successful single-trace attack (U-Os) benefited from some remaining 8-bit instruc-
tions in an open-source 32-bit adaption of the algorithm. Yet, even once these were fully
converted to 32-bit instructions (U-O3), we still could recover the key used in this unmasked
Ascon AEAD implementation, by belief propagation and key enumeration, with high
success rates, from no more than 10 traces. Our attack procedure should also be applicable
to Ascon-128a, with only minor modifications.

Our successful multi-trace attack on the more carefully written first-order Boolean
masked Ascon AEAD implementation demonstrates how such protection, originally
designed against CPA/DPA-style attacks, can be overcome by an appropriately designed
template attack. However, a real-world application of such a profiled attack may still pose
challenges considering our assumptions about the access to inputs that the attacker needs
during the profiling phase.

An additional outstanding challenge remains to recover complete Ascon hashing
inputs from a single trace, as was accomplished in [YK22] for SHA-3 (Keccak), another
sponge-based hash function. This will likely require better templates (e.g., directly built
for 32-bit values, as recently proposed by Cassiers et al. [CDSU23]) for the internal states
of the Ascon permutation. Our templates for these (e.g., Init. α6 in Table 3 and Figure 5)
were less effective than those reported for the Keccak permutation in [YK22, Table 2].
However, even with the very similar hardware setting we used, such direct comparisons are
still complicated by the fact that the Keccak and Ascon target implementations came
from different authors and had different programming styles. The former was entirely
portable C code that left the 64-bit to 32-bit conversion to the compiler, whereas the latter
offered a handcrafted assembler implementation of the permutation. That, but also the
fact that Ascon’s permutation is significantly simpler, for example it lacks an equivalent
of Keccak’s complex θ step, overall appears to have resulted in less information leaking
from the fewer instructions needed by Ascon to process its intermediate values.

We hope that our attack methodology can serve as a benchmark for the design of
stronger masking protections, and other implementation guidance, specifically for protecting
against profiled attacks on software implementations.

Data and source code used are available at:

https://www.cl.cam.ac.uk/research/security/datasets/ascon/

https://www.cl.cam.ac.uk/research/security/datasets/ascon/

364 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

References
[ADK19] Abubakr Abdulgadir, William Diehl, and Jens-Peter Kaps. An open-source

platform for evaluation of hardware implementations of lightweight authenti-
cated ciphers. In 2019 International Conference on ReConFigurable Comput-
ing and FPGAs (ReConFig), pages 1–5, 2019. https://doi.org/10.1109/
ReConFig48160.2019.8994788.

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmetric
cryptography. In Advances in Cryptology – CRYPTO 2020, pages 369–400,
Cham, 2020. Springer International Publishing. https://doi.org/10.1007/
978-3-030-56784-2_13.

[BDPA12] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.
Permutation-based encryption, authentication and authenticated encryption.
Presented at DIAC, 2012. https://keccak.team/files/KeccakDIAC2012.
pdf.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20. In Workshop record of
SASC 2008, pages 273–278. ECRYPT, 2008. https://cr.yp.to/chacha/
chacha-20080120.pdf.

[BS21] Olivier Bronchain and François-Xavier Standaert. Breaking masked im-
plementations with many shares on 32-bit software platforms: or when
the security order does not matter. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(3):202–234, July 2021. https:
//tches.iacr.org/index.php/TCHES/article/view/8973.

[CDSU23] Gaëtan Cassiers, Henri Devillez, François-Xavier Standaert, and Balazs Ud-
varhelyi. Efficient regression-based linear discriminant analysis for side-channel
security evaluations: Towards analytical attacks against 32-bit implementa-
tions. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(3):270–293, June 2023. https://tches.iacr.org/index.php/TCHES/
article/view/10964.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In
Michael Wiener, editor, Advances in Cryptology — CRYPTO’ 99, pages
398–412. Springer, Berlin, Heidelberg, 1999. https://doi.org/10.1007/
3-540-48405-1_26.

[CK14a] Marios O. Choudary and Markus G. Kuhn. Efficient stochastic methods:
profiled attacks beyond 8 bits. In International Conference on Smart Card
Research and Advanced Applications, pages 85–103. Springer, 2014. https:
//doi.org/10.1007/978-3-319-16763-3_6.

[CK14b] Omar Choudary and Markus G. Kuhn. Template attacks on different devices.
In Emmanuel Prouff, editor, Constructive Side-Channel Analysis and Secure
Design, pages 179–198, Cham, 2014. Springer International Publishing. https:
//doi.org/10.1007/978-3-319-10175-0_13.

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In
Burton S. Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2002, pages 13–28. Springer, Berlin,
Heidelberg, 2003. https://doi.org/10.1007/3-540-36400-5_3.

https://doi.org/10.1109/ReConFig48160.2019.8994788
https://doi.org/10.1109/ReConFig48160.2019.8994788
https://doi.org/10.1007/978-3-030-56784-2_13
https://doi.org/10.1007/978-3-030-56784-2_13
https://keccak.team/files/KeccakDIAC2012.pdf
https://keccak.team/files/KeccakDIAC2012.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
https://cr.yp.to/chacha/chacha-20080120.pdf
https://tches.iacr.org/index.php/TCHES/article/view/8973
https://tches.iacr.org/index.php/TCHES/article/view/8973
https://tches.iacr.org/index.php/TCHES/article/view/10964
https://tches.iacr.org/index.php/TCHES/article/view/10964
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/978-3-319-10175-0_13
https://doi.org/10.1007/3-540-36400-5_3

Shih-Chun You, Markus G. Kuhn, Sumanta Sarkar and Feng Hao 365

[CWL] CW1173: ChipWhisperer-Lite. accessed February 2018, https://media.
newae.com/datasheets/NAE-CW1173_datasheet.pdf.

[DAF+18] William Diehl, Abubakr Abdulgadir, Farnoud Farahmand, Jens-Peter Kaps,
and Kris Gaj. Comparison of cost of protection against differential power
analysis of selected authenticated ciphers. Cryptography, 2(3), 2018. https:
//doi.org/10.3390/cryptography2030026.

[DEMS21] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schläffer. Ascon v1.2 submission to NIST, May 2021. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf.

[GGP+15] Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schüth, and
François-Xavier Standaert. Simpler and more efficient rank estimation for
side-channel security assessment. In Gregor Leander, editor, Fast Software
Encryption, pages 117–129. Springer Berlin Heidelberg, 2015. https://doi.
org/10.1007/978-3-662-48116-5_6.

[GWDE17] Hannes Gross, Erich Wenger, Christoph Dobraunig, and Christoph Ehrenhöfer.
Ascon hardware implementations and side-channel evaluation. Microprocessors
and Microsystems, 52:470–479, 2017. https://www.sciencedirect.com/
science/article/pii/S0141933116302721.

[KPP20] Matthias J. Kannwischer, Peter Pessl, and Robert Primas. Single-trace
attacks on Keccak. Cryptology ePrint Archive, Paper 2020/371, 2020. https:
//eprint.iacr.org/2020/371.

[LWC] Lightweight cryptography. NIST Computer Security Resource Cen-
ter (CSRC). accessed April 2023, https://csrc.nist.gov/projects/
lightweight-cryptography.

[LWL+22] Sinian Luo, Weibin Wu, Yanbin Li, Ruyun Zhang, and Zhe Liu. An efficient
soft analytical side-channel attack on Ascon. In Lei Wang, Michael Segal,
Jenhui Chen, and Tie Qiu, editors, Wireless Algorithms, Systems, and Appli-
cations, pages 389–400. Springer, Cham, 2022. https://doi.org/10.1007/
978-3-031-19208-1_32.

[Mac03] David J. C. MacKay. Information theory, inference and learning algorithms.
Cambridge University Press, 2003.

[OC14] Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: an open-source
platform for hardware embedded security research. In Emmanuel Prouff,
editor, Constructive Side-Channel Analysis and Secure Design, pages 243–260.
Springer, Cham, 2014. https://doi.org/10.1007/978-3-319-10175-0_17.

[SA08] François-Xavier Standaert and Cédric Archambeau. Using subspace-based
template attacks to compare and combine power and electromagnetic infor-
mation leakages. In International Workshop on Cryptographic Hardware and
Embedded Systems, pages 411–425. Springer, 2008. https://doi.org/10.
1007/978-3-540-85053-3_26.

[SD17] Niels Samwel and Joan Daemen. DPA on hardware implementations of
Ascon and Keyak. Proceedings of the Computing Frontiers Conference, 2017.
https://dl.acm.org/doi/abs/10.1145/3075564.3079067.

https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://media.newae.com/datasheets/NAE-CW1173_datasheet.pdf
https://doi.org/10.3390/cryptography2030026
https://doi.org/10.3390/cryptography2030026
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/978-3-662-48116-5_6
https://www.sciencedirect.com/science/article/pii/S0141933116302721
https://www.sciencedirect.com/science/article/pii/S0141933116302721
https://eprint.iacr.org/2020/371
https://eprint.iacr.org/2020/371
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://doi.org/10.1007/978-3-031-19208-1_32
https://doi.org/10.1007/978-3-031-19208-1_32
https://doi.org/10.1007/978-3-319-10175-0_17
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-540-85053-3_26
https://dl.acm.org/doi/abs/10.1145/3075564.3079067

366 Low Trace-Count Template Attacks on 32-bit Implementations of ASCON AEAD

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic model
for differential side channel cryptanalysis. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 30–46. Springer, 2005.
https://doi.org/10.1007/11545262_3.

[SMY09] François-Xavier Standaert, Tal G Malkin, and Moti Yung. A unified framework
for the analysis of side-channel key recovery attacks. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
pages 443–461. Springer, Berlin, Heidelberg, 2009. https://doi.org/10.
1007/978-3-642-01001-9_26.

[VCGRS12] Nicolas Veyrat-Charvillon, Benoît Gérard, Mathieu Renauld, and François-
Xavier Standaert. An optimal key enumeration algorithm and its application
to side-channel attacks. In International Conference on Selected Areas in
Cryptography, pages 390–406. Springer, 2012. https://doi.org/10.1007/
978-3-642-35999-6_25.

[VCGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 282–296. Springer,
2014. https://doi.org/10.1007/978-3-662-45611-8_15.

[VCS23] Corentin Verhamme, Gaëtan Cassiers, and François-Xavier Standaert. Ana-
lyzing the leakage resistance of the NIST’s lightweight crypto competition’s
finalists. In Ileana Buhan and Tobias Schneider, editors, Smart Card Research
and Advanced Applications, pages 290–308, Cham, 2023. Springer International
Publishing. https://doi.org/10.1007/978-3-031-25319-5_15.

[Wea21] Rhys Weatherley. Finalists to the NIST lightweight cryptography compe-
tition, June 2021. https://github.com/rweather/lwc-finalists/tree/
5d2b22c9ff7744be429cabda0c078ea5b7b6f79e/src/individual.

[YK22] Shih-Chun You and Markus G. Kuhn. Single-trace fragment template attack
on a 32-bit implementation of Keccak. In Vincent Grosso and Thomas Pöppel-
mann, editors, Smart Card Research and Advanced Applications, pages 3–23.
Springer, Cham, 2022. https://doi.org/10.1007/978-3-030-97348-3_1.

https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-031-25319-5_15
https://github.com/rweather/lwc-finalists/tree/5d2b22c9ff7744be429cabda0c078ea5b7b6f79e/src/individual
https://github.com/rweather/lwc-finalists/tree/5d2b22c9ff7744be429cabda0c078ea5b7b6f79e/src/individual
https://doi.org/10.1007/978-3-030-97348-3_1

	Introduction
	Preliminaries
	Ascon
	Template attack
	Belief propagation and SASCA
	Key enumeration

	Building templates for Ascon AEAD
	General experimental assumptions
	Measurement setup
	Detecting interesting clock cycles
	Results of fragment template profiling

	Belief propagation and key enumeration for Ascon AEAD
	Factor graph for bitwise loopy BP across all intermediate states
	Loop-free alternative factor graph
	Results for belief propagation and key enumeration

	Effect of compiler optimization on template attack
	Attacking a masked version
	Attack strategy
	Experiments

	Conclusion

