Delegation of Responsibility

Bruno Crispo University of Cambridge

23 February 1999

Changing Environment

- 2-party system \rightarrow 3-party system
- Public Available \rightarrow Public Offered
- Computer system security → Infrastructure policy + Service provider policy + Customer policy
- Trust Assumptions

Problem

President delegates the power to sign certain documents on her behalf to her secretary.

The president announces the sacking of the secretary because of a mistake in a very important document. The secretary has signed the document in place of the president but she has not made a mistake.

How she can defend herself?

How she can build evidence to corroborate her innocence?

Notation

- Principal: generic entity of the system.
- Grantor: principal that delegates.
- Grantee: principal that has been delegated.
- End-Point: principal where delegation is used.
- A \rightarrow B \rightarrow C \rightarrow D \longrightarrow End-Point, B and C are intermediaries.

Delegation of Responsibility

Delegation of Rights: process whereby a principal authorises an agent to act on her behalf, by transferring a set of rights to the agent, possibly for a specific period of time

Grantor is trusted

Delegation of Responsibility: process whereby a principal authorises an agent to act on her behalf, possibly for a specific period of time, during which it is always possible to distinguish whether a particular delegated task was performed by the principal or by the agent acting on her behalf.

Grantor is not trusted

Delegation of Responsibility (cont'd)

Delegation of Rights Trust shared responsibility only rights no auditing

Delegation of Responsibility No Trust responsibility and rights auditing

Other Semantics of Delegation

Necessary Conditions to Delegate

• Right to Delegate.

• Freedom to choose the principal that will act as grantee.

Taxonomy

Type of delegation	Grantor		Grantee	
	before	after	before	after
Rights G	G	G	Ø	G
Partial Right G'	G'	G'	G''	G'''=G'∪ G''
Responsibility R	R	Ø	Ø or G	R or R + G
Responsibility and Rights R+G	R + G	Ø or G	Ø	R + G
Responsibility and Partial Rights R + G'	R + G'	Ø or G'	G''	R + G''' G'''= G'∪G''

Capability (1)

- Free Propagation: capability can be freely propagated in the system through principals.
- Free Access: whoever possess the capability can use the rights bound to this capability.

Capability

• SCAP [Karger 1988]

• Amoeba [Mullender 1985]

• ICAP [Gong 1990]

• Limitations:

- Extended TCB and no use of cryptography.
- Client-Server-Client instead of Client-Client.
- Security policy dictated and enforced by the infrastructure.

Delegation Token (1)

[Sollins "Cascaded Authentication" IEEE SSP 1988]

[Gasser and McDermott "An Architecture for Practical Delegation in a Distributed System" IEEE SSP 1990]

[Varadharajan et.al. "An Analysis of the Proxy Problem in Distributed System" IEEE SSP 1991]

[Neuman "Proxy-Based Authorization and Accounting for Distributed System" CDS 1993]

{Grantor, Grantee, Rights, Validity, Others}KGrantor

Delegation key

Delegation Token (2)

- Problems:
 - Trustworthy intermediaries.
 - Chains of delegation.
 - Grantors are trusted:
 - not to abuse their power to delegate.
 - not to abuse their knowledge of delegation keys.
 - Grantees are trusted:
 - not to abuse the delegated rights.

Untrusted Grantee

[Abadi,Burrows,Kaufman,Lampson "Authentication and Delegation with Smart-Cards" TR. 67 1992]

[Abadi, Burrows, Lamspon, Plotkin "A Calculus for Access Control in Distributed Systems" ACM ToPLaS 1993]

[Lampson, Abadi, Burrows, Wobber "Authentication in Distributed Systems: Theory and Practice" ACM ToCS 1992]

• Auditing: detecting grantee's misbehaviors.

$$A \rightarrow B$$
 A

B

(B for A)

Principle of Consent

[Abadi,Burrows,Kaufman,Lampson "Authentication and Delegation with Smart-Cards" TR. 67 1992]

[Abadi, Burrows,Lamspon,Plotkin "A Calculus for Access Control in Distributed Systems" ACM ToPLaS 1993]

[Lampson, Abadi, Burrows, Wobber "Authentication in Distributed Systems: Theory and Practice" ACM ToCS 1992]

- PoC: Delegated rights must always be explicitly accepted by the grantee.
- Grantor and grantee share responsibilities for the delegated rights.

Delegation of Responsibility

• Self-Authenticating Proxy

[Low, Christianson "Self Authenticating Proxies" IEE EE 1994][Low, Christianson "A Technique for Authentication, Access Control and Resource Management in Open Distributed Systems" IEE EE 1994]

• Cryptographic Solution

[Mambo et al. "Proxy Signatures: Delegation of the Power to Sign Messages" IEICE 1996]

[Kim et al. "Proxy Signatures Revisited" ICICS 1997]

Delegation Protocol

M=" G wishes to delegate to g Ω using $K_{G_{R-t-D}}^+$ "
1. G \to g: M, $SIG(M, K_G^-)$

M'=" g accepts Ω using $K_{g_{R-t-A}}^+$ and exercise Ω using $K_{g_{R-t-E}}^+$ " 2. g \to G: M', $SIG(M', K_g^-)$

$$M''=$$
" g, G, Ω , $K_{G_{R-t-D}}^+$, $K_{g_{R-t-E}}^+$, $K_{g_{R-t-A}}^+$ " 3. G \to g: T = M", $SIG(M'', K_{G_{R-t-D}}^-)$

4. g then signs T producing the delegation token: T, $SIG(T, K_{g_{R-t-A}}^-)$

Logic of Delegation

 Need of formalism to analyse delegation protocols.

[Abadi, Burrows,Lamspon,Plotkin "A Calculus for Access Control in Distributed Systems" ACM ToPLaS 1993]

- Cannot express the difference between the two semantics
- Not general
- No distinction between active and passive entities

Future Work

- Interactions between these semantics of delegation with those defined in other areas (e.g., Object-oriented)
- Formal approach
- Implementation of auditing mechanisms
- Principle of the least trust