EXPERIENCE IN AES ALGORITHM
IMPLEMENTATION

Byte Order Problems in the AES Specifications

Implementation and Optimisation in C for the
Pentium II processor

Serpent Optimisation
Performance Results

My AES Winners and Losers

Is E2 'Big-Endian’ or 'Little-Endian’?

3. For an element (a,_1,a,-,...,a0) of set A", let a,_; be the left most element, and a,

be the right most element.

12. An element (a7, ag, .. .,a) in the set B, where a; € GF(2), is identified with
T -
Zc‘i{f' mod 2°Z € Z/2°Z,
i—0

where a; € GF(2) (i = 0,1,...,7) corresponds to a;, € {0,1} C Z in a canonical way,
i.e., ar is the most significant (left most) bit and ay is the least significant (right most)
bit.

13. An element (b, bo, by, bp) in the set W, where b; € B, is identified with
3 i o
> b;2% mod 2%Z € Z/2%Z,
i=0

where b; € B (i = 0, 1,2, 3) corresponds to b; € {0,1,...,2% — 1} C Z. The correspon-

dence of b; to b; is defined in item 12.

HPC and Serpent I/O Byte Order?

HPC. Bits are numbered from left to right, with bit 63 being the
. leftmost bit of a word, and also the numerically largest.

If an ascii character string is used as a key, the characters are
placed into an array of 64-bit words, right-to-left. The first
character of the string will occupy bit positicons 7-0, the second
character will occupy bit positions 15-8, etc. Within a character,

When hexadecimal data is presented to Hasty Pudding, a different
convention is used: Complete words are filled in from left to right,

Serpent:

streams. The indices of the bits are counted from 0 to bit 31 in one 32-bit
word, 0 to bit 127 in 128-bit blocks, 0 to bit 255 in 256-bit kevs, and so on.
For internal computation, all values are represented in little-endian, where the
first word (word 0) is the least significant word, and the last word is the most
significant, and where bit 0 is the least significant bit of word 0. Externally, we
write each block as a plain 128-bit hex number.

e External to what? The Cipher? The Program?
e And what exactly is a ‘plain’ 128-bit hex number?

e Non-portable if written in the machine format

Specifications - Byte Order

Algorithm Specified I/0 byte Internal byte Required action on a little-endian
order order processor to match supplied test vectors

RC6 little-endian neutral none

Rijndael implied little-endian neutral none

MARS little-endian neutral none

TWOFISH little-endian little-endian none

CRYPTON little-endian little-endian none

CAST-256 none neutral invert byte order in each 32-bit word
E2 ! ! invert byte order in each 32-bit word
Serpent ? little-endian invert byte order of 16 byte block
HPC ? (64 bit) neutral invert byte order in each 64-bit word
DFC big-endian big-endian invert byte order in each 32-bit word
SAFER+ big-endian neutral invert byte order of 16 byte block
LOKI97 ? (64 bit) neutral invert byte order in each 32-bit word
FROG little-endian neutral none

DEAL little-endian little-endian none

MAGENTA | implied little-endian little-endian none

Pentium II Paranoia - RC6

The Pentium II has an apoplectic fit when
asked to do a division

for(k = 0; k < 132; ++k) for(k =0, t--; k < 132; ++k)

{ a =rotl(l_key[i] + a + b, 3); { a =rotl(l_key[i] + a + b, 3);
b += a; b += a;
b =rotl(I[j] + b, b); b =rotl(I[j] + b, b);
| _key[i] =a; I[j] = b; | _key[i] =a; I[j] = b;
i = (i +1) %44, i = (i =43 ?20: i + 1);
=0 +1) %t; =0 =t20:] +1);

} }

10364 cycles 1632 cycles

e Its not that the division operation is that bad
e But only one of the two parallel pipelines can do it
e So instruction scheduling gets rotted up

Pentium II - Register Renaming

#define byte(x,n) *(((byte*)&x) + n) #define byte(x,n) ((byte)((x) >> (8 * n)))
store regi ster, long word [out] store regi ster, long word [out]
load register, byte [x + n] | oad register, long word [Xx]

r_shift regi ster, 8*n

e The left hand code sequence looks as if it should be faster
since it only involves a single instruction, loading 1 byte

e That on the right loads 4 bytes and also has to perform a 32
bit shift operation

e But the right hand code is much faster because:

e The PII can rename its visible registers using 40 invisible ones

e The code on the right allows renaming because the new register
value is unrelated to its previous value

e The left hand code doesn’t because the top three bytes of the
old register value are still being used

e Hence the code on the left often stalls one or both pipelines

Pentium II - The Data Cache - Serpent

e Organised in 32 byte blocks - eight 32-bit words each
e One access in a block gets all 32 bytes into the cache
e Access to the other data items then comes almost ‘free’

#defi ne RNDO1(a, b,c,d,w, x,Vy, 2) #defi ne sbil(a,b,c,d, e, f,g,h)
{ register unsigned |long t02, t03,

t04, t05, t06, t07, tO08, tl = ~a ; t2 =b M t1;

t10, t11, t12, t13, t16, t3 =a| t2 ; t4 =d | t2;

t17, tO01; ts =c¢c ~t3 ;7 g=d " th;

t7 =b ™ t4 ; t8 =t2 N g;

t01 = a | d ; t02 =¢ ANdog t9 =t5 &t7 ; h=t8 " 109;
t03 = ~b ; t0O4=a "~c ; t11 =t5 "~ t7; f = h ™ t11;
to5 = a | t03; t06 =d & t04; t13 = t8 & t1ll; e =t5 ~ t13
t07 = t01 &t02; t08 = b | t06
y =t02 ~ t05; t10 = t07 ™ t08; . .
til = t01 ~ t10; t12 =y A tl1l The Serpent encryption routine uses
s Kt e st eight S boxes such as the one shown
t17 = t05 & t16; w =c¢c " t17; here
}

e With many C compilers the left hand code pulls in two cache blocks
for EACH of the eight S boxes - 16 cache read/writes

e With the code on the right the whole encryption routine uses only
two cache blocks

e This can improve Serpent speed by 10% or more

The Serpent S Box Boolean Functions - 1

e Boolean functions with 4 input bits (coding 0-15) and 4 output bits
(again coding 0-15), e.qg:

Input {0 (1|2 |3 |4|5|6|7|8|9|10(11}12|13(14|15
Output|(15(12|2 |7|{9|0|5|10|1 (11|14, 8 |6 |13|3 | 4

e We want a circuit with AND, OR and NOT gates which gives the
specified output states for each of the specified input states:

t0 = b xor (not a)

| | | | tl = c xor (a or tO0)
g =d xor t1

t2 = b xor (d or tO0)

t3 =t0 xor g

h =t3 xor (t1l and t2)

t4 = tl xor t2

| | | | f = h xor t4

e =tl1 xor (t3 and t4)

e We want the ‘minimum cost’ circuit - the one with the fewest
Boolean operations

The Serpent S Box Boolean Functions - II

t[-4 =1 e Start with an initial list of 5 ‘primitives’
t[-3] = a
t[-2] =b start list with 5 e Use a recursive function that:
t[-1] =c¢ ‘primitive’ terms
oy =d e adds a binary term that is a
combination of existing terms
t[1] = t[-4] xor {[-3] .
2] = -2] ~ t[1] using AND, OR or XOR
3] =1-3] | 1[2] L _—
4] =1 0] | t[2] e for all combinations of existing terms
(5] =t[-1] " 1[3]
9 =10 ~5] - got one and for each operator
(7] =1-2] " t[4] .
8] =t2] " g e checking if e, f, g or h have been
t[9] = t[5] & t[7]
h =t[8]"t[9] - gottwo matChed
ot - ot three e if a match use this as a basis for a
{[13] = (8] & t[11] deeper recursion to match the

e =1t[5] M t[13] - got all four! ..
remaining outputs

e if no match add a recursion level

e This worked but it was painfully slow in finding improved S boxes

e After running it for several days on a 200 MHz PII, I had a couple
of better S boxes

The Serpent S Box Boolean Functions - III

t[-4] =1 _ _
t[-3] = a e Rather than checking if e, f, g or h have been
t[-2] = Db start list with 5
t[-1] =c¢ ‘primitive’ terms matChed,
0] =d : : : :
e Check if the new term will combine with an

1 =4 ora existing list item to match e, f, gorh
t ={[-2] "t
t{g,} :t{-g,}“[[z]] e Pretty stupid since this involves a lot more
e ity work in the core of the recursive function!
RN I 7 R e BUT it saves a level of recursion and pays off
18] =12]"g |
19} -1 2 hand.sm.ﬂely |
t[lhl]::tg] ATE]] oot e Use limited processor power by preferring

f =h~{11] - got three depth first recursion - build on existing partial
i3l - ot foun solutions rather than looking for new partials

e I get good results by running my PII over a weekend, reducing the
average S box function by about 1.5 Boolean terms

e This gets Serpent to 25 megabits/second on the PII reference platform
e All then goes quiet for a couple of months

The Serpent S Box Boolean Functions - IV

e Ross mentions in passing on the '"UKCRYPTO’ mailing list that I have
improved Serpent’s performance

e Several people email to ask how I did this. This includes Sam Simpson
(of SCRAMDISK fame)

e Sam offers to run my program on some high capacity servers that he
has access to and which lie mostly dormant at night and at weekends

e He tries and fails (at this stage there is no way any sane person can
drive my program)

e I improve my program and convert it to run a width first search (not
expecting any results because of the search depth this will need)

e Over about a week just before Christmas we get many new S box
functions including two with only 14 terms.

e The new functions get Serpent to nearly 27 megabits/second

e SO0 a combination of cache and Boolean function optimisations have
improved Serpent speed by around 15%

AES Candidate Performance - 1

RC6 Rijndael | MARS | Twofish | CRYPTON | CRYPTON vl | CAST E2

K ey Setup (128) 1632 | 305:1389 | 4316 9376 | 531:1369 744:1270 | 4333 9473
Encryption speed (128) 94.8 68.4 | 69.4 67.5 54.1 53.8 | 40.4 37.3
Decryption speed (128) 113.3 72.7| 68.1 66. 5 54.1 54.5| 40.4 37.0
Mean speed (128) 103. 2 70.2 | 68.7 67.0 54.1 54.1| 40.4 37.2
Ser pent HPC DFC | SAFER LOKI FROG | DEAL | MAGENTA

K ey Setup (128) 2402 120749 | 7166 4278 7430 1416182 | 8635 30
Encryption speed (128) 26.9 17.9| 15.6 14.9 12.0 10.6 | 10.9 3.9
Decryption speed (128) 28.0 16.0| 15.4 15.0 11.7 11.5| 10.8 3.9
27. 4 16.9| 15.5 14.9 11.8 11.0| 10.9 3.9

M ean speed (128)

e VValues are for the 200 MHz PII Reference Platform

e The compiler is Microsoft VC++ used in a pragmatic way

e Sensible non-ANSI optimisations (e.g. rotates) have been used

e Byte order inversion costs are not included

e Key set-up is in cycles, encryption/decryption in megabits/second

e Consistent code style, using no (overly) obscure techniques

AES Candidate Performance - II

e Ranking of AES candidates for encrypting 1 block (16 bytes)
Rijndael CRYPTON RC6 Serpent = MARS CAST | SAFER MAGENTA

e Ranking of AES candidates for encrypting 256 blocks (4096 bytes)

RC6 Rijndael MARS Twofish CRYPTON CAST E2 Serpent

e Ranking of AES candidates for bulk encryption (> 100000 bytes)

RC6 MARS Rijndael Twofish CRYPTON CAST E2 Serpent

e Caveats:
e The Twofish version optimised for bulk encryption is used throughout
e A different version would perform much better at low block counts

e Byte order conversion costs are omitted for CAST, Serpent & SAFER

AES Winners and Losers (IMHO)

e Should definitely go out on performance grounds:
e DEAL, FROG, LOKI97, MAGENTA and SAFER+
e Should definitely stay in if secure:
e MARS, RC6, Rijndael, Serpent and Twofish
e Should go out as a result of my personal bias:
e HPC and DFC
e Undecided:
e CAST, Crypton and E2

