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BFT resilience 

High capacity (cheap)



Byzantine Fault Tolerance
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In summary

• Low latency 

• BFT reliance 

• Fast finality 

• Hight capacity

Current industryWhat we want

• Low latency (not settled) 

• Centralized 

• Slow finality 

• Hight capacity (not settled)



This requires extremely low latency

Make it practical for retail payment at 
physical points of sale
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Difference with blockchains

Blockchains FastPay

Byzantine Consensus Byzantine Consistent Broadcast
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Validity 

No duplication 

Integrity 

Consistency

Byzantine Consistent Broadcast



• Last primary tx index

FastPay
Authorities' state

• Verification key 

• Balance 

• Sequence number 

• Last transfer order 

• List of certificates and 
synchronization orders

Each accountAuthorities

• Authority name and keys 

• Committee information 

• Accounts information
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Clients' state

• Their account's address 

• Their secret key 

• Committee information 

• Last sequence number 

• Last signed transfer order
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Interface it with a primary infrastructure

s
sc

Smart Contract's state

• "Redeem log"

• The committee information 

• Total funds in the contract 

• Last primary tx index



FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction



FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction

2. synchronization order



FastPay
From primary infrastructure to FastPay

sender smart contract

1. funding transaction

2. synchronization order

3. verify & update



FastPay
Interface it with a primary infrastructure

Smart Contract's state

• "Redeem log"

• The committee information 

• Total funds in the contract 

• Last primary tx index

s
sc



FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

smart contract



FastPay
From the primary infrastructure to FastPay

sender

1. transfer order
2. verify

smart contract



FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

2. verify

smart contract



FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

4. confirmation order

2. verify

smart contract



FastPay
From the primary infrastructure to FastPay

sender

1. transfer order

3. signed transfer order

4. confirmation order

2. verify

5. update

smart contract



FastPay
From the primary infrastructure to FastPay
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FastPay

• Written in Rust 

• Networking: Tokio & UDP 

• Cryptography: ed25519-dalek

https://github.com/novifinancial/fastpay

Implementation
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High concurrency

Figure 5: Variation of the throughput of transfer orders with the number of
shards, for various levels of concurrency (in-flight parameter). The measure-
ments are run under a total load of 1M transactions.

less than 4,000 USD/month per authority5.

Robustness and performance under total system load.
Figures 11 and 12 (see Appendix C) show the variation of
the throughput of transfer and confirmation orders with the
number of shards, for various total system loads—namely
the total number of transactions in the test; they show that
the throughput is not affected by the system load. The tests
were performed with 4 authorities, and the client concurrency
in-flight parameter set to 1,000. These figures illustrate that
FastPay can process about 160,000 transactions per second
even under a total load of 1.5M transactions, and that the total
load does not significantly affect performance. These supple-
ment figures 5 and 6 that illustrate the concurrent transaction
rate (in-flight parameter) also does not influence performance
significantly (except when it is too low by under-utilizing the
system).

Readers may be surprised those measurements are key.
The key measurement work by Han et al. [23] compares a
number of permissioned systems under a high load, and shows
that for all of Hyperledger Fabric (v0.6 with PBFT) [26],
Hyperledger Fabric (v1.0 with BFT-Smart) [27], Ripple [15]
and R3 Corda v3.2 [39] the successful requests per second
drops to zero as the transaction rate increases to more than a
few thousands transactions per second (notably for Corda only
a few hundred). An important exception is Tendermint [10],
that maintains a processed transaction rate of about 4,000
to 6,000 transactions per second at a high concurrency rate.
Those findings were confirmed for Hyperledger Fabric that
reportedly starts saturating at a rate of 10,000 transactions per
second [34]. Our results demonstrate that FastPay continues
to be very performant even under the influence of extremely

5AWS reports a price of 5.424 USD/hour for their m5d.metal instances.
https://aws.amazon.com/ec2/pricing/on-demand (January 2020)

Figure 6: Variation of the throughput of confirmation orders with the number
of shards, for various levels of concurrency (in-flight parameter). The certifi-
cates are issued by 4 authorities, and the measurements are run under a total
load of 1M transactions.

high rates of concurrent transactions (in-flight parameter) and
overall work load (total number of transactions processed), as
expected. This is apparently not the norm.

Influence of the number of authorities. As discussed in
Section 4, we expect that increasing the number of authorities
only impacts the throughput of confirmation orders (that need
to transfer and check transfer certificates signed by 2 f + 1
authorities), and not the throughput of transfer orders. Fig-
ure 7 confirms that the the throughput of confirmation orders
decreases as the number of authorities increases. FastPay
can still process about 80,000 transactions per second with
20 authorities (for 75 shards). The measurements are taken
with an in-flight concurrency parameter set to 1,000, and un-
der a load of 1M total transactions. We note that for higher
number of authorities, using an aggregate signature scheme
(e.g. BLS [8]) would be preferable since it would result in
constant time verification and near-constant size certificates.
However, due to the use of batch verification of signatures,
the break even point may be after 100 authorities in terms of
verification time.

7.3 Latency
We measure the variation of the client-perceived latency with
the number of authorities. We deploy several FastPay multi-
shard authorities on Amazon Web Services (all in Stockholm,
eu-north-1 zone), each on a m5d.8xlarge instance. This class
of instance guarantees 10Gbit network capacity, on a 3.1 GHz,
Intel Xeon Platinum 8175 with 32 cores, and 128 GB memory.
The operating system is Linux Ubuntu server 16.04. Each
instance is configured to run 15 shards. The client is run on an
Apple laptop (MacBook Pro) with a 2.9 GHz Intel Core i9 (6
physical and 12 logical cores), and 32 GB 2400 MHz DDR4
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fn handle_cross_shard_commit(a, C) -> Result {

let O = value(C);
let recipient = match recipient(O) {

Address::FastPay(recipient) => recipient ,

Address::Primary(_) => { bail!(); }

};

ensure!(a.in_shard(recipient));
let recipient_account = accounts(a).get(recipient)

.or_insert(AccountState::new());

recipient_account.balance += amount(O);
Ok()

}

fn handle_primary_synchronization_order(a, S) -> Result {

/// Update recipient(S) assuming that S comes from

/// a trusted source (e.g. Primary client).

let recipient = recipient(S);
ensure!(a.in_shard(recipient));

if transaction_index(S) <= last_transaction(a) {

/// Ignore old synchronization orders.

return Ok();

}

ensure!(transaction_index(S) == last_transaction(a) + 1);

last_transaction(a) += 1;

let recipient_account = accounts(a).get(recipient)
.or_insert(AccountState::new());

recipient_account.balance += amount(S);
recipient_account.synchronized.push(S);
Ok()

}

Figure 10: Authority algorithms for cross-shard updates and (Primary) syn-
chronization orders.

Figure 11: Variation of the throughput of transfer orders with the number of
shards, for various loads. The in-flight parameter is set to 1,000.

Figure 12: Variation of the throughput of confirmation orders with the number
of shards, for various loads. The certificates are issued by 4 authorities, and
the in-flight parameter is set to 1,000.
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Figure 7: Variation of the throughput of confirmation orders with the number
of authorities, for various number of shards. The in-flight parameter is set to
1,000 and the system load is of 1M transactions.

RAM; and connected to a reliable WIFI network. We run
experiments with the client in two different locations; (i) in the
U.K. (geographically close to the authorities, same continent),
and (ii) in the U.S. West Coast (geographically far from the
authorities, different continent). Each measurement is the
average of 300 runs, and the error bars represent one standard
deviation; all experiments use our UDP implementation.

We observe that the client-authority WAN latency is low
for both transfer and confirmation orders; the latency is under
200ms when the client is in the U.S. West Coast, and about
50ms when the client is in the U.K. Figure 8 illustrates
the latency between a client creating and sending a transfer
order to all authorities, and receiving sufficient signatures
to form a transfer certificate (in our experiment we wait for
all authorities to reply to measure the worse case where f
authorities are Byzantine). The latency is virtually constant
as we increase the number of authorities, due to the client
emitting orders asynchronously to all authorities and waiting
for responses in parallel.

Figure 9 illustrates the latency to submit a confirmation
order, and wait for all authorities to respond with a success
message. It shows latency is virtually constant when increas-
ing the number of authorities. This indicates that the latency
is largely dominated by the network (and not by the verifica-
tion of certificates). However, since even for 10 authorities
a FastPay message fits within a network MTU, the variation
is very small. Due to our choice of using UDP as a transport
there is no connection initiation delay (as for TCP), but we
may observe packet loss under very high congestion condi-
tions. Authority commands are idempotent to allow clients to
re-transmit to overcome loss without sacrificing safety.

Performance under failures. Research literature suggests
permissioned blockchains based on (often leader-based) con-
sensus suffer an enormous performance drop when some

Figure 8: Variation of the latency of transfer orders with the number of
authorities, for various locations of the client.

Figure 9: Variation of the latency of confirmation orders with the number of
authorities, for various locations of the client.

authorities fail [30]. We measure the effect of authority fail-
ure in FastPay and show that latency is not affected when f
or fewer authorities are unavailable.

f Latency
(ms ± std)

0 43±2
1 41±3
2 44±4
3 47±2

Table 2: Crash-failure
Latency.

We run our baseline experimen-
tal setup (10 authorities distributed
over 10 different AWS instances),
when a different number of author-
ities are not available for f = 0 . . .3.
We measure the latency experienced
by a client on the same continent (Eu-
rope), sending a transfer order until it
forms a valid transfer certificate. Ta-
ble 2 summarizes the mean latency
and standard deviation for different
f . There is no statistically significant difference in latency, no
matter how many tolerable failures FastPay experiences (up to
f  3 for 10 authorities). We also experimented with killing
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Figure 7: Variation of the throughput of confirmation orders with the number
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1,000 and the system load is of 1M transactions.

RAM; and connected to a reliable WIFI network. We run
experiments with the client in two different locations; (i) in the
U.K. (geographically close to the authorities, same continent),
and (ii) in the U.S. West Coast (geographically far from the
authorities, different continent). Each measurement is the
average of 300 runs, and the error bars represent one standard
deviation; all experiments use our UDP implementation.

We observe that the client-authority WAN latency is low
for both transfer and confirmation orders; the latency is under
200ms when the client is in the U.S. West Coast, and about
50ms when the client is in the U.K. Figure 8 illustrates
the latency between a client creating and sending a transfer
order to all authorities, and receiving sufficient signatures
to form a transfer certificate (in our experiment we wait for
all authorities to reply to measure the worse case where f
authorities are Byzantine). The latency is virtually constant
as we increase the number of authorities, due to the client
emitting orders asynchronously to all authorities and waiting
for responses in parallel.

Figure 9 illustrates the latency to submit a confirmation
order, and wait for all authorities to respond with a success
message. It shows latency is virtually constant when increas-
ing the number of authorities. This indicates that the latency
is largely dominated by the network (and not by the verifica-
tion of certificates). However, since even for 10 authorities
a FastPay message fits within a network MTU, the variation
is very small. Due to our choice of using UDP as a transport
there is no connection initiation delay (as for TCP), but we
may observe packet loss under very high congestion condi-
tions. Authority commands are idempotent to allow clients to
re-transmit to overcome loss without sacrificing safety.

Performance under failures. Research literature suggests
permissioned blockchains based on (often leader-based) con-
sensus suffer an enormous performance drop when some

Figure 8: Variation of the latency of transfer orders with the number of
authorities, for various locations of the client.

Figure 9: Variation of the latency of confirmation orders with the number of
authorities, for various locations of the client.

authorities fail [30]. We measure the effect of authority fail-
ure in FastPay and show that latency is not affected when f
or fewer authorities are unavailable.

f Latency
(ms ± std)

0 43±2
1 41±3
2 44±4
3 47±2

Table 2: Crash-failure
Latency.

We run our baseline experimen-
tal setup (10 authorities distributed
over 10 different AWS instances),
when a different number of author-
ities are not available for f = 0 . . .3.
We measure the latency experienced
by a client on the same continent (Eu-
rope), sending a transfer order until it
forms a valid transfer certificate. Ta-
ble 2 summarizes the mean latency
and standard deviation for different
f . There is no statistically significant difference in latency, no
matter how many tolerable failures FastPay experiences (up to
f  3 for 10 authorities). We also experimented with killing

11

FastPay
Latency

1. transfer order

la
te

nc
y 

(m
s)

committee size
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Worst-case efficiency

Blockchains FastPay

Bad leader can slow down 
the protocol

No leader, nothing changes



FastPay
The cost of simplicity

• Less than 4,000 LOC 

• Over 1,500 Git commits  

• Took 2.5 months to 3 engineers



FastPay
Deployment costs

• AWS m5d.8xlarge instance 

• ~ 5 USD / hour
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Further works

• Checkpointing? 

• Change the authorities? 

• Privacy?



Conclusion

• Paper: https://arxiv.org/abs/2003.11506 

• Code: https://github.com/novifinancial/fastpay

• Based on Byzantine Consistent Broadcast 

• Simple design, low latency, high capacity, very robust

FastPay
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• Sender address 

• Recipient address 

• Amount 

• Sequence number 

• Sender's signature

1. transfer order
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2. verify

• The sender's signature 

• No previous tx is pending 

• The amount is positive 

• Sequence number is as expected 

• Balance is sufficient
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3. signed transfer order
• Each authority signed the transfer 

order received in step 1.
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• Collect enough signed transfer 

orders from step 2.
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2.

7.

7. update
• Check there are enough signatures 

• Decrease the senders' balance 

• Increase the sequence number 

• Set the pending order to None 

• Increase the recipient's balance
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From FastPay to primary infrastructure

s

sc

1.

3.

4.

6.

2.

5.

5. update

• Check there are enough signatures 

• Decrease the senders' balance 

• Increase the sequence number 

• Set the pending order to None

7.
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1.

3.

4.

6.

2.

5.

7. verify & update

• Check sequence number is not on 
the redeem log 

• Update the redeem log 

• Transfer the amount to recipient 

7.
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From primary infrastructure to FastPay
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1.

2.3.

• FastPay recipient 

• All fields required by the 
primary infrastructure (and 
the amount)

1. funding transaction
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2.3.

• Read the transaction on the 
primary infrastructure (once 
it is sequenced)

2. synchronization order
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From primary infrastructure to FastPay

s
sc

1.

2.3.

• Check last primary tx index 

• Increment last primary tx index 

• Create a FastPay account for 
the recipient (if needed) 

• Increase recipient's balance

3. update & verify


