
Predicate Routing: Enabling Controlled Networking

Timothy Roscoe
Intel Research at Berkeley

2150 Shattuck Avenue,
Berkeley, CA 94704, USA

troscoe@intel-research.net

Steve Hand
University of Cambridge

Computer Laboratory
Cambridge CB3 OFD, UK

steven.hand@cl.cam.ac.uk

Rebecca Isaacs
Microsoft Research

7 J.J. Thomson Avenue
Cambridge CB3 OFB, UK

risaccs@microsoft.com

Richard Mortier
Microsoft Research

7 J.J. Thomson Avenue
Cambridge CB3 OFB, UK

mort@microsoft.com

Paul Jardetzky
Sprint ATL

1 Adrian Court
Burlingame, CA 94010, USA

pjardetzky@sprintlabs.com

1. INTRODUCTION AND MOTIVATION
The Internet lacks a coherent model which uni�es security
(in terms of where packets are allowed to go) and routing
(where packets should be sent), even in constrained envi-
ronments. While automated con�guration tools are appear-
ing for parts of this problem, a general solution is still un-
available. Routing and �rewalling are generally treated as
separate problems, in spite of their clear connection. In
particular, security policies in data hosting centers, enter-
prise networks, and backbones are still by and large installed
manually, and are prone to problems from errors and mis-
con�gurations. In this paper, we present Predicate Routing
(PR) as a solution to this problem. We brie
y describe our
centralized implementation and then outline the extension
of Internet routing protocols to support Predicate Routing.

In current IP networks, the state of the system is primar-
ily represented in an imperative fashion: routing tables and
�rewall rulesets local to each node strictly specify the ac-
tion to be performed on each arriving packet. In contrast,
Predicate Routing represents the state of the network declar-
atively as a set of boolean expressions associated with links
which assert which kinds of packet can appear where. From
these expressions, routing tables and �lter rules are derived
automatically. Conversely, the consequences of a change in
network state can be calculated for any point in the net-
work (link, router, or end system), and predicates derived
from known con�guration state of routers and links. This
subsumes notions of both routing and �rewalling.

We use the phrase \controlled networking" to refer to envi-
ronments where every packet
ow in a network has been ex-

plicitly allowed or \white listed", possibly by an automated
process. Controlled networking using Predicate Routing
gives precise assurances about the presence of network pack-
ets, even when network elements cannot provide the �lter-
ing and packet discrimination required by a naive, manually
con�gured approach.

Where ideal security is infeasible with the given infrastruc-
ture and topology, Predicate Routing can be used to guide
risk assessments and security tradeo�s by providing com-
plete information about what packets are allowed to tra-
verse each link. Furthermore, Predicate Routing aids packet
traceback, by allowing those properties of a packet (such as
origin machine) which cannot be directly observed at most
points in the network to be logically inferred from observable
properties.

Note that this di�ers from the various forms of coordinated
�rewall control or distributed �rewalling in that predicates
do not specify traÆc rules but rather capture both current
and desired network state. From this state appropriate �re-
wall rulesets may be synthesised.

Since our declarative view of network state is very di�erent
from traditional routing concepts, we �rst give an abstract
view of how Predicate Routing represents a network, as a
precursor to discussing its application. We then detail two
scenarios where Predicate Routing can be applied: a central-
ized environment such as a datacenter, and a distributed one
such as a collection of peer networks.

2. PREDICATE ROUTING: FRAMEWORK
Predicate Routing is concerned as much with where particu-
lar packets in an IP network can appear as with where they
should be sent. While the term \reachability" in conven-
tional IP networks refers to the notion that some packets
can reach a given point in the network, in Predicate Rout-
ing this notion is packet-speci�c, and subsumes both the
notion of �rewalling (ensuring that a particular destination
is unreachable for that packet), and routing (attempting
to ensure that the desired destination is reachable for the
packet). Predicate Routing achieves this by employing a

non-traditional abstraction of network properties. The up-
per half of Figure 1 shows a typical, simple IP network com-
posed of 2 routers and 4 end nodes. Links are bidirectional,
and connect ports on routers and nodes.

A C

DB

A

DB

C

Port

Link

Router or Node

Figure 1: A traditional representation of a network,

and the same network in Predicate Routing terms.

The lower half shows how the same network is represented
in Predicate Routing. Some di�erences are immediately ap-
parent. The most obvious is that the switch-centric repre-
sentation of has been replaced by one made up of ports and
links. Indeed, in Predicate Routing the notion of a switch
or router per se is important only from an implementation
standpoint (as a collection of ports with a single control in-
terface and shared resources). Ports are now unidirectional,
and so there are twice as many. At the same time, links
are regarded as broadcast media, and so are neither unidi-
rectional nor bidirectional. Finally, the \inside" of a router
or switch is equivalent to an external network link from the
point of view of Predicate Routing.

While the network has become more complex (more links,
more ports), the elements making it up have become much
simpler, making it easier to automate reasoning about the
network. Firstly, links are now passive media elements, and
so it makes sense to talk about a packet being \present"
on a link without needing to specify the direction in which
it is traveling. Secondly, ports have a single input and a
single output and have subsumed the role of switches and
routers in the traditional representation, and so they can be
viewed as \gates" which allow some packets through (pos-
sibly modifying them in the process) and disallow others.
These two abstractions, (unidirectional) ports and (non-
directional) links, form the basis for Predicate Routing.

Predicates

Predicate Routing views the state of an IP network as a set
of logical expressions|predicates|that refer to properties
of packets at each point in the network. In traditional rout-
ing, network state is represented as a forwarding table at
each router, which can be viewed as a function from packet
properties to outgoing router ports. In contrast, in Predi-
cate Routing a packet can potentially appear on any router
output port which does not explicitly disallow it; and the
forwarding table is represented as a set of output �lters.
These two views of a router are equivalent (Predicate Rout-
ing is just as expressive), but the more declarative approach
taken by Predicate Routing simpli�es automated reasoning
about network state.

The primitive terms of a predicate are packet attributes like
source or destination IP address, port numbers, protocols,
etc. A simple (and highly restrictive) link predicate might
be:

Proto(TCP) AND DestPort(80) AND

DestAddr(10.10.1.2)

While all the attributes in this example are directly observ-
able from the packet header, one can de�ne other attributes
which are not immediately observable, such as the origin
machine of the packet (in the presence of potential source
address spoo�ng), a particular
ow or path the packet is part
of, etc. Predicate Routing can allow these non-observable
attributes to be inferred from the network state. Routers
generally operate only on observable properties of packets.

Four kinds of predicate are involved in representing network
state: link or network predicates, switch predicates, port
predicates, and �lter predicates.

Link and network predicates
A link predicate is an assertion about the properties of pack-
ets that can be seen on a network link. Recall that links do
not have a direction, so a single boolean expression in dis-
junctive normal form1 suÆces to describe everything that
can be observed on the link2.

Switch predicates
A switch predicate is an assertion about packets that may be
seen \inside" a router or switch|packets which may poten-
tially traverse the switching fabric. We treat the inside of a
router as a \sea of packets", with no notion of which port
a packet entered on, or which port or ports the packet is
leaving on, hence there is a symmetry between the \insides"
of switches and routers, and the \outsides" of links, with a
corresponding symmetry between input and output ports.

This is a relatively simple model of a router. Modern IP
routers are rather more complex than this: in particular
many combine the functions of switching (based on MAC ad-
dress) and routing (at the IP layer) using the concept of vir-
tual LANs (VLANS). In this paper we use the terms switch

1i.e. an or of a series of and-connected compound terms.
2While the idea generalizes to broadcast networks, where
the predicate refers to the packets that can be present on
a given segment, in this paper we restrict our discussion to
switched point-to-point links.

and router interchangeably. We can capture this complexity
of networking equipment in several ways. Firstly, if we treat
VLANs as if they were real Ethernet broadcast domains,
a Predicate Routing port now corresponds to the IP inter-
face of the VLAN on the switch, as opposed to the physical
ports. VLANs consequently have network predicates asso-
ciated with them. A better approach integrates the VLAN
notion into Predicate Routing's model of the switch, but
that is beyond the scope of this paper.

Port predicates
A port predicate is an assertion about the properties of pack-
ets passing through a switch port. We view ports as unidi-
rectional. A port predicate is identical in form to a link or
network predicate.

Filter predicates
In the Predicate Routing model, input and output ports ap-
ply �lters (which may be trivially simple). Thus, in addition
to the port predicate (which asserts the properties of traf-
�c
owing through the port), each port has an associated
�lter predicate, which asserts the properties of traÆc which
can
ow through the port. The �lter predicate for a port
expresses the �lter con�guration which currently applies to
the port. Most modern IP routers provide some facility for
input port �ltering, sometimes referred to as Access Control
Lists, for which there is a natural mapping to input port
�lter predicates. Output port �lter predicates are also nat-
urally mapped onto real router con�guration properties in
the form of IP routing table entries. To understand this,
consider the set of routing table entries in the router which
cause packets to be forwarded to a given port. Each compo-
nent term in the output �lter predicate is the property that
the packet destination address matches the address pre�x of
the table entry. The complete �lter predicate is the or of
these terms.

Increasingly, all but low-end routers and very high-performance
core IP switches support policy routing, where a routing de-
cision is made based not only on destination address, but
also on source address, protocol, ports, etc. This additional
router state information also maps naturally onto output
port �lters.

Relations between predicates
Figure 2 shows a very simple example of a network con�gura-
tion, together with corresponding predicates which combine
both the �ltering and routing con�guration of the network
in a uni�ed model of network state. It is clear that the four
types of predicates are closely dependent on each other:

1. The port predicate for an input port on a switch is the
and of the network predicate of the attached network
with the �lter predicate for the port. This expresses
what the port �lter does: it constrains the traÆc that
enters the switch from the network through the port.
Similarly, the port predicate for an output port on a
switch is the and of the switch predicate, and the �lter
predicate for the port.

2. A link predicate is the or of the port predicates for
the switch output ports which are attached to the link.

Port A:
192.168.1.1

Port B:
192.168.1.2

Port C:
192.168.1.3

Port D:
192.168.1.4

Routing table:
 10.1.0.0/16 -> 192.168.1.1
 10.2.0.0/16 -> 192.168.1.4

Input filters:
 Port B:
 Allow Source = 10.3.0.0/16
 Deny all
 Port C:
 Allow Source = 10.4.0.0/16
 Deny all

Link a Link b

Link cLink d

Predicates:

 Filter A:
 Dest = 10.1.0.0/16
 Filter B:
 Source = 10.3.0.0/16
 Filter C:
 Source = 10.4.0.0/16
 Filter D:
 Dest = 10.2.0.0/16

 Switch:
 Source = 10.3.0.0/16 OR Source = 10.4.0.0/16

 Link A:
 Dest = 10.1.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)
 Link B:
 None (anything)
 Link C:
 None (anything)
 Link D:
 Dest = 10.2.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)

 Port A:
 Dest = 10.1.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)
 Port B:
 Source = 10.3.0.0/16
 Port C:
 Source = 10.4.0.0/16
 Port D:
 Dest = 10.2.0.0/16
 AND (Source = 10.3.0.0/16 OR Source = 10.4.0.0/16)

Figure 2: A very simple network showing predicates

This simply expresses the fact that any packet enters
a link through one switch output port.

3. Similarly, the switch predicate for a switch is the or
of the port predicates for all the input ports on the
switch.

Discussion
Given these relations, we note that in a closed network, link,
port, and switch predicates can be derived from knowing
only the network topology and all the �lter predicates.

Strictly speaking, the notion of a port predicate is redundant
in this framework: port predicates are entirely determined
by link and �lter predicates and so don't convey any addi-
tional information about network state. However, they are
important as intermediate terms when applying the logical
framework in a real implementation, as in the next section.
Also, although Predicate Routing's logical framework treats
networks and routers identically, in practice the di�erence

clearly matters.

When the network is connected to other systems (like the
rest of the Internet), these predicates can still be derived
from a combination of the �lter predicates and the link
predicates at attachment points. Alternatively, predicates
on links entering an administrative domain can be de�ned
in accordance with service level agreements.

Note also that we can derive or \prove" additional properties
of packets at given point in the network, not directly observ-
able from the packet itself. For example, in Figure 2, if we
see a packet on link a with a source address in 10.3.0.0/16,
we can infer that the packet traversed link b. While this
example is trivial, in more complex networks this can be a
powerful tool for reducing human error in network con�gu-
ration.

The use of declarative languages to detect network and sys-
tem miscon�guration has been investigated [10]. Predicate
Routing provides the logical framework in which these tech-
niques can be applied to network management, for example
automatic detection of BGP miscon�guration, a well known
problem [9].

The four types of predicates, together with the relations be-
tween them, faithfully model the packet forwarding behavior
of an IP network, both �ltering and routing, and together
form a consistent logical system. However, this representa-
tion of network state is also highly amenable to manipulation
by programs controlling network elements. Because it gives
complete information of possible paths traversed by packets,
it is highly appropriate for implementing a controlled net-
working environment. In the next section, we describe one
approach to this, using a logically centralized approach for
managing and controlling the network in a datacenter.

3. CENTRALIZED PREDICATE ROUTING
We applied Predicate Routing to the problem of controlled
networking in a \public computing platform", where (pos-
sibly distributed) third-party applications are hosted on a
shared cluster of servers. In this case it is reasonable to
implement a centralized network \control plane" with out-
of-band control of network elements. Here we sketch the
algorithm we use and our prototype design; in Section 4 we
outline how Predicate Routing can be applied in the dis-
tributed case.

The control plane function we are interested in here is con-
�guring the routers that make up the cluster interconnect in
such a way that the IP packet
ows required (and speci�ed)
by the hosted applications are allowed, but (ideally) no other

ows can arrive at a server machine. This function must be
performed online and incrementally, as the application mix
is dynamic.

The cluster interconnect in our prototype at Sprint Labs
is a network composed of two Enterasys SSR-8600 switch-
routers and a front-end Cisco 11800 Layer-7 switch, which
connect 36 servers (each with dual network interfaces) to-
gether and to the Internet. Both types of switch support
policy routing and input port �lters at the IP layer.

The control plane instantiates \switch driver" objects for
each switch in the cluster. The driver models a switch's
capabilities (how many per-port or per-line card �lters are
supported, for instance), and establishes a control connec-
tion to the real hardware (through SNMP or a command
line emulator). In addition, the driver exports an interface
to the routing algorithm corresponding to Predicate Rout-
ing's \ports and links" representation.

The routing algorithm to place a new
ow �rst calculates a
candidate path for the
ow, then operates a
ooding algo-
rithm starting at the
ow origin. For each port encountered,
the switch driver is consulted to appropriately modify its �l-
ter predicate: either to let the
ow through if the port is on
the candidate path, or else to block packets from the
ow
(and any other unauthorized
ows). The
ooding stops at
any port whose port predicate is unchanged as a result of
the operation. The path is rejected if a link predicate at
the edge of the cluster (i.e. at a server) violates an admin-
istrative security constraint, implying that placing the path
would allow unacceptable packets to arrive at a host.

The switch driver abstraction allows great
exibility: a port
is free to not apply a requested �lter due to lack of func-
tionality or the switch running out of resources, as long as
the new
ow is admitted along the candidate path. In this
way the consequences are propagated \downstream", where
even in a simple network other ports will often compensate
and preserve the controlled environment.

Performance with our prototype is adequate, even though
the control plane is implemented in the interpreted language
Python. While the theoretical complexity of the algorithm
is moderately high3, in practice most loops terminate early
with the reasonably powerful switch capabilities we have,
resulting in much better scaling than might be expected,
even with larger topologies. Communication latency with
switches tends to dominate; this can in many cases be over-
lapped with the route computation.

4. DISTRIBUTED PREDICATE ROUTING
Controlled networking is also useful in the wider area Inter-
net, although in this case a centralized scheme is not suit-
able. In this section we discuss how one might implement
Predicate Routing in the Internet by modifying existing In-
ternet routing protocols, speci�cally the IGP IS-IS and the
EGP BGPv4.

Link-State Routing Protocols
IS-IS [3] is a link-state protocol adapted from the ISO CLNS
protocol. Each router e�ectively broadcasts information
about the other routers to which it is connected (its link
states) in the form of link state PDUs (LSPs). Routers store
the LSPs they receive in a database, and then run a short-
est path algorithm over this database to discover the inter-
face on which they should transmit packets for destinations
within the network. Much of this discussion also applies to
OSPF, the other main link-state intra-domain routing pro-
tocol in use in the Internet today.

The link-state information is transmitted in variable length

3A detailed analysis is beyond the scope of this paper.

type-length-value �elds appended to the LSP header infor-
mation. As IS-IS was not originally intended for routing
IP, it e�ectively distributes two forms of link-state infor-
mation: the connectivity information, expressed in terms of
CLNP nodes4 and their adjacencies, and the IP information,
expressed in terms of the IP pre�xes available to a CLNP
node.

We can extend IS-IS as follows. First, rather than simply
advertise the destination IP pre�xes available at a node, a
set of predicates are advertised, potentially with associated
resource usage information. Second, although LSP forward-
ing and database building takes place as normal, sets of
predicates e�ectively form views of this database, de�ning
the connectivity available to that set. The shortest path
computation is run over each such view, producing a set of
shortest path results, one for each collection of predicates.
These can then be remerged, as allowed by the predicates
in place, to create the forwarding tables to be used to actu-
ally route packets. This results in one (or more) forwarding
tables that contain predicates to be applied to packets, and
for each predicate, a corresponding output port on which
packets can be transmitted.

Performance Implications
The performance impact of the above scheme can be sep-
arated into traÆc and computation costs at both the data
and control planes. The traÆc impact is fairly easy to imag-
ine: the network sees less user traÆc (due to packets being
�ltered early), but more control traÆc (since LSPs are now
larger and potentially more frequent). If we expect pred-
icates to be slowly varying (e.g. changing on the order of
hours), the increased routing protocol bandwidth should not
be signi�cant.

Perhaps greater concerns are the additional computational
overhead, and the risk of increased routing instability. In
terms of the former, it is true that some additional overhead
will occur due to the need to perform shortest path compu-
tations for every \view" of the network. However several
factors mitigate this cost: �rstly, we expect the number of
views to be much smaller than the number of predicates,
with many predicates mapping onto an empty or uncon-
nected subgraph. Secondly, it is possible in some cases to
infer shortest paths for smaller subgraphs; and thirdly, many
subgraphs will be considerably smaller than the entire net-
work (and may even be degenerate). Forwarding table per-
formance should also not be an issue [6].

We don't expect our modi�cations to decrease routing sta-
bility, since the same topological information is communi-
cated both cases. However, further investigation is a topic
for future work.

External gateway protocols
Unlike OSPF and IS-IS, BGP is a path-vector routing proto-
col without an explicit notion of a link. Instead, each router
advertises a cost to the destinations it can reach, and chooses
e.g. the cheapest route to a particular destination. It then
re-advertises its chosen routes to other routers, adding in

4Each node in the network must be assigned a CLNP ad-
dress, even if the network will only route IP traÆc.

a cost component to account for their own presence on the
path to the destination.

BGP already has extensive support for �lters, for routers
to control the routes advertised to other routers and the
route advertisements received from other routers. However,
these �lters are currently entered and managed manually. It
would seem that the natural way to implement predicates in
BGP is to extend BGP to allow automatic distribution and
installation of �lters, but the details of such an approach, in
particular uhow to deal with transferring such information
between administrative domains, are future work.

Discussion
Predicate Routing permits incremental deployment: as routers
are upgraded to support the routing protocol extensions de-
scribed above, the inferences which may be made about the
state of the network become stronger. Even with a small
number of enhanced routers, however, useful information is
available to operators. For example, access routers could
be upgraded initially which suÆces to provide automated
management of ingress �ltering. As incremental deployment
proceeds, the ability of the system to infer the origin(s) of
traÆc generated by attacks (for instance) increases.

A practical deployment of Predicate Routing would bene�t
from the ability to compare the desired and actual network
state. This requires a mechanism to accurately snapshot the
current network con�guration. This presents a challenge in
a highly dynamic environment such as the Internet and is a
matter for future work.

Enhancement of Predicate Routing as presented should in-
clude the ability to refer to predicates as �rst class entities,
in particular across administrative boundaries. This naming
of predicates enables scoping and modularization thereby
allowing aggregation and transformation of predicates, late
biding of policy and information hiding between networks.

5. RELATED WORK
Predicate Routing builds on several ideas from the areas of
�rewalling, virtual private networks and signaling.

Like distributed [1] or embedded �rewalling, for example,
we aim to have an explicit notion of which packets may be
transmitted where, and we attempt to automatically enforce
this notion at multiple redundant locations. We do not rely
upon a centralized security policy, but if end-users or end-
user groups were to desire a shared security policy, we can
envisage using e.g. the KeyNote trust management language
such as as done by Ioannidis et al [8].

Another, more \overlaid" approach to the problems that
Predicate Routing solves is Virtual Private Networks (VPNs).
These may be constructed over IP by using tunnelling; i.e.
encapsulating packets prior to routing them [5]. Using Pred-
icate Routing, a VPN is de�ned simply as a set of predicates,
obviating the need for tunneling. Isolation from other net-
work users is achieved \for free", and changes in VPN topol-
ogy are supported by the modi�cation of Predicate Routing
paths. Similar arguments apply to IEEE VLANs [7] in the
local area.

Predicate Routing also has much in common with the hose
model [4] in that end-points are explicit (being described by
predicates) while network paths are implicit.

The network calculus [2] provides a framework for reasoning
about traÆc on network links and has a natural synergy
with Predicate Routing: predicate terms can be annotated
with values from the network calculus.

XXX more on network calculus; policy routing/policy based
routing.

6. CONCLUSION
We have presented Predicate Routing, a uni�ed model of
routing and �rewalling in IP networks, and outlined both
centralized and distributed implementations. Predicate Rout-
ing facilitates the controlled networking required to evolve
the Internet toward a secure and robust infrastructure with-
out the need for extensive protocol redesign. We are consid-
ering PlanetLab as a test bed for deployment of Predicate
Routing.

Acknowledgments
Christos Tryfonas wrote the �rst implementation of Predi-
cate Routing for the Sprint Labs cluster. We thank Bryan
Lyles and Jon Crowcroft for their insights and discussions.

7. REFERENCES
[1] S. M. Bellovin. Distributed �rewalls. ;login:, pages

37{39, Nov. 1999.

[2] J. Y. L. Boudec and P. Thiran. Network Calculus.
Springer Verlag LNCS 2050, June 2001.

[3] R. W. Callon. Use of OSI IS-IS for Routing in TCP-IP
and Dual Environments. RFC 1195, December 1990.

[4] N. G. DuÆeld, P. Goyal, A. Greenberg, P. Mishra,
K. K. Ramakrishnan, and J. E. V. der Merwe. A

exible model for resource management in virtual
private networks. In Proceedings of SIGCOMM,
volume 29 (4), pages 95{108, Sept. 1999.

[5] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and
A. Malis. A framework for IP based virtual private
networks. RFC 2764, Feb. 2000.

[6] P. Gupta and N. McKeown. Packet classi�cation on
multiple �elds. In Proceedings of SIGCOMM, volume
29 (4), pages 147{160, Sept. 1999.

[7] IEEE. IEEE Standards for Local and Metropolitan
Area Networks: Virtual Bridged Local Area Networks
(802.1Q), 1998.

[8] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and
J. M. Smith. Implementing a Distributed Firewall. In
ACM Conference on Computer and Communications
Security (CCS'00), pages 190{199, Nov. 2000.

[9] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding BGP Miscon�guration. In Proceedings
of SIGCOMM 2002, pages 3{16, August 2002.

[10] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand.
InfoSpect: Using a Logic Language for System Health
Monitoring in Distributed Systems. In Proceedings of
the 2002 ACM SIGOPS European Workshop,
Saint-Emilion, France., September 2002.

