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Abstract

Dependable systems cannot be built without a monitor-
ing and management component. In this paper we pro-
pose using a wide variety of information gathering tools
coupled with custom scripts and a Prolog language engine
to aggregate information from multiple sources. Complex
queries, difficult to express in standard database languages,
can then be used to answer questions about the system (e.g.
the health of individual components) or to discover contra-
dictions (e.g. inconsistent configurations). We describe our
prototype implementation and present some early results.

1. Introduction

Today’s distributed systems are highly complex dynamic
environments where components are strongly dependent on
each other for their correct behavior. This situation becomes
further complicated as we move toward pervasive and mo-
bile computing since systems must now cope with a huge
variety of devices and device software versions. In such
systems change is no longer rare: indeed, the state of indi-
vidual components may be changing rapidly enough that in-
consistency and instability is the norm. This may be an un-
avoidable emergent property of sufficiently large and com-
plex distributed systems (see e.g. recent work on Internet
routing stability [7, 9, 14]).

Yet it is crucial that these dynamic and intricate envi-
ronments be managed: service providers need to sell a de-

pendable service to customers; administrators need to pro-
vide a solid infrastructure to users; and users need their
ubiquitous networks to be unobtrusively reliable. System
management—always a difficult problem—becomes partic-
ularly acute when the manager has so little control over so
many aspects of the environment, or little idea about how it
all fits together [2].

This paper addresses the problem of dependability of
complex, dynamic distributed systems. We specifically
look at the problem of system health monitoring, answer-
ing questions like “Is the system functioning correctly?”,
“What is wrong with the system?”, “Is the state of the sys-
tem in line or at odds with our expectations?”, and “What
needs to be fixed to ensure correct functioning of the sys-
tem?”

We start from an assumption that the system will always
admit inconsistency (at least transiently), and from the be-
lief that the goal of dependability can be furthered by cap-
turing and reasoning about these inconsistencies. We use a
logic programming language to reason about the state of the
system, at least in part since the flexible data representation
afforded by such languages is rather more appropriate for
dealing with inconsistencies than a rigid database schema.

System information is gathered by using whatever ad hoc
or off-the-shelf tools are available; our approach is to build
upon existing system and network management tools, not
to replace them. Indeed, a key benefit of our approach is
the ability to use tools with overlapping areas of applicabil-
ity, explicitly record the origin of each piece of information
gathered, and then reproduce this when resolving contradic-



tions.
In addressing the above problems in this paper, we are

explicitly not attempting to provide a mechanism for ac-
tively controlling or configuring networks. Neither is InfoS-
pect intended to provide the kind of rapid response offered
by, for example, networking intrusion detection systems.
Instead, we focus on providing useful diagnostic informa-
tion to a management system (which still involves a human
being), integrated from a variety of sources, and which can
effectively deal with unforeseen and/or contradictory con-
ditions in the system being monitored.

2. Current approaches

Current approaches to determining system state may be
split into network-related and host-related schemes. The
former tend to be marketed by networking equipment or
big-iron vendors and address the traditional FCAPS objec-
tives of network management. Examples include Cisco’s
CiscoWorks2000, Micromuse’s Netcool, Riversoft’s Open-
River, IBM’s Tivoli Netview, and the HP OpenView suite.

These systems help operators control their network by
providing simplified interfaces to topology discovery, ser-
vice provisioning and equipment maintenance checks. The
Internet community also provides some network-related in-
spection tools, particularly for checking consistency or syn-
tax of router configuration, for example RPSL at RIPE [13],
or the ISI RaToolSet [6].

Commercial host-related systems management software
typically focuses on the PC/server oriented enterprise space:
e.g. IBM’s Tivoli Suite, or Computer Associates’ UniCen-
ter. Microsoft’s SMS is targetted at smaller systems com-
posed of Windows-based machines.

All these commercial systems, while useful, are insuf-
ficient to solve the problems of managing a dependable
computing environment since they assume prior knowledge
of the correct state of a semi-static set of actors. The di-
verse, dynamic and ad hoc systems of the future are not
well served by such simplifying assumptions.

In the research community, there are efforts to increase
system dependability by building operating systems and
architectures for distributed and/or ubiquitous computing
(e.g. EROS [15], Xenoservers [12], one.world [4], JX [3]).
This work is valuable, but we see it as largely orthogonal to
our work: no matter how reliable or flexible individual com-
ponents are, there will always be a need for a distributed
monitoring and management function.

To summarize: reliability management based on as-
sumptions of total control within well-defined perimeters
starts to look very fragile in the context of dynamically
evolving networks of devices and peer-to-peer software sys-
tems. To cope with such an environment, management soft-
ware must itself be ad-hoc and constantly evolving. The re-

mainder of our paper presents our design rationale in further
detail, and introduces our prototype implementation and ini-
tial results.

3. Our approach: Logic languages

We have codified our motivation for investigating logic
languages into a series of (overlapping) design principles
which we present below:

Decouple health monitoring from system operation

Most system management tools manage ‘before the fact’:
they tightly integrate the functions of monitoring and con-
trol. The emphasis is on deciding on a desired system state,
and then making the system elements consistent with that
state. While this approach can work well in a highly cen-
tralized and controlled environment, complete consistency
is an unrealistic goal in a large and complex system. There
are several reasons for this:

1. The time taken for the system to converge to the de-
sired state may be comparable with the interval be-
tween configuration changes. This has been observed
to be the case with many networks and peer-to-peer
systems [8, 17].

2. Changes are frequently made independently of the
management entity. In many systems, a central man-
agement solution simply does not scale socially, since
the demands of users for changes to the infrastructure
exceed the capacity of the management organization
to implement them in a timely manner. As a result,
users (whether individuals or organizations) take mat-
ters into their own hands. This is not an unusual state
of affairs in networking research laboratories, for ex-
ample. More generally, this is the normal state of af-
fairs in a pervasive computing system.

3. There may be no clearly defined notion of a central
management entity anyway, because the system is in
constant interaction with others whose configurations
are themselves changing. This is again the case for
mobile users in a future pervasive computing environ-
ment, but is also true for large ISP networks which
have peering relationships with other carriers.

An alternative approach to system health monitoring is
to manage ‘after the fact’: construct a view of what the con-
figuration of the system actuallyis, and then allow the op-
erator to manage the system in order to achieve what is de-
sired. This option is more appropriate in the kinds of open
and dynamic environments we are interested in here, and
our approach falls squarely into this category.
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Logic languages such as Prolog [1] seem to have many
advantages over the relational databases used in modern
system monitoring packages. Prolog is a purely declara-
tive language in which a program consists offacts about
objects in a system,inference ruleswhich define relation-
ships between objects and allow the derivation of new facts,
andquerieswhich ask questions about objects and their re-
lationships. Facts in Prolog are free-form logical proposi-
tions; there is no predefined data schema.

Make it easy to integrate diverse information sources

As well as integrated system management environments, a
wide variety of excellent ad hoc system monitoring tools are
available both commercially and non-commercially. Such
tools work well because they focus on specific functionality
– port scanning, SNMP traps, etc. Effective distributed sys-
tem diagnosis, on the other hand, requires correlating and
aggregating information from many sources.

We want to use as many of these sources of information
as possible: as systems evolve over time, a system health
monitor which can usefully combine the results from other
tools will win over an integrated solution which tries to do
everything itself.

There are two challenges here: providing a commonrep-
resentationof the results from disparate tools so that they
can be unified, and the software engineering problem ofin-
terfacingour monitoring system to these tools.

Prolog performs well in both roles here: in contrast
to monolithic software architectures, logic languages are
highly effective at unifying the output of other tools via the
use of inference rules, and in contrast to RDBM systems,
the absence of predefined schema makes it easy to add new
information sources.

Expect the unexpected

In large distributed systems, contradictions frequently ex-
ist between what the managers believe the system configu-
ration to be and what is independently observed to be the
actual system state. These contradictions are usually symp-
tomatic of security problems, faults, or misconfigurations,
yet they are unlikely to be detected by monolithic systems
based on well defined schema, since the idea of a schema
itself always presupposes some consistency of state.

For example, a database which models domain name
records as a series of Unixhostent -like structures will
have no way of representing a situation in which two replica
domain name servers have conflicting A-records.

Put simply: relational database systems do not handle
contradictions well. The separation between observed sys-
tem facts and inferences about system state distinguishes
InfoSpect from database-oriented monitoring systems.

We note that in this example, as in most others, a re-
lational schema clearlycould be extended to deal with the
situation. Our point is that for unexpected inconsistencies
this must be done after the fact, a difficult operation in
databases, especially as important information may have al-
ready been thrown away. With our approach there is no
need to throw away anything. There is no requirement that
the set of facts we have be consistent. It is not even required
that we have somea priori notion of consistency.

Bind assumptions about state as late as possible

The preceding goals and assumptions lead to perhaps our
most important design principle: avoid binding any assump-
tions about the state of the system until the last possible mo-
ment. The flexible knowledge representations allowed by
declarative logic languages such as Prolog benefit us greatly
in this respect.

The same flexibility that allows us to easily integrate
diverse tools also allows us to accept data from the tools
“without prejudice”, and only later interpret these facts
within a particular model of behavior (and check that they
are consistent with the model).

This is in contrast to the use of relational databases,
where an explicit schema is imposed on observations from
the network or system. The process known as “data clean-
ing” (in data warehousing terminology) when outputs from
tools are first fed into the RDBMS has a tendency to throw
away precisely the anomalous observations that are most in-
teresting. The use of a schema also makes it hard to evolve
the system as new network characteristics become impor-
tant.

With Prolog, the schema is implicitly present only in the
queries and inference rules written alongside the data from
network tools, and so can be changed at whim. In fact, we
can view the process of making a query as temporarily bind-
ing a schema to the data for the duration of the query. This
late binding is essential in a highly dynamic and evolving
environment.

Of course, the nature of the discovery tools we use also
imposes something of ana priori schema on the data. Note,
however, that this is also the case with systems based on
the relational model. Furthermore, by using a diverse array
of different discovery tools and delaying the unification of
their results until query time, InfoSpect can mitigate the ef-
fect of these tool-specific representations of network state.

Finally, we note that thesourceof a particular fact about
the system is often as useful as the fact itself in determin-
ing state anomalies. In InfoSpect all facts are labeled with
where they were obtained. This kind of information is typi-
cally discarded in database-oriented systems.
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4. Implementation

The InfoSpect prototype consists of a central Prolog
knowledge base, a set ofdriver scripts, and a corresponding
set of ad hoc or off-the-shelfdiscovery tools.

Nmap

Nessus

SNMP

RtCfg

Prolog Knowledge Base

prolog facts

prolog facts

prolog facts

prolog facts

inference rules
other facts

(other tools)

Figure 1. System Data Flow in InfoSpect

Figure 1 illustrates the flow of information through the
system. The “main loop” of the system queries the knowl-
edge base for a list of driver scripts to be run, and then
invokes each of these (preferably in parallel) to gather in-
formation. A driver script queries the knowledge base for
information (e.g. the set of possible routers) which it uses to
drive a discovery tool. The driver script translates the output
of the discovery tool into Prolog facts which are then added
to the knowledge base.

This system is highly extensible since it may be updated
to use new tools without interrupting normal operation by
adding to the knowledge base a set of Prolog facts that de-
scribe the set of discovery scripts to be run. These new or
modified tools will be run in subsequent iterations.

Entries in the knowledge base come in three flavors:

1. Facts input from external sources (such as a list of
well-known Trojan horse ports, or vendor tags for Eth-
ernet MAC addresses);

2. Facts directly observed from some discovery tool
(which themselves retain information as to which tool
they originate from); and

3. Inference rules which are used to derive new facts from
existing ones.

For example, entries of the first kind might include the
fact that port 53 is reserved for DNS traffic, entries of the
second kind could include which hosts were observed by
Nmap to be listening on TCP port 53, and entries of the

third kind could include the idea that a machine listening on
port 53 is likely to be a DNS server.

4.1. Example tools

Some concrete examples of driver scripts and discovery
tools used in our current implementation are:

Network discovery tools: We have a simple SNMP
walker written in Python which writes topology and routing
information to the knowledge base, and a network consis-
tency checker which queries the knowledge base for likely
routers and fetches the running configurations from those
routers. The knowledge base includes the router’s bootstrap
configurations and so the checker can determine what, if
anything, has changed.

Our experience has been that automatically interpreting
router configurations obtained in the traditional way using
expect scripts is easier if the information is converted into
Prolog as early as possible in the process, and the rest of the
job implemented as Prolog rules.

Using this information, predicates can be written to (for
example) dynamically check for consistent BGP filters and
policies. Another application is determining whether it is
possible to transmit an IP packet out of an intranet with-
out traversing a firewall box—a useful feature in a network
testing lab.

Host system scanners: Several driver scripts are used for
discovering hosts and checking host system security, in-
cluding the network mapper Nmap [5], and the remote se-
curity scanner Nessus [16], fed with the facts derived from
the network discovery tools. The results are facts like:

nmap_ipaddr(’10.64.201.201’).
nmap_ipaddr(’10.64.201.209’).
...
nmap_os(’10.64.201.201’,’Solaris 2.6 -

2.7’).
nmap_os(’10.64.201.209’,’Foundry Server-

Iron XL Switch Version 06.0.00T12’).
...
nmap_tcp_port_open(’10.64.201.201’,22).

—which indicates among other things that, according to
Nmap, a host with IP address 10.64.201.201 exists, and is
listening on the ssh port, and probably runs Solaris1.

From these results, predicates can be derived to locate
security anomalies in a variety of end systems. A simple
example might be to ask the system for all Windows ma-
chines running a vulnerable version of IIS.

These facts are used by the system in other ways as
well. A heuristic for discovering routers incorporates op-
erating system information and would include the machine

1Nmap includes an operating system fingerprint capability, used here.
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10.64.201.209 above as a result. We will see in the next
section how heuristics like this can be very concisely ex-
pressed.

4.2. A detailed example: DNS walker

In this section we present a much more detailed discus-
sion of one example driver script, to give a more concrete
feel for how the system works.

The purpose of the DNS walker is to acquire as many
DNS records as possible from as many DNS servers as pos-
sible in the local network, and add this information to the
knowledge base. As well as requesting zone transfers from
DNS servers, the walker repeatedly and recursively makes
forward and reverse name lookups for all the host names
and addresses it can find. The walker is fairly straightfor-
ward, and written in Python; we concentrate here on the
Prolog operations related to it.

The walker starts by requesting all values which match
the predicate:

likely_dns_server(X).

This predicate is a pre-defined heuristic for spotting DNS
servers, it’s simply defined as:

likely_dns_server(Machine) :-
server(Machine,domain).

The server predicate is a similarly-defined heuristic
for spotting servers in general; it’s a little more interesting:

server(Machine,Svc) :-
ipservice(Svc,Port,tcp,_),
nmap_tcp_port_open(Machine,Port).

server(Machine,Svc) :-
nmap_tcp_port_open(Machine,Svc).

This allows us to specify services by name (as in the ex-
ample above) or port number. The upshot if this is the sys-
tem regards a machine as apotentialDNS server if Nmap
saw it listening on the domain port.

The level of indirection afforded by the
likely dns server heuristic is important. It gives us
a way to flexibly integrate tools without introducing fragile
dependencies between them: the DNS walker does not
need to be aware of the operating of Nmap, and we could
remove Nmap and substitute some other source of port
information if we wanted, or indeed do without automatic
discovery of DNS servers altogether, and manage with a set
of user assertions about which machines should be queried
for DNS records.

Conversely, the wrapper for Nmap does not need to con-
cern itself with outputting facts in a form friendly to the
DNS walker. The Prolog functions we have listed above
give a flavor of the conciseness and flexibility in tool inte-
gration that the use of a logic language affords us.

For each potential DNS server, the walker starts from
an initial list of host IP addresses, obtained in a similar
manner from the results of running previous tools, and per-
forms it’s walk over the record space of the server. The
output of the walker consists of two types of Prolog facts.
The first simply confirms that a DNS server was found at
a particular address; it’s therefore a stronger statement than
likely dns server(X) . For example:

dns_working(’10.64.201.201’).
dns_working(’10.64.209.2’).
...

The second type of fact indicates the existence of a DNS
record of a particular type, in a particular server, with par-
ticular name and value. For example:

dns_record(’10.64.201.201’,’A’,
’kristeva.smoke.sprintlabs.com.’,
’10.64.202.54’).

—indicates that the DNS server 10.64.201.201 has a A
record specifying that kristeva.smoke.sprintlabs.com has IP
address 10.64.202.54. All information is kept, including the
address of the server which supplied the record. Even the
name of the predicate indicates that the DNS walker, and
not some other driver script, was the source of the informa-
tion.

These facts are now available as input to other discovery
tools (for example, a driver script might require a list of ma-
chines pointed to by MX records), and can also be queried
for inconsistent or anomalous configurations. For instance,
the following Prolog function will uncover servers with in-
consistent A-records:

dns_has_two_arecs(Server,V,N1,N2) :-
dns_record(Server,’A’,N1,V),
dns_record(Server,’A’,N2,V),
N1 @> N2.

More sophisticated queries are also possible. For in-
stance, this Prolog function succeeds if a DNS server has
an inconsistent pair of PTR and A records (i.e., forward and
reverse address/name bindings):

dns_ptr_conflict(Server,Ptr,DNS,A) :-
dns_record(Server,’A’,DNS,A),
dns_record(Server,’PTR’,Ptr,DNS),
not(ip_arpa_equiv(A,Ptr)).

The ip arpa equiv(A,Ptr) function succeeds if
Ptr is the “.inaddr.arpa ” representation of A (or vice
versa).

4.3. Performance

We ran InfoSpect in the Sprint Labs internal network of
about 300 hosts, more than 20 of which are IP routers. With
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our current suite of discovery tools, this results in a knowl-
edge base of around 25,000 entries.

There are two aspects to the performance of the system:
time taken to perform a query against the knowledge base,
and time take to collect information from the network. To-
gether these determine how up-to-date the information in
the knowledge base can be, and how quickly this informa-
tion can be interpreted to diagnose problems.

Query performance is good: a typical query (for exam-
ple, to determine routing table inconsistencies) takes only a
few milliseconds to execute on a modern workstation. We
have not addressed the issue of formulating queries so as to
optimize performance at the Prolog level since this has not
been a problem so far. Recent work on high-performance
declarative languages such as Mercury [10] may help to ad-
dress this below the level of the language.

Runtime of discovery tools, on the other hand, is dom-
inated by network communication latencies and, more sig-
nificantly, by the need to throttle some network probes to
prevent undue load on the systems being monitored. Many
of our driver scripts (such as the port scanners) take on the
order of minutes to complete. Consequently, the knowledge
base is always a few minutes behind the state of the system.
On this basis, InfoSpect does not fall into the “real-time
anomaly detection” class of applications, but the speed of
queries does allow complex, unanticipated questions to be
asked and answered in a timely fashion.

5. Ongoing work

There is much short-term work left to do in InfoSpect.
The addition of more discovery tools to the collection we
have now will extend the scope of the system but also al-
low us to gain more experience with constructing the Prolog
functions that integrate tools and interpret the knowledge
base.

A larger unresolved issue is how best to represent time in
InfoSpect: the knowledge base at present holds only obser-
vations about the network from the loosely-defined “recent
past”. A natural first step is to add a timestamp to every fact
in the knowledge base which is directly generated from a
discovery tool - note that this change can in fact be made to
a running InfoSpect system by adding a trivial rule for every
class of observation which removes the timestamp. Infer-
ence rules and queries could then be formulated over a set of
similar facts with different timestamps, but we would prefer
a more structured approach to the problem. Two promising
avenues to explore are the kind of timing techniques em-
ployed in high-level hardware design languages, and tem-
poral logics. A challenge will be to implement a framework
for handling time without unduly expanding the state space
of facts we have to deal with.

While we are unaware of other work using logic lan-
guages to integrate networking monitoring tools, the use of
rule- and/or event-based systems in network monitoring is
well established. A recent development has been to apply
techniques from data mining and machine learning to de-
rive a set of empirical rules about the “normal” behavior of
a distributed system or network, and use these in turn to de-
tect anomalies [11]. Such work is complementary to ours
and operates at a higher level of abstraction, we speculate
that InfoSpect’s knowledge base offers a rich foundation on
which to build such tools.

6. Conclusion

Network management and configuration is an increas-
ingly important and complex part of any corporation’s busi-
ness. Logic languages appear to offer significant advantages
in simplifying the difficult tasks of network and security ad-
ministration. We have built a prototype system which has
been used to monitor the local intranet, and in doing so un-
covered hitherto unknown inconsistencies and potential se-
curity vulnerabilities.

Our experience so far has been good: wrapping existing
network tools so that they are both driven from the con-
tents of the knowledge base and deposit their results into
the knowledge base has proved relatively simple. By decou-
pling our approach from the infrastructure as much as pos-
sible, we avoid jeopardizing the dependability of the system
we are trying to manage.

Prolog has proved to be highly effective at unifying the
results of disparate tools. Furthermore, Prolog queries to
uncover inconsistencies in the network state (for example,
duplicate or potentially forged DNS records) are remark-
ably concise and intuitive; typically three or four lines.

We are currently extending the work on router and rout-
ing policy configurations to provide the kinds of answers
network operators need in the daily running of complex net-
works and services, including backbone networks.
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