Exceptions and side-effects in atomic blocks

Tim Harris
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue
Cambridge, UK, CB3 OFD

tim.harris@cl.cam.ac.uk

ABSTRACT

In our paper at OOPSLA 2003 we discussed the design and
implementation of a new atomic keyword as an extension
to the Java programming language. It allows programs to
perform a series of heap accesses atomically without needing
to use mutual exclusion locks. We showed that data struc-
tures built using it could perform well and scale to large
multi-processor systems. In this paper we extend our sys-
tem in two ways. Firstly, we show how to provide an ex-
plicit ‘abort’ operation to abandon execution of an atomic
block and to automatically undo any updates made within
it. Secondly, we show how to perform external I/O within
an atomic block. Both extensions are based on a single ‘ex-
ternal action’ abstraction, allowing code running within an
atomic block to request that a given pre-registered operation
be executed outside the block.

1. INTRODUCTION

In recent work we have been investigating the use of Soft-
ware Transactional Memory as a mechanism for implement-
ing language-level concurrency control features [6]. In our
system, developed as an extension to the Java programming
language, we have introduced a new keyword atomic which
allows a group of statements to execute atomically with re-
spect to the operation of other threads. As well as updating
objects’ fields, these statements can perform a wide range
of operations including invoking methods and instantiating
new objects. We also allow atomic statements to be guarded
by boolean conditions, with execution blocking until the con-
dition is satisfied. Figure 1 illustrates this by showing the
implementation of a single-cell shared buffer.

In this paper we expand the range of operations which can
be performed within atomic blocks in two different ways.
The first extension we consider is what behaviour to pro-
vide when an atomic block terminates early by an excep-
tion being thrown. The dilemma here is whether to roll-
back updates made in the atomic block or whether to retain
them and propagate the exception. Unfortunately there is a
Catch-22 situation: if we roll-back the updates then the ex-
ception object itself could be lost, leaving nothing to prop-
agate. We discuss this in Section 2 and propose a hybrid
model in which certain exceptions cause atomic blocks to
be aborted and in which the exception thrown outside the
block is a deep copy of the exception raised within it.

The second area we investigate is how to deal with I/O
performed within an atomic block: our original design for-
bade any native method invocations which made most I/0
operations unavailable. In Section 3 we discuss a number of

class Buffer {
private boolean full;
private int value;

public void put(int new_value)
throws InterruptedException
{
atomic (!full) { // Wait until buffer is empty
full = true;
value = new_value;
}
}

public int get() throws InterruptedException
{
atomic (full) { // Wait until buffer is full
full = false;
return value;
}
}
}

Figure 1: A single-cell shared buffer implemented
using atomic blocks.

ways in which I/O could be supported and propose a model
in which communication libraries must be adapted for use
within atomic blocks. This places an onus on the library’s
implementer but, we argue, allows better performance and
scalability than automatic support for native methods.

Our approach for supporting both of these new features
is based on a single ‘external action’ abstraction which we
introduce in Section 4. An external action object exports an
operation which can be invoked from within an atomic block
but which is executed within the context that the object was
instantiated.

In Section 5 we discuss our experience using external ac-
tions to implement our exception-propagation model and
1/0O system. Finally, Section 6 discusses related work and
Section 7 concludes, highlighting a number of areas for fu-
ture work along with dead-ends we explored in developing
the ‘external action’ abstraction.

In the remainder of this introduction we briefly review
the intended semantics of atomic blocks in Section 1.1 and
outline their implementation over a Software Transactional
Memory in Section 1.2.



1.1 Intended semantics of atomic blocks

We informally define the semantics of non-nesting atomic
blocks by (7) specifying their behaviour when executed by
a single thread running in isolation and (7) requiring that,
in a multi-threaded system, they behave as-if the executing
thread ran in isolation while within the block.

There are two cases to consider based on whether or not
the atomic block contains a guard condition. If there is no
guard condition then the following two code fragments are
equivalent:

atomic {
S; {s; 3%
}

Similarly, if a guard condition is present then the following
two code fragements behave equivalently after blocking until
the guard E is presciently known to yield true or terminate
with an exception:

atomic (E) {
S; {E; s;}
}

These definitions have three major consequences. Firstly,
they mean that if a system is genuinely single-threaded then
the contents of an atomic block can be executed directly
when its guard is satisfied. Secondly, these definitions lead
to the semantics for exception propagation in our original
paper — that is, if E or S terminates with an exception then
the updates made up to that point are retained [6]. Thirdly,
these definitions allow the guard expression E to have side
effects — this may be important in practice if, for example,
the guard accesses a self-organizing data structure such as
a splay tree [4].

There are numerous subtleties which we elide here. These
include dynamically nesting blocks, interruption while wait-
ing, the interaction between class-loading and atomic block
execution, thread creation within atomic blocks and the use
of condition variables within atomic blocks. These issues are
ones which would need to be considered carefully if incorpo-
rating atomic blocks into the design of a new language.

1.2 Implementation overview

Although we define the semantics of atomic blocks in terms
of single-threaded execution we do not envisage that that
would form the basis of an implementation. Instead, our cur-
rent implementation is designed to allow most non-conflicting
atomic blocks to execute concurrently.

The system is built in two layers. The lower layer is
a word-based software transactional memory (STM). This
allows groups of memory accesses to be performed within
transactions which commit atomically. The STM is imple-
mented in C within the Java Virtual Machine and provides
operations for starting a new transaction (STMStart), abort-
ing the current transaction (STMAbort), committing the cur-
rent transaction (STMCommit), for reading a word within the
context of the current transaction (STMRead) and for updat-
ing a word within the context of the current transaction
(STMWrite). There are two further operations to validate
transactions and to block threads while waiting for condi-
tions to become true — these are not relevant to the current

paper.

boolean done = false;
while ('domne) {
STMStart () ;
try {
statements;
done = STMCommit ();
} catch (Throwable t) {
done = STMCommit ();
if (dome) {
throw t;
}
}
}

Figure 2: Code of the form atomic { statements; }
expressed using STM management operations. In
practice exception propagation is complicated by
the fact that the translated code must throw the
same set of exceptions as the original statements.
Heap accesses within the statements (and within any
methods they call) are performed using the STM.

The higher layer of the implementation maps the atomic
keyword onto a series of STM operations. For example,
entering an atomic block requires STMStart to be invoked,
and accesses to shared fields within a block require that
STMRead and STMWrite be used in place of direct heap ac-
cesses. This translation is implemented in the source-to-
bytecode compiler (for transaction management operations)
and the bytecode-to-native compiler (for individual field ac-
cesses). The intermediate Java bytecode format is unchanged.

Our previous paper describes these two levels in detail [6].
As an example, Figure 2 summarises how a basic non-nesting
atomic block without a guard condition may be expressed in
terms of these explicit transaction management operations.

2. MANAGING EXCEPTIONS

The semantics defined in Section 1.1 mean that if an atomic
block terminates with an exception, then any heap updates
made within the block are retained and the exception is
propagated. This allows single-threaded code to be directly
re-used in a multi-threaded environment by inserting atomic
blocks around related accesses to the heap. However, there
are examples where it would seem more convenient for pro-
grammers to be able to roll-back any updates made within
the atomic block up to the point where the exception is
thrown.

For illustration, consider code to move an object between
two collections. The source collection provides a remove
method. The destination collection provides an add method
that fails with an exception if the target collection cannot
hold the item supplied.

Figure 3 shows how a move operation can be implemented
using an atomic block. The code is not elegant; the pro-
grammer must manually implement fix-up operations if the
destination cannot contain the item supplied. Furthermore,
when R1 has to be counteracted by A2, the underlying trans-
action may involve numerous updates even though the ab-
stract state of the two collections is unchanged. This is
a problem in concurrent systems because it increases con-
tention in the memory hierarchy. It may even be necessary



boolean move(Collection s, Collection d, Object o)
{
atomic {
if (!s.remove(o)) { /* R1 */
return false; /* Could not find object */
} else {
try {
d.add(o); /* Al */
} catch (RuntimeException e) {
s.add(o); /* A2 x/

throw e; /* Move failed */
}
return true; /* Move succeeded */
}
}
}
Figure 3: A collection-to-collection move imple-

mented within an atomic block using manual roll-
back. The add operation A2 compensates for Rl if
the object is removed from the source collection but
cannot be inserted into the destination.

to consider exceptions raised by A2 if the object is rejected
by both collections.

Of course, these same observations would hold if the move
method was implemented using mutual exclusion locks. How-
ever, building the system over a STM allows the more con-
venient option of replacing the compensating operation A2
with a request that the STM simply discards any heap up-
dates performed within the atomic block.

2.1 Problems

Although the underlying STM provides an abort operation,
this cannot be used directly to roll-back an atomic block
before propagating the exception which caused the block to
be aborted. The problem is that aborting would undo all of
the updates made in the transaction: if the exception object
was instantiated or modified in it then retaining that object
is incompatible with rolling back the modifications. In the
general case the exception object could be interlinked with
other data structures, making it unclear which modifications
to retain and which to lose.

There are two, more subtle problems with blindly using
exceptions to trigger roll-back. The first is that it could
destroy invariants assumed by existing code. For example,
a library may ensure that a particular kind of exception is
only thrown once a data structure has reached a given state.
This guarantee would be broken if changes leading up to
the exception were rolled back but the exception object was
retained.

The second problem is that if all exceptions trigger roll-
back then it precludes alternative implementations of atomic
blocks which, unlike our STM, do not produce the logging
information necessary to abort a transaction — this might be
true of a scheme based on locking rather than an STM, or
a scheme which includes optimizations for single-threaded
use.

2.2 Design

Our approach is to introduce a new AtomicAbortException
class and to have instances of that, or its subclasses, trigger

boolean move(Collection s, Collection d, Object o)
{
try {
atomic {
try {
if (!s.remove(o)) { /* R1 */
return false; /* Could not find object */
} else {
d.add(o); /* A1 */
return true; /* Move succeeded */
}
} catch (RuntimeException e) {
throw new AtomicAbortException();
}
}
} (catch AtomicAbortException e) {
return false; /* Move failed */
}
}

Figure 4: A collection-to-collection move using an
AtomicAbortException for roll-back.

roll-back. This is a checked exception class and so the pro-
grammer must indicate where it may be thrown, allowing a
non-abortable implementation to be used for blocks where
these exceptions are not present.

Figure 4 shows how an atomic collection-to-collection move
could be implemented using roll-back: it is no longer neces-
sary to include explicit compensatory code, and failed moves
will lead to aborted lower-level transactions, reducing con-
tention.

We use object serialization to define what happens when
aborting a block while retaining the exception object which
triggered the abort. This is because the serialized byte-array
form of an object is meaningful between JVMs and therefore
meaningful between an atomic block and its enclosing con-
text. If a block terminates by throwing an exception e whose
serialized representation would be a byte-array b then the
effect of executing the block is equivalent to de-serializing a
byte-array with the same contents as b and then throwing
the resulting exception. Of course, this ‘as if’ definition al-
lows the exception object to be retained and thrown directly
if it is possible to identify that as equivalent through static
analysis.

3. MANAGING I/O OPERATIONS

The second area which we consider in this paper is how to
support atomic blocks with external side effects. In our orig-
inal design we prohibited blocks from invoking any native
method — that is, any method that is not implemented in
Java bytecode. This ultimately precludes the availability of
most I/O operations.

3.1 Problems

It is not possible to allow native methods to be called from
atomic blocks by simply ensuring that JNI heap accesses are
performed using the STM. That would provide no control
over system calls invoked from native methods, or on code
within the JVM which uses internal lower-level interfaces to
bypass JNI.



Of course, there are some operations for which the JVM
cannot guarantee atomicity. For example, the programmer
may define an atomic block to swap the names of two files
by a series of renameTo method calls. Operating system
support would be needed to make these operations appear
atomic to other processes; all that can reasonably be pro-
vided is atomicity in the sense that either all of the oper-
ations in the block appear to occur, or none of them oc-
curs. Again, this is consistent with our intended ‘as-if single
threaded’ semantics from Section 1.1.

Furthermore, different behaviour is appropriate for differ-
ent kinds of I/O operation. For instance, a highly stylized
server implementation may be written as a loop:

void serverLoop(ServerSocket s) {
while (true) {
Socket ¢ = s.acceptConnection(); /*Mix/
Thread t = new Thread() {
public void run() {
atomic {
try {
dealWithClient(c); /*M2x/
} catch (Throwable t) {
throw new AtomicAbortException(t);
}
}
}
3
t.start();
}
}

Connections from clients are received at method call M1 and
each is dealt with in an atomic block in a separate thread
at M2. If an exception occurs in M2 then the effect of the
atomic block is discarded. In this case it may be appropriate
for the external interactions performed between the client
and the server to be carried out directly while executing
the block and for the roll-back to only discard updates to
the state within the server: the exception may indicate an
internal error in the server or one that has been triggered
by a maliciously formed request from a client.

In other cases it might be appropriate for external in-
teractions to be deferred until the block has completed, or
for corresponding compensatory operations to be issued if it
does roll back.

3.2 Design

Rather than directly supporting unmodified native methods,
the approach we take is to provide a set of Java-based in-
terfaces with which an I/O library can implement appropri-
ate buffering semantics. These allow a thread to determine
whether it is in an atomic block and to register call-backs
for when the transaction underlying the block attempts to
commit or abort.

This allows a wide range of behaviour to be implemented.
For instance, an output library can perform its own buffering
of the deferred output, register a callback on commit to flush
the output and register a callback on abort to discard the
buffered state. Similarly, a library performing input can
register a callback on abort to re-buffer the input which had
been presented to the aborted transaction. This approach
allows device-specific forms of buffering to be used — for
example, to distinguish between stream-based input which

public class ExampleQutput {
static PrintStream out =
new PrintStream(
new AtomicOutputStream(System.out));

static void print_sum(int x, int y) {
atomic {
int result = x + y;
out.println ("Result is " + result);
}
}
}

Figure 5: An example class instantiating and us-
ing an AtomicOutputStream wrapper to buffer out-
put made within the atomic block in the print_sum
method.

cannot be re-ordered and datagram-based input in which
datagrams may be re-ordered.

For console I/O we have implemented simple wrapper
classes AtomicInputStream and AtomicOutputStream which
provide example buffering layers for use above the ordi-
nary I/O streams. Figure 5 shows an example of how an
AtomicOutputStream can be used. If these I/O features were
integrated fully into the environment then these wrappers
could be provided as the default I/O streams.

4. EXTERNAL ACTIONS

In this section we introduce the ‘external action’ abstraction
with which we implement our exception propagation model
and I/O support libraries. In Sections 4.1 and 4.2 we discuss
two ways of exposing external actions to programmers; we
have implemented the first of these options and, although
we have a thorough design for the second option, we have
not yet tested it in practice.

External actions provide a controlled way in which code
within an atomic block can temporarily perform operations
directly on the heap rather than within the context of the
current transaction. External actions are used in propagat-
ing exceptions in order to marshall the exception object so
that it is available after the transaction is aborted. Exter-
nal actions are used during I/O to invoke native operations
and to perform device-specific buffering to give transactional
behaviour.

The behaviour of external actions are defined in terms
of contexts which represent the different views that threads
may have on the heap at any given moment. Contexts are hi-
erarchical and a single global context exists as the root. Heap
updates are said to occur within a given context, meaning
that they are guaranteed to be visible to threads execut-
ing in that context, or executing within any context nested
inside it.

When a thread enters an atomic block it creates a new
context nested within its current one. When a thread leaves
an atomic block then the nested context is discarded after
promoting any heap updates made within it up to its parent
context. Figure 6 illustrates a set of nested contexts.

The key challenge in Java in designing a mechanism for
temporarily ‘stepping outside’ the current context is mak-
ing it impossible to circumvent encapsulation enforced by
language-based protection. In particular, code executing in



Global context
H |
:
Tl T2 T3

Figure 6: Thread T1 is executing in the global con-
text G. Thread T2 is executing in context H within
G. Thread T3 is executing within context J, nested
two levels deep. Objects allocated in one context
can only contain references to objects allocated in
enclosing contexts, for instance O1 can refer to 02,
but O4 cannot refer to O3.

a given context must not be able to access objects instanti-
ated in an enclosed context — otherwise, for example, there
is no guarantee that the code would even see the objects
correctly initialised.

We deal with this problem by representing external ac-
tions as designated ExternalAction objects and ensuring
that (i) actions are executed in the context within which
the object is instantiated, and (ii) actions’ parameters are
passed by serialization. The first property ensures that free
variables occurring within an action’s definition will refer
to data that is accessible in the context within which the
action executes. The second property ensures that any in-
coming parameters received by the action have been copied
and re-created within the context that the action executes.

We expose contexts to Java programmers as immutable
Context objects which uniquely identify an active context
and allow traversal from it to its enclosing context object. A
static method returns the caller’s current context. A thread
can register a ContextListener with any context that is
contained within its current one. Context listeners receive
three call-backs:

boolean validToCommit (Context c);
void actionOnCommit (Context c);
void actionOnAbort(Context c);

These three operations are used to perform a two-phase
commit of updates that external actions have associated
with a context. The first of these, validToCommit, is called
when deciding whether the context should be destroyed or
whether, at the end of an atomic block, updates made within
it should be merged into its parent context. If any context
listener returns false then the context must be destroyed.
The second and third call-backs are called to to inform the
listener of the outcome of this voting.

External actions are implemented by extending the STM
interface with two context-control operations: a method for
setting the current transactional context used by STM op-
erations and a method for doing an inter-context copy of
arrays of bytes when serializing parameters to external ac-
tions. The remainder of the implementation is Java-based;
the STMCommit operation becomes a Java method which calls
validToCommit on any ContextListener objects before at-
tempting to commit the underlying STM transaction.

The two context-control operations are available only to

public class ExampleActionCall {
static int x = O;

static VoidExternalAction printX =
new VoidExternalAction() {
public void action(Context caller_context) {
System.out.println(" x=" + x);

3}
static void increment_x() {
atomic {
printX.doAction();
}
}
}

Figure 7: An example code fragment defining and
invoking an external action.

trusted code. However, we have investigated two ways of
exposing them safely to ordinary code such as applications
and I/0 library implementations. The first of these, which
we describe in Section 4.1, allows a single operation to be
defined at a time. The second design, in Section 4.2, exports
a whole interface of external actions: it is more verbose for
short examples but is more convenient for non-trivial cases.

4.1 Operation-based external actions

The first way of defining external actions uses a simple
mechanism in which the action is defined by overriding an
action method on an ExternalAction class. A separate
trusted doAction method uses the context-control exten-
sions to marshal parameters for the action and to invoke it
in the appropriate context.

Figure 7 illustrates this: the VoidExternalAction class
is extended with an action method that is called from the
context created in increment_x but which is executed in the
global context that was active when printX was initialized.

Generic types and variable-length argument lists can sim-
plify the infrastructure for defining this form of external ac-
tions by avoiding the proliferation of separate kinds of action
for different parameter and return types. Aside from actions
with void return type, a single parametric definition would
suffice.

However, with this approach, defining external actions
which can throw checked exceptions remains problematic:
the definition cannot be made parametric on a set of ex-
ceptions. In general the programmer has to follow inele-
gant approaches such as hiding checked exceptions within
unchecked wrappers.

4.2 Interface-based external actions

The second way of defining external actions is more suitable
for use in larger settings where the entire set of existing
methods on an object are to be encapsulated as external
actions. The approach is to allow an object to be exported
from one context and for all method invocations on it to be
made via stubs which behave as external actions.

The need for this kind of interface-based design became
particularly apparent while creating wrappers for use around
the Java Transaction API in which large numbers of boil-
erplate actions otherwise had to be written to wrap exist-



// Definition of interface exported
interface printXIfc {

public void printX(Q);
}

// Signature of export operation
public class ExternalAction {
static <F> F export(F imp) {

}
}

// Invocation of external action
public class ExampleActionCall {
static int x = 0;

static printXIfc printer =
ExternalAction.export (
new printXIfc() {
public void printX() {
System.out.println(" x=" + x);
}
b

static void increment_x() {
atomic {
printer.printX();
}
}
}

Figure 8: An external action defined using an inter-
face.

ing implementations of interfaces such as UserTransaction,
PreparedStatement and Connection.

Figure 8 illustrates how the earlier increment_x example
from Figure 7 could be expressed in this alternative form.
As before, the example ultimately prints the contents of a
field x in the global context. This operation is performed
by (i) providing an interface printXIfc which defines the
signatures of the methods to be exported as external ac-
tions, (i) defining an implementation of these operations
to be exported, (i) invoking ExternalAction.export() to
produce a set of stubs to perform the inter-context calls.

The stubs are constrained to implement an identical in-
terface to one implemented by the original, retaining throws
clauses for checked exceptions as well as the details of return
types and parameters.

5. IMPLEMENTATION EXPERIENCE

In this section we consider the use of external actions in pro-
viding a mechanism for managing exceptions (Section 5.1)
and for performing external 1/O operations (Section 5.2).

5.1 Propagating exceptions

The exception-propagation mechanism proposed in Section 2
can be implemented by a single external action that takes
the exception object created within the atomic block and
returns a deep copy of it created in the global context. The
definition of this action is simply:

static ObjectExternalAction promoteException =
new ObjectExternalAction() {
public Object action
(Context caller_context,
Serializable aae) {
return aae;
}
};

The actual copying of the exception object to the global
context is performed by the marshalling of the exception
object when promoteException is invoked. The design in
Figure 2 for implementing an atomic block using STM op-
erations is extended to propagate exceptions by adding an
exception handler of type AtomicAbortException and hav-
ing this promote the exception, abort the transaction and
then re-throw the copy the exception.

5.2 Performing I/O

1/0 operations are implemented using external actions to
perform any native method invocations necessary for the
I/O and using ContextListener call-backs to trigger re-
buffering of unused input (when aborting an input opera-
tion) or to trigger the actual output of buffered data (when
committing an output operation).

For example, when reading from standard input, an exter-
nal action is used to perform the read. It calls a native read
method from within the global context and buffers the value
read, again within the global context. In this case a context
listener is registered to re-buffer the data if the atomic block
is aborted, or to discard the buffer if the atomic block com-
pletes successfully.

We define a set of utility classes which simplify the imple-
mentation of abstractions such as the AtomicOutputStream
in Figure 5. These hold ordered collections of objects that
are buffered until an atomic block commits, and collections
of input items that have been received by an atomic block
and must be held for potential re-buffering in case the block
aborts.

Integration with external database transactions is not so
straightforward. We have built a prototype system based
on the Java Open Transaction Manager (JOTM)!, although
this relies on modifications to the JOTM implementation
rather than being made through the established Java Trans-
action API (JTA) [11]. The fundamental problem is that
both the STM and the JOTM system want to make the final
decision of whether or not to commit a set of operations; nei-
ther allows the other to perform a separate ‘prepare’ phase.
We chose to extend the JTA UserTransaction interface with
an additional prepare() operation. This issue would have
to be addressed more methodically in a full-strength imple-
mentation of our system.

6. RELATED WORK

This atomic construct builds on designs for Conditional
Critical Regions [7] and on the concurrency control features
of languages such as DP [2], Edison [3], Lynx [10] and Ar-
gus [8].

Stack-like memory usage disciplines have been investi-
gated in several other settings, most notably region-based
memory management [12]. Regions have been proposed as

"ttp://jotm.objectweb.org



an alternative or adjunct to traditional garbage collection,
allowing objects to be allocated within a stack of regions and
allowing space to be reclaimed by removing an entire region
from the top of the stack. Safety requires that references do
not occur from more permanent regions into less permanent
ones.

The Real-Time Specification for Java (RTSJ) [1] defines
a way of allocating objects within ‘scoped memory areas’
in order to allow storage reclamation without a run-time
garbage collector. Scoped memory areas must obey similar
constraints to the Context objects proposed here: objects
within one area may not refer to objects in less permanent
areas.

There are three main areas in which differences exist be-
tween our scheme, regions and scoped memory areas. The
first is in whether the prevention of illegal references is done
statically or dynamically: our system, as with conventional
region-based ones, takes the former approach whereas RTSJ
takes the latter. The second point of comparison is the direc-
tion in which contexts are entered: our system must support
transitions both from an outer context to an enclosed one
(by entering an atomic block) and from an enclosed con-
text to an outer one (by invoking an external action). The
final point is that the stack of Context objects in our sys-
tem should be viewed as ‘overlays’ on the same heap, with
objects at one layer being shadowed by objects at enclosed
layers, whereas the identities of objects in different regions
or scoped areas are considered distinct.

7. CONCLUSIONS AND FUTURE WORK

This paper has shown how we have extended our atomic
regions for concurrent Java programs to suppport explicit
abort operations and 1/O. The design presented here intro-
duces a notion of nested execution contexts and an abstrac-
tion for performing inter-context method calls. In this final
section we highlight a number of dead-ends we followed in
earlier designs (Section 7.1) and a number of extensions for
future work (Section 7.2).

7.1 Early dead-ends

Although these final abstractions are individually simple,
developing them has highlighted a number of problems which
we had not originally foreseen. These all relate to the need
to be careful about passing object references into a context
in which the initialisation of the objects’ fields will not have
been visible.

The original design we sketched proposed control methods
through which reads or writes could be performed outside
the current software transaction [5].

This approach is not safe with respect to the language-
based protection provided by Java: for example, final fields
are intended to be constant once initialised, but using these
methods a programmer could cause the initialisation to hap-
pen within a transactional context and subsequent accesses
to take place outside that context and therefore without the
initializations visible.

In subsequent designs we considered introducing a form
of ‘global action’ which would always execute in the global
context. As with our ultimate design for external actions,
these would be defined by instantiating an anonymous inner
class, for example:

atomic {
final String s = new String("Erroneous example");
GlobalAction g = new GlobalAction() {
public void doAction(Context caller_context) {
System.out.println ("s=" + s); /*P1x/
1}
g.doAction();
}

Unfortunately if P1 is exectued in the global context then
the initialization of the object s refers is not visible. Note
how our decision to execute external actions within the con-
text within which they are instantiated avoids this problem
without the need for dynamic checks. It also deals naturally
with the case of nested contexts.

7.2 Future work

Object finalizers still pose a problem: if an object is instan-
tiated in an atomic block and that block is subsequently
rolled back by an exception then should finalizer methods
be invoked on the objects that are lost? There appear to
be two options: the first is to consider the destruction of
the atomic block’s context to entirely undo the creation of
the objects and therefore to not run finalizers on them. The
second option is to execute the finalizers within the context
that the objects were instantiated — i.e. to execute them
just before destroying the context. These two options have
different behaviour if the finalizers loop or perform external
actions. We favour the first option because it is simpler to
implement and because it is consistent with the semantics
of Section 1.1.

The key direction for future work is evaluating the prac-
tical utility of the techniques that we have developed: we
have now considered atomic blocks with an armoury of fea-
tures, but we have not exercised these features in earnest in
a large system. It will also be instructive to see whether the
roll-back mechanisms triggered by AtomicAbortException
objects can simplify sequential programs by automating the
management of compensatory actions — this may be partic-
ularly useful when developing I/O-processing code with a
wide variety of possible failure points.

A further point for future investigation will be the rela-
tionship between this work and the java.util.concurrent
library? anticipated in J2SE 1.5. For instance, once there
are benchmarks targeting JSR-166 features, then it will be
interesting to compare the implementation of collections and
queues built using atomic blocks with those built using the
virtual machine’s existing abstractions. We hope that our
work is an excellent counterpart to JSR-166 and that the
combination of well-engineered high-level abstractions and
an effective mechanism for extending them to provide ag-
gregate atomic operations may encourage more wide-scale
adoption of concurrency in applications.

7.3 Acknowledgments

This work has been supported by a donation from the Scal-
able Synchronization Research Group at Sun Labs Mas-
sachusetts.

2JSR-166, http://wuw.jcp.org/en/jsr/detail?id=166



8.
1]

3]

[4]

[6]

8]

[10]

[11]

[12]

REFERENCES

BoLLELLA, G., BROsGoL, B., DiBBLE, P., FURR, S.,
GOSLING, J., HARDIN, D., TURNBULL, M., AND
BELLIARDI, R. The Real-Time Specification for Java.
Addison Wesley, June 2000.

BRINCH HANSEN, P. Distributed processes: A
concurrent programming concept. Communications of
the ACM 21, 11 (Nov. 1978), 934-941.

BriNCH HANSEN, P. Edison — a multiprocessor
language. Software — Practice and Ezperience 11, 4
(Apr. 1981), 325-361.

CorMEN, T. H., LEISERSON, C. E.; AND RIVEST,

R. L. Introduction to Algorithms. MIT Press,
Cambridge, Mass., 1990.

HARRIS, T. Design choices for language-based
transactions. Tech. Rep. UCAM-CL-TR-572,
University of Cambridge, Computer Laboratory, Aug.
2003.

HaRrRIs, T., AND FRASER, K. Language support for
lightweight transactions. In Object-Oriented
Programming, Systems, Langauges € Applications
(OOPSLA 03) (Oct. 2003), pp. 388-402.

Hoarg, C. A. R. Towards a theory of parallel
programming. In Operating Systems Techniques
(1972), vol. 9 of A.P.I.C. Studies in Data Processing,
pp. 61-71.

Liskov, B., AND SCHEIFLER, R. Guardians and
actions: linguistic aupport for robust, distributed
programs. ACM Transactions on Programming
Languages and Systems 5, 3 (July 1983), 381-404.
Conference Record of the Twenty-first Annual ACM
Symposium on Principles of Programming Languages
(Jan. 1994), ACM SIGPLAN Notices, ACM Press.
ScorT, M. L. Language support for loosely coupled
distributed programs. IEEE Transactions on Software
Engineering SE-13, 1 (Jan. 1987), 88-103.

SINGH, I., STEARNS, B., AND JOHNSON, M. Designing
enterprise applications with the J2EE platform,

2nd ed. Addison Wesley, 2002.

TorTE, M., AND TALPIN, J.-P. Region-based memory
management. Information and Computation (Feb.
1997). An earlier version of this was presented at [9].



