
1

Flicker:Flicker:
Minimal TCB Code ExecutionMinimal TCB Code Execution

Jonathan M. McCune
Carnegie Mellon University

March 25, 2008

Bryan Parno, Arvind Seshadri
Adrian Perrig, Michael Reiter

2

Password Reuse
• People often use 1 password for 2+ websites
• Banking, social networking, file sharing, …

P A S S W O R D

3

Password Exposure
• Password provided to compromised

web server

P A S S W O R D

My-
hobby
.com

www.myhobby.com
is compromised!

4

Password Verification
• What if…

– A compromised OS cannot learn the password
– Only essential code can access password

• Decrypt SSL traffic
• Salt and hash password
• Compare with stored hash
• Output MATCH or FAILURE

– Can remotely verify this is so
• Requires strong system security

• What about zero knowledge protocols?
– A viable alternative for passwords
– Our techniques are more general

• Password verification is just an example

5

Outline
1. Existing approaches to system security
2. Remote attestation and verification
3. Static root of trust for measurement
4. Dynamic root of trust for measurement
5. Flicker: Minimal TCB Code Execution

• Optional
– Example: IBM Integrity Measurement Arch.
– Specifics of AMD SVM / Intel TXT

6

App1 App2 App3

Some Current Approaches
• Program code in ROM
• Secure boot
• Virtual-machine-based isolation

• Evaluation metric: size of Trusted Computing
Base (TCB)

Operating System

Hardware

7

Security Properties to Consider
• How can we trust operations that our devices

perform?
• How can we trust App1?
• What if App2 has a security vulnerability?
• What if Operating System has a security

vulnerability?

App1 App2 App3

Operating System

Hardware

8

Program Code in ROM
• Advantages

– Simplicity
– Adversary cannot inject any additional software

• Disadvantages
– Cannot update software (without exchanging ROM)
– Adversary can still use control-flow attack
– Entire system is in TCB, no isolation

• Verdict
– Impractical for current systems
– Code updates are critical

• Bug fixes
• New features

A1 A2 A3
Operating System

Hardware

9

Secure Boot
• Boot process uses signature chain

– BIOS verifies signature on boot loader
– Boot loader verifies signature on OS, ...

• Advantages
– Only approved software can be loaded

• Assuming no vulnerabilities
• Disadvantages

– Adversary only needs to compromise singe component
– Entire system is in TCB, no isolation
– Not all software is commercial

• Verdict
– Entire system is still part of TCB
– Relatively weak security guarantee

A1 A2 A3
Operating System

Hardware

10

Virtual-machine-based Isolation
• Approach: Isolate applications by executing them

inside different Virtual Machines
• Advantages

– Smaller TCB
– Isolation between applications

• Disadvantages
– VMM is still large and part of TCB
– Relatively complex, not suitable for average user

• Verdict: Smaller TCB, step in right direction

A1 A2 A3
OS OS OS

VMM
Hardware

11

Outline
1. Existing approaches to system security
2. Remote attestation and verification
3. Static root of trust for measurement
4. Dynamic root of trust for measurement
5. Minimal TCB Code Execution

• Optional
– Example: IBM Integrity Measurement Arch.
– Specifics of AMD SVM / Intel TXT

12

• Desirable property: Remotely verify
trustworthy device operation

• Presented approaches not verifiable
– Higher resilience to attacks
– Remote verifier obtains no additional assurance

Remote Verification?

A1 A2 A3

V
Everything OK?

Yes/No
Operating System

Hardware

13

Remote Attestation

• Attestation enables verifier to establish trust
in untrusted device
– Attestation tells verifier what code is executing on

device
– If intended code is executing on untrusted device,

verifier can trust its operation

A1 A2 A3

V
What code is executing?

Hash(Code)

Verifier Untrusted Device

Operating System
Hardware

14

Outline
1. Existing approaches to system security
2. Remote attestation and verification
3. Static root of trust for measurement
4. Dynamic root of trust for measurement
5. Flicker: Minimal TCB Code Execution

• Optional
– Example: IBM Integrity Measurement Arch.
– Specifics of AMD SVM / Intel TXT

15

Hardware-based Attestation
• Leverages hardware support for attestation
• Trusted Platform Module (TPM) chip

– Already included in many platforms
– Cost per chip less than $10

• Modern microprocessors provide special instructions
that interact with TPM chip
– AMD SVM: SKINIT instruction
– Intel TXT/LT: GETSEC[SENTER] instruction

16

Trusted Computing Group (TCG)
• Open organization to “develop, define, and promote open

standards for hardware-enabled trusted computing and
security technologies.”

• These secure platform primitives include
– Platform integrity measurements
– Measurement attestation
– Sealed storage

• Can enable
– Trusted boot (not secure boot)
– Attestation

• Goals:
– Ensure absence of malware
– Detect spyware, viruses, worms, …

17

TCG Trusted Platform Module
(TPM)

RandomRandom

NumberNumber

GeneratorGenerator

CryptoCrypto

RSARSA

Non-VolatileNon-Volatile

StorageStorage

(EK, AIK, SRK)(EK, AIK, SRK)

Key Key

GenerationGeneration

PlatformPlatform

ConfigurationConfiguration

Register (PCR)Register (PCR)

LP
C

 b
us

LP
C

 b
us

SecureSecure

HashHash

SHA-1SHA-1

I/OI/O

DIP Packaging or integrated into SuperIO

18

Basic TPM Functions
• PCRs store integrity measurement chain

– PCRnew = SHA-1(PCRold||measurement)
• Remote attestation (PCRs + AIK)

– Attestation Identity Keys (AIKs) for signing PCRs
– Attest to value of integrity measurements to remote

party
• Sealed storage (PCRs + SRK)

– Protected storage + unlock state under a particular
integrity measurement (data portability concern)

19

TCG-Style Attestation

BIOS
Boot

Loader OS Kernel
conf

Module 2

Module 1

TPM
PCRs

BIOS
Boot

Loader

Hardware
SoftwareAIK-1

Apps

App 2

App 1

Apps

App 2

App 1

OS Kernel
conf

Module 2

Module 1

20

TCG-Style Attestation

What code are
you running?

1
}{

!AIK
PCRs

Host platformChallenger

21

Optional
• IBM’s Integrity Measurement Architecture
• Works for Linux

22

Shortcomings of TCG-style Attestation
• Static root of trust for measurement (reboot)
• Coarse-grained, measures entire system

– Requires hundreds of integrity measurements just to boot
– Every host is different

• firmware versions, drivers, patches, apps, spyware, …

– What does a PCR mean in this context?
– TCB includes entire system!

• Integrity measurements are done at load-time not at run-time
– Time-of-check-time-of-use (TOCTOU) problem
– Cannot detect any dynamic attacks!
– No guarantee of execution

A1 A2 A3
Operating System
Hardware TPM

23

Outline
1. Existing approaches to system security
2. Remote attestation and verification
3. Static root of trust for measurement
4. Dynamic root of trust for measurement
5. Flicker: Minimal TCB Code Execution

• Optional
– Example: IBM Integrity Measurement Arch.
– Specifics of AMD SVM / Intel TXT

24

Dynamic Root of Trust for Measurement
aka: Late Launch

• Involves both CPU and TPM v1.2
• Security properties similar to reboot

– Without a reboot!
– Removes many things from TCB

• BIOS, boot loader, DMA-enabled devices, …
• Long-running OS and Apps if done right

• When combined with virtualization
– VMM can be measured (MVMM)

• Uptimes measured in years
– Integrity of loaded code can be attested
– Untrusted legacy OS can coexist with trusted software

• Allows introduction of new, higher-assurance
software without breaking existing systems

25

AMD/Intel Late Launch Extensions
• AMD: Secure Virtual Machine (SVM)
• Intel: Trusted eXecution Technology (TXT)

– Formerly LaGrande Technology (LT)

• Similarities:
– Late launch of a measured block of code
– Hardware support for virtualization

• Differences:
– AMD provides measured environment only
– Intel adds authenticated code capabilities

• The system’s chipset contains a public key to verify signed
code

26

AMD Secure Virtual Machine
• Virtualization support

– DMA protection for memory
– Intercept selected guest instructions / events
– Much more…

• Late launch with support for attestation
– New instruction: SKINIT (Secure Kernel Init)
– Requires appropriate platform support (e.g., TPM 1.2)
– Allows verifiable startup of trusted software

• Such as a VMM
• Based on hash comparison

27

SKINIT (Secure Kernel Init)
• Accepts address of Secure Loader Block (SLB)

– Memory region up to 64 KB

• SKINIT executes atomically
– Sets CPU state similar to INIT (soft reset)
– Disables interrupts
– Enables DMA protection for entire 64 KB SLB
– Causes TPM to reset dynamic PCRs to 0
– Sends SLB contents to TPM
– TPM hashes SLB contents and extends PCR 17
– Begins executing SLB

28

SKINIT Security Properties
• Verifier receives attestation after SKINIT

– Knows SKINIT was used
– Knows software TCB includes only the SLB
– Knows exactly what SLB was executed

• SLB can be written to provide add’l props.
– Knows any inputs to SLB
– Knows any outputs from SLB
– Knows exactly when SLB finished executing

29

AMD SVM Security Discussion
• Property: Verifiable untampered code

execution
• SKINIT + TCG 1.2 provide very strong

security properties
• Minimal TCB: Only hardware and application

need to be trusted

A1 A2 A3
Operating System

Hardware

30

Optional
• Detail on specific AMD/Intel Extensions

– AMD Secure Virtual Machine (SVM)
– Intel Trusted eXecution Technology (TXT)

31

Outline
1. Existing approaches to system security
2. Remote attestation and verification
3. Static root of trust for measurement
4. Dynamic root of trust for measurement
5. Flicker: Minimal TCB Code Execution

• Optional
– Example: IBM Integrity Measurement Arch.
– Specifics of AMD SVM / Intel TXT

32

Today, TCB for sensitive
code S:

• Includes App
• Includes OS
• Includes other Apps
• Includes hardware
With Flicker, S’s TCB:
• Includes Shim
• Includes some

hardware CPU, RAM
TPM,

Chipset

TCB Reduction with Flicker

DMA Devices
(Network, Disk,

 USB, etc.)

OS

AppApp
1 … App

S

Shim

33

Contributions
• Isolate security-sensitive code execution

from all other code and devices
• Attest to security-sensitive code and its

arguments and nothing else
• Convince a remote party that security-

sensitive code was protected
• Add < 250 LoC to the software TCB

Shim

SSoftware
TCB < 250 LoC

34

Adversary Capabilities
• Run arbitrary code with

maximum privileges
• Subvert any DMA-

enabled device
– E.g., network cards, USB

devices, hard drives
• Perform limited hardware

attacks
– E.g., power cycle the

machine
– Excludes physically

monitoring/modifying CPU-
to-RAM communication

CPU, RAM
TPM, Chipset

DMA Devices
(Network, Disk,

 USB, etc.)

OS

AppApp
1 …

Shim

S

35

Architecture Overview
• Core technique

– Pause current execution environment
– Execute security-sensitive code with hardware-

enforced isolation
– Resume previous execution

• Extensions
– Preserve state securely across invocations
– Attest only to code execution and protection
– Establish secure communication with remote parties

36

Execution Flow

TPM

PCRs:

K-1

927 …000
CPU

OS

App

Shim

SModule

RAM

OS

App

Module

SKINIT
Reset

InputsOutputsModule

0h0 0H0 0

Shim

S 00 0

37TPM

PCRs: 0

K-1

…

TPM

PCRs:

K-1

…

000

Shim
S Inputs

Outputs

Attestation

38

TPM

PCRs:

K-1

…

000

Shim
S Inputs

Outputs

Attestation
What code are
you running?

Shim

S Inputs
OutputsSign(), K-1

Sign), K-1

…

OS

App
S

App
5

App
4

App
3

App
2

App
1

(

Versus

39

Shim

S
Shim

S

Shim

S

Context Switch with Sealed Storage

PCRs:
000

…
PCRs:

000

…

Time

Shim

S

Data

OS

Shim

S

• Seal data under combination of code, inputs, outputs
• Data unavailable to other code

Shim

S
Shim

S

40

Functionality
• Shim can execute arbitrary x86 code but

provides very limited functionality
• Fortunately, many security-sensitive functions

do not require much
– E.g., key generation, encryption/decryption, FFT

• Functionality can be added to support a
particular security-sensitive operation

• We have partially automated the extraction of
support code for security-sensitive code

41

Application: Rootkit Detector

Hardware

OS

App
1

…

Shim

D

App
n

Run detector OS

OS

• Administrator can check the integrity of
remote hosts
– E.g., only allow uncompromised laptops to

connect to the corporate VPN

42

Application: SSH Passwords

nonce Start

Gen {K, K-1}

K

EncryptK(passwd)

EncryptK(passwd)

OK!

Shim

S

K Shim

S K-1
Shim

S

K-1
Shim

S

EncryptK(passwd)passwd

43

Other Applications Implemented
• Enhanced Certificate Authority (CA)

– Private signing key isolated from entire
system

• Verifiable distributed computing
– Verifiably perform a computational task on

a remote computer
– Ex: SETI@Home, Folding@Home, distcc

44

TPM-related Performance
• During every Flicker context switch

– Application state protection while OS runs

45

TPM Microbenchmarks
• Significant variation by TPM model

46

Breakdown of Late Launch Overhead

• After ~4KB, code can measure itself

47

Ongoing Work
• Containing malicious or malfunctioning

security-sensitive code
• Creating a trusted path to the user
• Porting implementation to Intel
• Improving automatic privilege separation

48

Conclusions
• Explore how far an application’s TCB can

be minimized
• Isolate security-sensitive code execution
• Provide fine-grained attestations
• Allow application writers to focus on the

security of their own code

49

Thank you!
jonmccune@cmu.edu

