Design and Implementation of Netdude,
a Framework for Packet Trace Manipulation

Christian Kreibich
University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge CB3 OFD, UK

christian.kreibich @ cl.cam.ac.uk

Abstract

We present the design and implementation of a
framework for inspection, visualization, and mod-
ification of tcpdump packet trace files. The system
is modularized into components for distinct applica-
tion purposes, readily extensible, accessible through
programmatic and graphical interfaces, and capable
of handling trace files of arbitrary size and content.
We include experiences of using the system in sev-
eral real-world scenarios.

1 Introduction

In today’s computer networks traffic varies greatly
in content and volume, making network analysis a
difficult process. Researchers, developers, and sys-
tem administrators use traffic capturing tools (snif-
fers) to obtain traces of network traffic to gain bet-
ter understanding of traffic characteristics. Storing
traffic flows in a standardized form allows them to
investigate the effects of network misconfigurations
and programming errors, to perform forensic inves-
tigation, to process traffic using appropriate tool
chains, and most importantly, to make the occur-
rence of observed phenomena reproducible.

Among the plethora of tools available for this pur-
pose, three freely available ones constitute the de-
facto standard: the 1ibpcap library! provides a low-
level application programming interface (API) to fil-
ter and intercept packets, tcpdump presents these
packets in textual format, and ethereal? provides
a graphical user interface (GUI) for capturing, fil-
tering, and inspecting packets, supporting a large
number of networking protocols and sniffers.

Interestingly, tools that also allow the user to edit
captured traffic have so far been limited to problem-
specific solutions, where the state of the art is dis-

appointing: developers create repositories of fre-
quently unreleased, purpose-specific, throw-away
programs, inconveniently written at the libpcap
level. Yet many of these tools would be useful
to a larger audience. Publicly available tools typ-
ically have varying calling conventions, and while
they normally are fairly easy to use in scripts, they
are often not reusable at the API level because
their functionality is only available in a standalone
executable. These practices violate multiple well-
accepted software engineering principles, such as
component reuse and the avoidance of cut-and-paste
practices, code redundancy, and duplication of ef-
fort.

To improve this situation, we present Netdude, the
network dump data displayer and editor, a frame-
work designed to support different packet manipu-
lation paradigms (from APIs to convenient GUIs),
emphasizing code reuse, extensibility, and scalabil-
ity. We think of Netdude as a workbench for the
creation of new tools, integrating the efforts of other
developers. All components presented in this paper
are fully implemented and publicly available. We
present the architecture of the framework, including
design goals and implementation aspects, in Section
2. Section 3 gives usage examples at the API and
GUI levels and demonstrates the extensibility of the
framework. We describe our experiences in using
the framework in a number of real-world scenarios
in Section 4. Section 5 discusses the system and
presents future work, before Section 6 summarizes
the paper.

2 Architecture

We first state our design goals for the system. We
then present the architecture of our framework, and
walk through its components with a detailed expla-
nation of the implementation.

GUI Event Handling

Netdude

Trace/Packet
Event Handling

Feature Plugins Protocol Plugins

tcpdump 1/0

Preferences

Filtering Trace Lifecycle

Statistics r Capture r Etrer r P I TCP I—

BPF L Eter | 1P I TCP !
libnetdude

Feature Plugins Protocol Plugins

Navigation Packet Iteration

v

libpcapnav |

GTK |

v

libpcap |
User Space

Filesystem

e | Kernel

Figure 1: Architecture of the Netdude Framework.

2.1 Design Goals

1. MULTIPLE USAGE PARADIGMS

The user must be able to manipulate trace files
at the desired level of interactivity and abstrac-
tion. We neither want to enforce only an API,
thus asking all users of the framework to be-
come developers, nor a GUI, forcing developers
to use a graphical interface that may not be
flexible enough. Programmers must find the
framework usable at a convenient level of ab-
straction that allows them to focus on relevant
aspects of their algorithms without getting dis-
tracted by details of packet reading & writing,
trace file navigation, etc. The framework must
eliminate the need to hand-write trace file ac-
cess, filtering, iteration, and protocol demulti-
plexing code anew for every application.

2. OPENNESS & EXTENSIBILITY

Our goal is to provide programmers maximum
flexibility in making their code interact with
our framework. Since networking code is typ-
ically written in low-level languages, the pro-
gramming language must not limit the usability
of the framework to a certain language or ex-
ecution environment. Both programmers and
GUI users must have a means to extend the
framework using components that they develop
themselves or obtain from other developers.

3. SMALL-SCALE EDITING
The framework must allow the manipulation of
packets at a fine-grained level of detail, down
to individual bits in the protocol headers and

byte sequences in packet payloads. It also must
provide the user with means to delete, move,
swap, duplicate, and erase packets, and to allow
easy saving of changes made to a trace file.

4. LARGE-SCALE EDITING
The framework must allow the manipulation
of arbitrarily large trace files (subject to the
maximum allowable file size on the operating
system used), particularly files that are much
larger than the system memory capacity. Traf-
fic trace files easily reach sizes in the gigabyte
range, thus simply loading files into memory at
startup is not an option.

The first goal excludes library-only or application-
only designs since either would exclude one of the
desired user groups. The second goal demands a
widely used system programming language; we have
decided to implement all library components in the
C language to facilitate easy binding to other lan-
guages and to provide the largest-possible common
denominator. The remaining two goals suggest con-
centrating the packet manipulation code in a library
that can then be used by other programs.

2.2 TImplementation

These goals lead to a layered architecture, illus-
trated in Figure 1. In the bottom layer, libpcap
handles elementary trace file operations: opening
and saving traces, sequential reading and writing of
packets. The remainder of this section describes the
higher layers of the architecture.

2.2.1 1libpcapnav: Random Packet Access

libpcapnav is a thin wrapper around libpcap that
removes the limitations of sequential read access to
packets stored in a trace file. Between packet reads,
users can jump to arbitrary locations in the trace
file, identified by packet timestamps or fractional
offsets in the file (e.g., 0.5 identifies the middle of
the file). After jumping to a random byte offset
in a trace file, the challenge is to properly realign
the packet extraction process to the packet sequence
contained in the file. The libpcap file format cur-
rently provides no markers to identify the begin-
ning of a packet in the file. Even if such a marker
was used, it could always occur inside packet data
as well. Therefore, a heuristic approach is called
for. The algorithm used by libpcapnav is based
on the one introduced by the tcpslice® tool. Our
algorithm uses similar sanity checks on a number
of libpcap packet header fields to identify possi-
bly valid packet chains, but does not trust a chain
of packets to be valid as easily. In cases like trace
files containing a file transfer of another trace file
(over NFS, via FTP, etc) the danger is to end up
in a small chain of 1ibpcap packet headers that ac-
tually comprise only the payload transported over
the network. To avoid this, 1libpcapnav scans a
window whose size is calculated from the maximum
packet size captured in the trace and the maximum
length of a chain of packets that the algorithm fol-
lows. While scanning, the algorithm keeps track
of the chain lengths encountered, keeping only the
longest chain.

2.2.2 libnetdude: Packet Manipulation

libnetdude is the core of the framework where most
of the packet editing functionality is implemented.
It provides abstract data types and APIs for han-
dling trace files, regions of trace files, packets, fil-
ters, packet iterators, and a few other features de-
scribed below. libnetdude can handle trace files of
up the maximum file size permitted by the file sys-
tem: it never loads more than a configurable max-
imum number of packets into memory at any time.
Just mmaping regions of the trace file into memory
is not an option, since our design goals include the
ability to perform arbitrary packet insertions and
deletions, and no data can be inserted in the mid-
dle of a mmaped memory region. Rather, trace files
are edited at the granularity of trace areas, whose
borders are defined using timestamps or fractional

Tae Aa 2

<>
Tae A 1 Tae A 3

Tae Rt 4 Tae fat 3
Tae Rt 2
Tae Rt 1

o T |

Figure 2: Editing different trace areas causes resulting
trace parts to be layered on top of the original trace file.

Ta Rt 4 Tao Rt 3
Ta At 2
Tas Rt 1
e oo
Sync
Tas Rt 4 Tae Bt 2

T Rt 3

Figure 3: When saving a trace file, the layered parts are
flattened onto the original trace file.

offsets understood by libpcapnav. The modified
trace areas are stored in temporary storage as trace
parts, and are logically layered on top of the origi-
nal trace file, with new trace parts sitting on top of
all the other trace parts in the trace area covered.
Trace areas and trace parts are carefully maintained
by libnetdude, always providing a consistent view
of the trace file to the user. Figure 2 illustrates these
concepts.

When accessing a packet, the library always uses
the trace part in the uppermost layer at the current
offset. When a trace file is saved, the trace area
layers are flattened onto the original trace file, hon-
oring any inserted or removed packets. The result is
a new trace file that contains all modifications made
to the original input file. The process is illustrated
in Figure 3. The flattening process is performed
implicitly through packet iteration: starting at the
beginning of the base trace, iteration moves up to
areas at higher layers as soon as they are encoun-
tered, and returns to lower layers at the end of each
trace part.

Note that packet insertion and deletion are straight-
forward in this approach: the actual composition of
packets in a trace area can change but trace parts
are still merged onto lower parts at the original

Be T
Ins ert

Tae Rt Irtion ;

e |
Sync

Tan fat Igtion I

Figure 4: Packet insertion: a trace part is growing in
size. When merged onto the base, the original bound-
aries of the modified trace part are maintained.

Tae Rt

Be Ta

Delete

Tae Rt

Be Tap

Sy nc

Faw Rt |

Figure 5: Packet deletion: a trace part is shrinking.
Again, the original boundaries of the modified trace part
are maintained when merging.

boundaries, regardless of the new higher part’s size.
This is illustrated in Figures 4 and 5. Furthermore,
this approach makes it easy to provide “undo” func-
tionality: removal of the most recent trace part from
the stack reverts the most recent modification of the
trace file.

In addition, 1ibnetdude provides a number of other
features:

e A plugin architecture that enables extensibility
in two ways: Firstly, protocol plugins allow in-
terpretation of arbitrary protocol data. Each
protocol plugin provides the knowledge neces-
sary to parse a protocol’s header and to select
the next protocol in the chain of protocol head-

ers contained in a packet. Secondly, feature plu-
gins provide reusable building blocks for func-
tionality that the framework itself does not con-
tain. By linking to other libraries, feature plu-
gins can leverage any functionality accessible
at the API level. 1ibnetdude provides mecha-
nisms for handling plugin dependencies by al-
lowing plugins to check whether other required
plugins are installed. Plugins are dynamically
loaded and registered when libnetdude boot-
straps, using dlopen and d1sym calls. This hap-
pens transparently: plugin authors only need
to define a number of well-known functions to
make their plugin’s capabilities known.

Structured packet content: once analyzed,
packet contents are represented as a sequence of
protocol headers. When a packet is initialized,
libnetdude starts the packet analysis process
by consulting the data link type given in the
libpcap header of the trace file. The corre-
sponding protocol plugin is queried, and con-
trol of the analysis is passed to that plugin and
then onward as this plugin sees fit. The data
structures representing the packet data are cre-
ated on the fly. Analysis stops when no plugin
for a given protocol can be found, or when a
plugin does not need to pass analysis on to an-
other protocol. Once the process is finished it is
easy to obtain, say, the TCP header of a packet.
Nested protocols (such as IP in IP) and arbi-
trary tunneling are supported. Developers thus
need no longer write their own protocol demul-
tiplexers for each application.

Access to the familiar tcpdump output:
libnetdude can associate each open trace file
with its own tcpdump process through a bidirec-
tional pipe. The user can then obtain tcpdump
output at the granularity of individual pack-
ets with a single function call*. Full control
over the output format is preserved by allow-
ing configuration of tcpdump’s command line
options. Since libnetdude can be configured
to use any locally installed tcpdump executable,
changes made to tcpdump remain visible inside
the framework.

An observer/observee API for objects like trace
files, packets, packet iterators, packet filters,
and trace parts. This feature allows seamless
integration of the library into the surround-
ing application, without exposing unnecessary
internal state. Users can register callbacks
that are invoked when certain events occur in

Gn Prntncn\s Pluglns Semngs Debugg\ng

clay 1 Jog D-

File Ediit

]Tcpdump log (1.317% of file at 45.54% offset)

16:56:46 370627 192.165. 100 28.32794 > 132.18.93,122.20:

16:56:46. B50648 £1.213.90.180.56712 > 192.168.100.28.1524
16:56:46 370627 192,148,393 122.20 > 132.168.100, 28 22734

ack 3127732936 win 20090 <nop,nop, timestamp 486320

. 4035427529: 4095428983 ¢1460) ack 3391286452 win 24820
. ack 1784 win 24820 (DF}

E L s A i | <nop,op. t,:unest,amp 11333958

16: 56 46 970627 152.168. 100 23 1524 » £1.213.30.180. 56712:

15565 .47 000625 192159 "3 152, 156,100 21 “1964 5244014503 ack 1 20 (UF) &5 OxA]
16: G647 120517 132 168 lﬂﬂ 28 32794 » 192 1% 39 122 20 ack 3244 win 24820 (DF)
16:56:47. 130612 £1.219.30 180.56742 > 182.168.100. 28 1524 . ack Z win 20030 <nop,nop, timestamp 48632098 113383
16:56:47 130612 192,168 100, 22,1524 > £1.213.30. 180 56712: P 2:4(2) ack 0 win 24616 <nop, nop, binestamp 11332355
16:56:47 400538 61,213,390, 180.56712 » 152,168,100, 28.1524; . ack 4 win 20030 <nop,nop, timestamp 48632113 113383
1R-5h-47 R4N581 197 18 99 122 20 > 197 1RA 100 7R 32794 3744 4704 F14RNY ack 1 win P4820 (MFPY [tn= NxR1 =
Sre, port (20) 1l Dst. port (32754)
Seq. number (4085426313)
Ack number (3331 286452)
Data ffset (5) Unused (1) m B R EEE Win (24830)
T—— [Urgent (0
200 packets. || =l || Reat size: 1514 bytes, captured: 1514 _

Figure 6: Main window of the Netdude GUI, with three trace files opened, 200 packets of the first file loaded into
memory, and the TCP header of the selected packet displayed. The red highlight indicates that the TCP checksum

in this packet is incorrect.

the monitored items, such as packet insertions
and deletions, trace navigation, or advances in
packet iteration.

2.2.3 Netdude: GUI Frontend

The Netdude framework provides a GUI application
that leverages the functionality libnetdude pro-
vides. The main window is shown in Figure 6. The
application provides graphical interfaces for all un-
derlying abstractions: users can open and save trace
files, navigate to arbitrary locations in the trace, in-
spect packets, configure trace areas to which packet
modifications are applied, modify protocol header
fields and payload content, and access add-on fea-
tures through installed feature plugins.

The plugin concept of libnetdude is mirrored at the
GUI level: protocol plugins allow the visual presen-
tation of a particular protocol’s header data, while
feature plugins provide GUI access to underlying
functionality. The visual representation of header
data is entirely up to the plugin author: fixed-width
cells can be rendered in a tabular layout, header
fields can be color-coded depending on the field
value, whereas string-based data may be better rep-
resented using list or tree elements.

In order to ensure good performance of trace file
operations regardless of the file size, the applica-
tion relies on 1ibnetdude’s approach of limiting the
number of packets loaded into memory to a config-

urable number. When the user jumps to a different
location in the trace file, up to this number of pack-
ets are loaded into memory and presented as a list in
the GUI. Individual packets are analyzed by select-
ing them from that list. The user can then browse
the protocol data in a notebook containing one tab
per protocol header contained in a packet. When no
plugin can be found to visualize a protocol header,
a fallback hex editor allows for inspection and mod-
ification of packet data using two different modes: a
hexadecimal mode that presents each byte in ASCII
and hex, and a pure ASCII representation suitable
for text-based data.

3 Framework Usage

We illustrate the usage of the framework at the GUI
and API levels using two examples: iterating over
packets, and accessing selected protocol headers in
a packet. Figure 7 shows 1libnetdude code for these
scenarios. To illustrate the flexibility of the plugin
mechanism, we then present a few feature plugins
for 1ibnetdude.

3.1 Packet Iteration

Using libnetdude, packet iteration is done in two
steps: first the area of the trace that the user wants
to iterate is specified. Then, a packet iterator in-
stance is used in a for-loop. In each iteration, the
current packet can be obtained from the packet iter-
ator. libnetdude differentiates between read-only

#include <libnd.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
void iterate_tcp_dports(const char *tracefile)
{
LND_Trace *trace;
LND_PacketIterator pit;
LND_TraceArea area;
LND_Protocol *tcp;
struct tcphdr *tcphdr;
/* Obtain a handle to the TCP protocol */
if (! (tcp = libnd_proto_registry_find (LND_PROTO_LAYER_TRANS, IPPROTO_TCP))) {
/* Protocol not found —- handle accordingly. */
¥
/* Open the trace file: */
if (1 (trace = 1libnd_trace_new(tracefile))) {
/* Didn’t work -- appropriate error handling. */

/* Set the trace’s active area to the second half of the file. */
libnd_trace_area_init_space(%area, 0.5, 1.0);
libnd_trace_set_area(trace, &area);

/* Iterate over all packets in that trace area */
for (libnd_pit_init(&pit, trace); libnd_pit_get(&pit); libnd_pit_next(&pit)) {

/* Request the TCP header of the current packet. */
tcphdr = (struct tephdr *) libnd_packet_get_data(libnd_pit_get(&pit), tcp, 0);
/* If a TCP header was found, print its destination port. */
if (tcphdr)
printf("Dest. port: %u\n", ntohs(tcphdr->th_dport));

}
}

Figure 7: A libnetdude example, iterating the second
half of a trace and printing out the destination ports of
all TCP packets in that area.

and read/write iteration because packet modifica-
tions require the creation of a new trace part for
the trace area iterated. In this case, the user can
selectively drop packets during the iteration.

Using the GUI, the user first defines the trace area
using a dialog. The iteration is then performed im-
plicitly when the user modifies a packet (for example
by setting a header field to a certain value, or fix-
ing checksums): the same modification is applied to
all packets in the configured trace area, subject to
configured packet filters.

3.2 Accessing Protocol Data

Using 1ibnetdude, the user obtains a handle for the
desired protocol by specifying the protocol’s layer in
the network stack and the identifier of the protocol
commonly used at that layer (e.g., IPPROT0 xxx val-
ues at the network layer). The user then requests
a pointer to this protocol’s header data in a packet,
for the desired nesting level. Note that this querying
mechanism does not imply that the protocol must
be used at the specified protocol layer in the packet
data. The layer is only used to obtain a handle
to the data structure representing the protocol in
libnetdude.

Using the GUI, the user first selects a packet from
the list of packets currently loaded into memory.

The GUI then provides access to the individual pro-
tocol headers contained in that packet. The user
selects the desired protocol header and directly ma-
nipulates the header’s bit fields as visualized by the
responsible plugin (e.g., using pull-down menus for
fixed-range values, or entry fields for variable fields).

3.3 libnetdude Feature Plugins

When making new features available at the API and
GUI levels, we prefer to first provide functionality in
libnetdude feature plugins and then add Netdude
GUI frontends later on. libnetdude’s plugin-based
architecture has important implications for develop-
ers: consider a programmer who wants to develop
an application that uses functionality provided by a
feature plugin. When using C, he or she would typ-
ically use the plugin’s API by including the plugin’s
header file(s). However, this causes problems at link
time due to the late-binding design of 1ibnetdude’s
plugins: when linking the new application’s code to
libnetdude, the symbol definitions of the required
plugins are not available since the object files are
only linked in after the library’s bootstrapping pro-
cess completes. The result is an undefined symbol
error. Adding the plugin’s shared object files at link
time is insufficient in case the plugin itself requires
other plugins; this approach would quickly result in
all plugin object files being added at link time, vio-
lating our design goal of flexible extensibility.

As a more scalable solution, we ask plugin
developers to provide the new functionality in
libnetdude plugins themselves. This way, sym-
bols are only resolved at runtime (since the plu-
gins are built as shared objects) and linking
can remain constrained to the new plugin. Un-
defined symbols can still be caught at compile
time using suitable compiler options, such as
-Werror-implicit-function-declaration when

using GCC.

To make the plugin’s functionality accessible, devel-
opers have two options: the first is to provide their
own executable that initializes the library, queries
the plugin, and runs it with appropriate param-
eters. This only needs a few lines of code. The
second option is to use the 1ndtool command line
frontend that is provided by libnetdude. This tool
can be used to query several parameters of the local
libnetdude installation. As an example, Figure 8
shows how 1ndtool lists installed plugins.

cpk25@ghouls:/auto/homes/cpk25 > lndtool --plugins
libnetdude protocol plugins:

Ethernet 0.5
ICMP 0.5
IPv4 0.5
SLL 0.5
LLC/SNAP 0.5
TCP 0.5
UDP 0.5
ARP 0.5
FDDI 0.5

libnetdude feature plugins:

BPF-Filter 0.5
Checksum-Fix 0.5
PHDL 0.1
TCP-Filter 0.1
TCP-State-Tracker 0.2
Trace-Set 0.1
Traffic-Analyzer 0.3

Figure 8: Running 1ndtool to obtain a list of installed
plugins.

1ndtool also provides a command line interface for
accessing the plugins, passing command line argu-
ments through to the selected plugin. Examples of
1ndtool’s usage are given in the following selection
from feature plugins that have been developed so
far:

e Trace Sets: The need to operate on a set of
traces occurs frequently. To allow easy reuse of
this functionality, we have developed a plugin
that manages the life cycle of sets of trace files
and provides a mechanism to iterate over trace
files contained in such a set.

e TCP Connection Tracking: Most TCP-based
packet manipulation requires TCP connection
state tracking. This plugin provides such func-
tionality and allows the user to maintain and
query connection state for a number of flows,
and check whether the three-way handshake or
connection teardown were fully observed. The
plugin is useful in itself: when run as 1ndtool
-r tcp-state-tracker <trace>,it prints the
familiar tcpdump output but augments each
TCP packet’s line by including the current con-
nection state.

e Filtering incomplete TCP flows: This plugins
scans a set of trace files and removes all in-
complete TCP flows present. In a first scan,
the connection tracking plugin is used to estab-
lish and update state for each flow found in the
trace, before a second scan checks each packet’s

flow for complete three-way handshake and
connection teardown. If those were observed,
the packet is kept, otherwise it is dropped.
The plugin can be accessed from the command
line using 1ndtool -r tcp-filter <tracel>
[<trace2> <...>].

Traffic Statistics: To quickly get an idea of
what is contained in a trace file, we have
developed a simple traffic analyzer plugin that
computes counters and percentage values for
the number of packets and bytes contained,
IP payload protocol usage, TCP/UDP port
number usage, and TCP flows. The plugin
can be accessed from the command line using
Indtool -r traffic-analyzer <tracel>
[<trace2> <...>].

Abstract Protocol Header Definition:
libnetdude and Netdude allow the devel-
oper to make protocol analyzers arbitrarily
smart and to design the visual representation
of protocol header data in any way desired.
For example, the standard IP plugin is able
to check whether the IP header checksum is
correct, and can also fragment and reassemble
packets. Frequently however, sophisticated
functionality is less important than basic
understanding of the protocol structure. In
this situation, it is not necessary to force
developers to write their own code to make
a protocol’s structure accessible. Rather, a
high-level protocol header definition language
is desirable that allows the specification of a
protocol header’s layout in a simple text file.

We have designed a language, PHDL, for this
purpose and provide an interpreter as a sep-
arate libnetdude plugin. When libnetdude
is initialized, the PHDL plugin reads all in-
stalled protocol definition files and creates pro-
tocol data structures accordingly, equipping
each new protocol with a header blueprint.
When a packet’s protocols are analyzed, the
header blueprint is used to build an instance of
the structured protocol data that can then be
queried and manipulated. The complementing
PHDL Netdude plugin then uses this informa-
tion to visualize the protocol data in a stan-
dardized tree view similar to ethereal, but
with the added functionality of being able to
modify the header fields.

As an example, we show a PHDL definition for
IPv4 in Figure 9.

PHDL Definition for IPv4 based on RFC 791.

structure of the header common to many IP options.
def "opthdr" {

unsigned int "type" 8;

unsigned int "length" 8;

¥

structure of an IPv4 address -- 32bit field, when output,
chunk into 8bit units and separate using a ".".
def "ip4addr" {
int "addr" 32 { unit = 8; sep = "."; }
}

structure of IP options that contain a list of IPv4 addresses.
def "addropt" {

opthdr "header";

unsigned int "ptr" 8;

chain "route" {

ip4addr "addr";

} until length ((.header.length - 3) * 8);

}

Now the main header definition:
proto "IPv4" (net : 0x800) {

block "fixed" {
int "version" 4;
int "h1l" 4 { scale = 4; }

block "tos" {

enum "ecn" 2 {
0 "-ny 1 : "ECT(0)2";
2 : "ECT(1)"; 3 : "CE";

}

enum "tos" 4{
0x10 : "Low Delay"; 0x08 : "Reliability";
0x04 : "Low Cost"; 0x00 : "None";

}

unsigned int "len" 16;
unsigned int "id" 16;

block “frag" {
int “rf" 1; int "df" 1; int "mf" 1;
unsigned int "off" 13;

}
int "ttl" 8;
The exclamation mark identifies this field as the

key to the selection of the next protocol header:
enum "proto" 8 {

1 : "ICMP";
2 : "IGMP";
4 : "IPIP";
6 : nTCP";

rest treated as "other"

}

hex "checksum" 16;
ip4addr "src";
ip4addr "dst";

}

chain "options" {
union "option" {
int "noop" 8 if (.noop == 0);

block "security" {
opthdr "header";

unsigned int "s" 16;
unsigned int "c" 16
unsigned int "h" 16;

unsigned int "tcc" 16;
} if (.header.type == 130);

addropt "lsrr" if (.header.type == 131);
addropt "ssrr" if (.header.type == 137);
addropt "rr" if (.header.type == 7);

block "streamid" {
opthdr "header";
unsigned int "id" 16;
} if (.header.type == 136);

block "timestamp" {

opthdr "header";

unsigned int "ptr" 8;

unsigned int "oflw" 4;

unsigned int "flag" 4;

ip4addr "addr";

chain "ts" {

unsigned int "tstamp" 32;

} until length ((.header.length - 3) * 8);

} if (.header.type == 68);

} until length (fixed.hl - 5) * 4 x 8;

Figure 9: PHDL code describing the IPv4 header layout.

Other potential applications include traffic
anonymizers, address mappers, import and
export filters for other file formats, and interfaces
to other software for more advanced functionality
like visualization and mathematical analysis.

4 Real-world Use Cases

The original catalyst for the creation of Netdude
was our work on TCP/IP network traffic normaliza-
tion [HKPO01]. This was a typical scenario for small-
scale editing. In order to test our normalizations, we
needed to create very specific packet constellations,
for example specific values for the IP TTL field, the
TCP flag bits, and IP fragments with valid and in-
valid fragment offsets. Using the Netdude GUI, we
gave individual packets the desired features and re-
played the manipulated trace files through the nor-
malizer.

The second use case was in the domain of high-
speed network monitoring equipment. The sub-
ject of study was Nprobe, a scalable multi-protocol
network monitor [MHK*03]. The goal was to
evaluate system performance under various traffic
loads. We used libnetdude to create traffic pat-
terns that triggered different hotspots in the sys-
tem. We then wrote an IP address mapping plugin
for 1ibnetdude, that maps those traces to disjunct
IP address ranges so that we could replay multi-
ple instances of the traces in parallel to expose the
probe to high volumes of traffic.

At the moment we are using Netdude in order to
test intrusion detection system (IDS) signatures.
The classic approach is to experiment with a signa-
ture for a network-based IDS [Pax98][Roe99], test-
ing whether the IDS reacts correctly when replay-
ing a trace file. It is often more straightforward to
manipulate the traffic itself and not the signature,
particularly when testing the resilience of a new sig-
nature against variation in traffic patterns and cor-
responding false positive rates. This approach was
particularly useful in our work on the Honeycomb
IDS signature generator[Kre03], where the ability to
make small-scale modifications to packet data was
most helpful for testing the string-matching algo-
rithm used by the system. Netdude’s editing capa-
bilities have worked very well in these scenarios.

5 Discussion & Future Work

In its current state, we find the framework useful for
everyday work with sets of trace files of sizes ranging
from a few kilobytes up to several gigabytes. The
ability to access functionality through a command
line interface is most valuable for scripting tasks for
repeated execution. We mostly use the GUI appli-
cation for the simpler editing tasks and for quick
inspection of trace files. Netdude’s ability to handle
large trace files makes it a far better option than
alternative tools like ethereal that lack this fea-
ture and that are restricted to files smaller than the
system’s physical memory capacity.

When using the command line, we have frequently
found that it would be useful to be able to use the
traditional UNIX approach of piping the output
from one processing stage to the input of the next
stage. Unfortunately this metaphor is not directly
applicable to our problem setting: depending on
the functionality provided, a stage may have to
employ random access to various locations in the
file, or scan a file repeatedly (as in the case of
the TCP filtering plugin described in Section 3.3).
Directly piping packet data from one stage into the
next will not work here since the streams cannot
be rewound. However, temporary files could be
used transparently, and the piping could be kept
within the 1ndtool command, for example using
a syntax like Indtool ’-r <stagel> -i <input>
| -r <stage 2> | | -r <stage n> -o
<output>’

Another useful feature would be the ability to use
libnetdude in a scripting environment such as
Python or Perl. Creating the necessary “glue” code
using a tool like SWIG® should prove fairly easy and
is one of our next items for future work.

6 Summary

Netdude is a framework for inspection, visualiza-
tion, and modification of tcpdump packet trace files.
Its modular design allows users to interact with the
framework at different abstraction levels: a low-
level trace navigation wrapper for libpcap called
libpcapnav, a high-level API with convenient types
for performing common packet manipulation tasks
in 1ibnetdude, and a GUI application that allows
both small- and large-scale editing previously im-
possible without writing code. The framework is
readily extensible at the 1ibnetdude and GUI levels

through its plugin architecture, making it a work-
bench for the creation of new packet trace tools. A
number of plugins have been developed so far and
have already helped us in cutting down the devel-
opment time for new features.

The system has been in development for three years.
The use cases that allowed us to apply the frame-
work so far have confirmed our goals of simplifying
the development of packet manipulation code and
encouraging the re-use of components developed in
other projects. We have implemented a number of
plugins for purposes such as IP address translation,
TCP flow demultiplexing, and statistical analysis.

We hope that the authors of networking code con-
sider using the Netdude framework for their fu-
ture packet manipulation needs, and provide useful
functionality in the form of plugins for 1ibnetdude
or the Netdude GUI as a benefit to the commu-
nity. Netdude is provided with a BSD license,
hosted on SourceForge, and can be obtained at
http://netdude.sf.net.

Acknowledgments

Since October 2002, this work has been carried out
in collaboration with Intel Research, Cambridge.
We would like to thank Vern Paxson, Mark Han-
dley, and Jon Crowcroft for inspiration and helpful
feedback. We also thank the Netdude user com-
munity for valuable ideas, comments, and contri-
butions, particularly Andrew Moore, Daniel Stod-
den, and Euan Harris, who also provided valuable
comments on the paper. Thanks also to the Cas-
tle Pub in Cambridge for hosting our brainstorming
sessions.

Notes

See http://www.tcpdump.org
See http://www.ethereal.com
3 See ftp://ftp.ee.lbl.gov/tcpslice.tar.Z

The implementation of this feature is signifi-
cantly complicated by the fact that tcpdump’s
packet analyzer is currently not available as a
library.

See http://www.swig.org

References

[HKPO1]

[Kre03]

[MHK*03]

[Pax98]

[Roe99]

Mark Handley, Christian Kreibich, and
Vern Paxson. Network Intrusion De-
tection: Evasion, Traffic Normalization,
and End-to-End Protocol Semantics. In
Proceedings of the 9th USENIX Security
Symposium, August 2001.

Christian Kreibich. Honeycomb - Au-
tomated NIDS Signature Generation
using Honeypots, Poster Paper. In
Proceedings of ACM SIGCOMM 2003,
Karlsruhe, Germany, August 2003. SIG-
COMM.

Andrew Moore, James Hall, Christian
Kreibich, Euan Harris, and Ian Pratt.
Architecture of a network monitor. In
Passive and Active Measurement Work-
shop Proceedings, pages 77-86, La Jolla,
California, April 2003.

Vern Paxson. Bro: A System for
Detecting Network Intruders in Real-
Time. Computer Networks (Ams-
terdam, Netherlands: 1999), 31(23-
24):2435-2463, 1998.

Martin Roesch. Snort: Lightweight
Intrusion Detection for Networks. In
Proceedings of the 13th Conference on
Systems Administration, pages 229-238,
1999.

