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ABSTRACT
Accurate traffic classification is of fundamental importance to nu-
merous other network activities, from security monitoring to ac-
counting, and from Quality of Service to providing operators with
useful forecasts for long-term provisioning. We apply a Naı̈ve
Bayes estimator to categorize traffic by application. Uniquely, our
work capitalizes on hand-classified network data, using it as input
to a supervised Naı̈ve Bayes estimator. In this paper we illustrate
the high level of accuracy achievable with the Naı̈ve Bayes estima-
tor. We further illustrate the improved accuracy of refined variants
of this estimator.
Our results indicate that with the simplest of Naı̈ve Bayes estima-
tor we are able to achieve about 65% accuracy on per-flow clas-
sification and with two powerful refinements we can improve this
value to better than 95%; this is a vast improvement over traditional
techniques that achieve 50–70%. While our technique uses train-
ing data, with categories derived from packet-content, all of our
training and testing was done using header-derived discriminators.
We emphasize this as a powerful aspect of our approach: using
samples of well-known traffic to allow the categorization of traffic
using commonly-available information alone.
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1. INTRODUCTION
Accurate network traffic classification is fundamental to numer-
ous network activities, from security monitoring to accounting, and
from Quality of Service to providing operators with useful forecasts
for long-term provisioning. Yet, classification schemes are difficult
to operate correctly because the knowledge commonly available to
the network, i.e. packet-headers, often does not contain sufficient
information to allow for an accurate methodology. This leads to
traditional techniques for traffic/flow classification that are often
no-more accurate than 50–70% [1, 2, 3].
Our work uses supervised Machine-Learning to classify network
traffic. Uniquely, we use data that has been hand-classified (based
upon flow content) to one of a number of categories. Sets of data
consisting of the (hand-assigned) category combined with descrip-
tions of the classified flows (e.g., flow length, port numbers, time
between consecutive flows) are used to train the classifier. We test
our algorithm using data-sets consisting of only the object descrip-
tions and then compare the predicted category with the actual cate-
gory for each object.
In the process of applying Naı̈ve Bayes we plan to provide insight
into the behavior of this technique itself. We will illustrate the sen-
sitivity of the Naı̈ve algorithm to its initial assumptions and we
plan to demonstrate that the use of two techniques, one to break
the Gaussian assumptions and the other to improve the quality of
discriminators as input, lead to significant improvements in the ac-
curacy of the Naı̈ve Bayes technique.
We consider this paper illustrates the application of a powerful
technique to a field different to those to which it has been previ-
ously applied. We do this in anticipation of further work exploiting
the techniques we describe as well as encouraging more research
to bring new techniques to bear on this problem space.

1.1 Motivation
As we noted earlier, the classification of traffic is an enabling func-
tion for a variety of other applications and topics, including Quality
of Service, security and intrusion-detection, monitoring. Further,
Karagiannis et al. [4] identify an additional application of traffic
categorization; they note that the growth or decline of particular
traffic types can have a direct impact on social and political deci-
sions, citing the perceived and actual growth of peer-2-peer net-
works.
Our work is made unique by the use of Internet traffic that has been
manually classified. We use this traffic both for the training and
testing of our algorithm. The data-set, along with the manual clas-
sification process, is described elsewhere [5]. In contrast with the
full-payload data used to enable precise classification, our method,
once trained with data of a known classification, is able to be used
to classify data for which only the TCP-headers are available.



Passively-collected packet-header traces, such as those performed
by NLANR/MNA[7] and WAND[8], are commonly available and
overcome issues of confidentiality and privacy. This widens the
application of our procedure, enabling the categorization of traffic
with a given accuracy and a known level of trust 1.

2. RELATED WORK
Due to its fundamental nature and its underpinning of many other
techniques, the field of traffic classification has maintained contin-
uous interest.
For example, the most common technique for the identification of
Internet network applications through traffic monitoring relies on
the use of well known ports: an analysis of the headers of packets
is used to identify traffic associated with a particular port and thus
of a particular application [1, 2]. It is well known that such a pro-
cess is likely to lead to inaccurate estimates of the amount of traffic
carried by different applications given that specific protocols, such
as HTTP, are frequently used to relay other types of traffic, e.g. a
VLAN over HTTP. In addition, emerging services avoid the use of
well known ports altogether, e.g. some peer-to-peer applications.
Our work is presented in the light of these traditional classification
techniques diminishing in effectiveness.
Other authors that have noted the relationship between the class
of traffic and its observed statistical properties include Paxson [6]
who reports on the distribution of flow-bytes and flow-packets for
a number of specific applications.
While not considering the wider use of joint distributions for iden-
tifying classes of traffic, Claffy [7] did observe that DNS traffic was
clearly identifiable using the joint-distribution of flow-duration and
the number of packets transferred.
In an analysis of Internet chat systems, Dewes et al. [8] make ef-
fective use of the packet-size profile of particular applications. The
authors note that packets relevant to their studies tend towards a
specific size-profile, limiting themselves to this profile allowed for
a more precise selection of traffic relevant to their study.
While not strictly classification, Floyd & Paxson [9] observe that
simple (Poisson) models are unable to effectively capture some
network characteristics. However, they did find a Poisson process
could describe a number of events caused directly by the user; such
as telnet packets within flows and connection arrivals for ftp-data.
This paper is not the forum for a survey of the entire Machine
Learning field. However, our approach may be contrasted with pre-
vious work which attempts the classification of network traffic. We
present a sample of such papers here.
Roughan et al. [10] perform classification of traffic flows into a
small number of classes suitable for Quality of Service applica-
tions. The authors identify the set of useful features that will allow
discrimination between classes. Limited by the amount of training
data, the authors demonstrate the performance of nearest neighbor,
LDA and QDA algorithms using several suitable features.
In contrast, McGregor et al. [11] seek to identify traffic with sim-
ilar observable properties and apply an untrained classifier to this
problem. The untrained classifier has the advantage of identifying
groups/classes of traffic with similar properties but does not directly
assist in understanding what or why applications have been grouped
this way. However, such a technique may be suitable for applying
the first series of classification where the traffic is completely un-
known and no previous classification has been previously applied.
Soule et al. [12] attempt flow classification with a mind to iden-
tifying membership among a smaller group of classes: the ele-
phant flows — those of long-life and large data-content — and non-

1Trust is defined in Section 5.1.

elephant flows. Their method models flow histograms using Dirich-
let Mixture Processes for random distributions which, combined
with an inference procedure based on the Simulated Annealing
Expectation Maximisation, allows estimation of flow-membership
probability.
The work of Hernándex-Campos et al. [13] is intended to provide
accurate information for their simulation work. To this end they
use a hierarchical model represented as a dendrogram with each
object representing the transfer of communications data between
applications. A classification scheme based upon this representa-
tion allows them to describe representative traffic patterns for input
to the simulation work but does not intend to allow identification of
the traffic itself.
The field of security also uses ML techniques. However, they are
attempting to do something fundamentally different from us where
we are attempting to categories all traffic, intrusion-detection and
related fields attempt to perform signature matching in order to
identify intrusion or malicious software by it’s peculiar behavior
among the continuum of otherwise legitimate activity.

3. EXPERIMENTAL SETUP
Throughout this study we have used data collected by the high-
performance network monitor described in [14]. We use its loss-
limited, full-payload capture to disk providing time-stamps with
resolution of better than 35 nanoseconds.
We examine data for several different periods in time from one site
on the Internet. This site is a research-facility host to about 1,000
users connected to the Internet via a full-duplex Gigabit Ethernet
link. Full-duplex traffic on this connection was monitored for each
traffic-set.
The site we examined hosts several Biology-related facilities, col-
lectively referred to as a Genome Campus. There are three insti-
tutions on-site that employ about 1,000 researchers, administrators
and technical staff. This campus is connected to the Internet via
a full-duplex Gigabit Ethernet link. It was on this connection to
the Internet that our monitor was placed. Traffic was monitored for
each traffic-set consists of a full 24 hour, week-day period and for
both link directions.

3.1 Objects and Discriminators
As noted in Section 1, the application of a classification scheme
requires the parameterizations of the objects to be classified. Using
these parameters the classifier allocates an object to a class. Due
to their ability to allow discrimination between classes, we refer to
these object-describing parameters as discriminators.
The fundamental object classified in our approach is a traffic-flow
which is represented as a flow of one or more packets between a
given pair of hosts. The flow is defined by a tuple consisting of the
IP address of the pair of hosts, the protocol type (e.g., ICMP, TCP
or UDP) and, in the case of UDP and TCP, the port numbers used
by the two hosts. In the case of TCP, a flow has a finite duration
defined by the semantics of the TCP protocol. For our work we
limit ourselves to training and testing sets that consist only of TCP
and are made-up of semantically 2 complete TCP connections. Our
use of only complete TCP flows is a simplification that allows us to
concentrate upon the classification process — rather than describe
the mapping of datagram and partial-flows to objects. While not
illustrated here, such a restriction is not necessary for the classifi-
cation process.

2Flows for which we see connection set-up (SYN-ACK packets)
and tear-down (FIN-ACK packets).



Discriminator
Flow duration
TCP Port
Packet inter-arrival time (mean, variance, . . . )
Payload size (mean, variance, . . . )
Effective Bandwidth based upon entropy[16]
Fourier Transform of the packet inter-arrival time

Table 1: Example discriminators describing each object and
used as input for classification. Each of these discriminators is
provided for both directions of the duplex traffic.

Classification Example Application
BULK ftp

DATABASE postgres, sqlnet oracle, ingres
INTERACTIVE ssh, klogin, rlogin, telnet

MAIL imap, pop2/3, smtp
SERVICES X11, dns, ident, ldap, ntp

WWW www
P2P KaZaA, BitTorrent, GnuTella

ATTACK Internet worm and virus attacks
GAMES Half-Life

MULTIMEDIA Windows Media Player, Real

Table 2: Network traffic allocated to each category.

Each flow has a number of unique properties (e,g,. the source and
destination ports 3), and a number of characteristics parameterizing
its behavior — together these values form the input discriminators
for our classification work. Table 1 gives a few examples drawn
from the 248 per-flow discriminators that we use, the full list is
given in [15].

3.2 Traffic categories
Fundamental to classification work is the idea of classes of traffic.
Throughout this work we use classes of traffic defined as common
groups of applications. Other users of classification may have both
simpler definitions, e.g., Normal versus Malicious, or more com-
plex definitions, e.g., the identification of specific applications or
specific TCP implementations [17]. Adapted from Logg et al. [2],
Table 2 lists the categories we use alongside a number of example
applications. The application list given in this table is not defini-
tive. A complete description along with the manual classification
process is given in [5]. The use of such categories is also illustra-
tive, allowing ready comparison with simpler port-only classifica-
tion techniques.
Importantly, while each flow is mapped to only one category, the
characteristics of the traffic within each category are not necessar-
ily unique. For example, the BULK category which is made up
of ftp traffic consists of both the ftp control channel which trans-
fers data in both directions, and the ftp data channel which consists
of a simplex flow of data for each object transferred. The group-
ing of applications into the categories we have given is largely an
artificial, user-centric grouping and further serves to illustrate that
such arbitrary clustering of only minimally-related traffic-types is
possible within our scheme.

4. MACHINE LEARNED CLASSIFICATION
Several methods exist for classifying data and all of them fall into
two broad classes: deterministic and probabilistic (sometimes called

3We explicitly do not use source or destination IP addresses as part
of the classification process. This assists the site-independence of
the trained model.

hard and soft) classification. As the name suggests, determinis-
tic classification assigns data points to one of mutually exclusive
classes. This is done by considering some metric that defines the
distance between data points and by defining the class boundaries.
On the other hand, probabilistic classification methods classify data
by assigning it with probabilities of belonging to each class of inter-
est. For example after trying to classify an Internet flow using this
method, it could be observed that with a probability of 0.8 this flow
belongs to the MAIL class, with probability 0.1 to WWW class and
with probability 0.1 to BULK class. Class assignment is done by
considering the class with the largest probability. In the example,
the flow will then be assigned to the MAIL class.
We believe that our approach using the probabilistic classification
of the Internet traffic is suitable because of the following reasons:
• The method can identify similar characteristics of flows after

their probabilistic class assignment. As an example, a flow
classified with probability 0.8 in WWW and with probability
0.2 in BULK could represent a file-download tunnelled over
the HTTP protocol.
• The underlying statistical method is tractable and well docu-

mented and understood.
• The method is robust to measurement error.
• The method allows for supervised training with pre-classified

traffic.
• The method can identify similar characteristics of flows after

their probabilistic class assignment.
• The method provides a mechanism for quantifying the class

assignment probabilities. These in turn can warn the user of
the declining accuracy of the model and/or indicate change
in the network traffic or the introduction of new applications
and protocols. In particular, this is a way of identifying when
the model requires retraining.
• Finally, ideally, the method is available in a number of com-

monly available implementations.

4.1 Analysis Tools
Research in the theory of machine learning has been developed for
several years and there is a variety of different methods, each devel-
oped to solve a particular problem in a certain area of science. Ex-
amples illustrating the use of Bayes tools in various fields include
text recognition, medical sciences and in astronomy (e.g., [18, 19,
20]).
This paper considers Naı̈ve Bayes method, which as the name sug-
gests is the simplest technique that could be applied to the problem
in consideration. Results for this method will be demonstrated fur-
ther in this paper. In addition to this, we consider a refinement of
Naı̈ve Bayes method that improves the overall accuracy using ker-
nel density estimation theory. As mentioned in the previous section,
we will also consider a very promising method of feature selection
and redundancy reduction, Fast Correlation-Based Filter (FCBF)
described in [21].

4.2 Naı̈ve Bayesian Classifier
In this section we will remind the reader about Bayes methods and
explain the theory of the Naı̈ve Bayes classifier. Additional infor-
mation on Naı̈ve Bayes technique could be found in [22].
Consider a data sample x = (x1, . . . , xn) which is a realization
of X = {X1, . . . , Xn} such that each random variable Xi is de-
scribed by m attributes {A1, . . . , Am} (referred to as discrimina-

tors) that can take numeric or discrete values. Xi =
(
A

(i)
1 , . . .

. . . , A
(i)
m

)T
is then a random vector. As an example, for Internet



traffic, A(i)
j may represent the mean inter-arrival time of packets in

the flow i.
Assume now that there are k known classes of interest. Let C =
{c1, . . . , ck} represent the set of all known classes. For each ob-
served instance xi in x, there is a known mapping C : x → C
representing the membership of instance xi to a particular class of
interest. The notation C(xi) = cj stands for “the instance xi be-
longs to the class cj”.
Bayesian statistical conclusions about the class cj of an unobserved
flow y are based on probability conditional on observing the flow y.
This is called the posterior probability and is denoted by p(cj | y).
The celebrated Bayes rules gives a way of calculating this value:

p(cj | y) =
p(cj)f(y | cj)∑
cj

p(cj)f(y | cj)
(1)

where p(cj) denotes the probability of obtaining class cj indepen-
dently of the observed data (prior distribution), f(y | cj) is the
distribution function (or the probability of y given cj) and the de-
nominator acts as a normalizing constant.
The goal of the supervised Bayes classification problem is to es-
timate f(y | cj), j = 1, . . . , k given some training set x. To do
that, Naı̈ve Bayes makes certain assumptions on f(· | cj) such as
independence of Ai’s and the standard Gaussian behavior of them.
The problem is then reduced to simply estimating the parameters
of the Gaussian distribution and the prior probabilities of cj’s. In
fact, Naı̈ve Bayes is also capable of dealing with discrete random
discriminators, which could represent the state of some flag of a
flow, by treating them independently and using the frequencies of
occurrences to estimate f(· | cj), j = 1, . . . , k.
In reality, independence and normality assumptions are flawed for
the problem in consideration:
• Different discriminators are clearly not independent. An ex-

ample is packet-header size statistics. The TCP header size
may vary directly in proportion with the total packet-length
no matter what the other characteristics of the traffic might
be.
• Assumption of the normality of discriminators is also inac-

curate. Notable problems arise when the real distribution is
multi-modal. This situation may suggest that the class in
consideration is too broad (WWW for example,) or that we
should consider another distribution for data analysis. This
latter method is explored in particular in Section 4.3.

Although these assumptions are not realistic, Naı̈ve Bayes has been
shown to work better than more-complex methods and cope with
complex situations [22]. Additionally, we emphasis the advantages
of using the simplest of computational methods in order to ensure
the process is tractable in time.
This idea of Naı̈ve Bayes technique can be illustrated by assuming
simply thatm = 1 and k = 2 (there is only one discriminator ofXi

and there are two classes of interest, c1, c2). Figure 1 demonstrates
distribution of data in this probabilistic setup: data from class c1

is distributed normally with mean 3 and variance 1, whereas data
from class c2 is distributed normally with mean 10 and variance 2.
From the picture, it is clear that the error of misclassification is re-
duced by minimizing the intersection area of the two distributions.
In practice, a training sample x = (x1, . . . , xn) in which we know
that nc1 instances belong to c1 and nc2 instances belong to c2
(nc1 + nc2 = n) allows estimating the prior probabilities of the
classes cj’s by:

p(c1) =
nc1
n
, (2)

p(c2) =
nc2
n
. (3)
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Figure 1: Example of two normal distributions N(3,1) and
N(10,2).

As described above, the method assumes Gaussian distribution for
f(· | cj), j = 1, . . . , k,

fA1|c1(x;µ1, σ
2
1) =

1√
2πσ2

1

e
− (x−µ1)2

2σ2
1 (4)

and

fA1|c2(x;µ2, σ
2
2) =

1√
2πσ2

2

e
− (x−µ2)2

2σ2
2 . (5)

As the information about the classes is given, the distribution pa-
rameters µ1, µ2, σ2

1 , σ2
2 are estimated by appropriate maximum

likelihood estimators:

µ̂1 =
∑

xi:C(xi)=c1

xi
nc1

,

µ̂2 =
∑

xi:C(xi)=c2

xi
nc2

,

σ̂2
1 =

∑
xi:C(xi)=c1

(xi−µ̂1)2

nc1−1
,

σ̂2
2 =

∑
xi:C(xi)=c2

(xi−µ̂2)2

nc2−1
.

Given a flow y to be classified, its posterior probability of class
membership is given by

p(ci | y) =
fA1|ci(y; µ̂i, σ̂

2
i )× p(ci)

N
, (6)

i = 1, 2 and N is a normalizing constant. 4

4.3 Naı̈ve Bayes: Kernel Estimation
The Naı̈ve Bayes Kernel estimation method is a generalization of
Naı̈ve Bayes and it addresses the problem of approximating every
discriminator by a Gaussian distribution as described in the previ-
ous section.

4Strictly speaking, equation (6) is not really correct because
fA1|ci(y; µ̂i, σ̂

2
i ) is a density function, rather than a probability.

In fact, the quantity of interest is the probability of Y = y, given
cj , which is 0 as Y is a continuous random variable. Instead, we
are interested in P (Y ∈ (y, y + ε)) ≈ fA1|ci(y; µ̂i, σ̂

2
i ) × ε, by

the Mean Value Theorem. ε is canceled by the denominator and
therefore (6) is obtained.



Naı̈ve Bayes Kernel Estimation is similar to Naı̈ve Bayes method
algorithmically and the only difference arises in estimating f(· |
cj), j = 1, . . . , k. Whereas Naı̈ve Bayes estimated f(· | cj),
j = 1, . . . , k by fitting a Gaussian distribution over the data, Kernel
Estimation, as the name suggests, uses kernel estimation methods,
i.e. the estimate of the real density f(· | cj) is given by

f̂(t | cj) =
1

ncjh

∑

xi:C(xi)=cj

K

(
t− xi
h

)
, (7)

where h is called the kernel bandwidth and K(t) is any kernel,
where kernel is defined as any non-negative function (although it is
possible to generalise) such that

∫∞
−∞K(t)dt = 1. Examples of

such distributions are: uniform distribution (K(t) = 1
2
I(|t| ≤ 1))

which generates a histogram to approximate f(·), Gaussian distri-
bution (K(t) = 1√

2π
exp (−t2/2)) and many others [23]. Naı̈ve

Bayes kernel estimation procedure will use Gaussian density as the
kernel for the analysis, party because it is Gaussian density has de-
sirable smoothness properties. Figure 2 illustrates how an estimate
of the density f(·) is constructed. Assume that some sample of data
points has been collected. These points are represented by crosses
on the x-axis. For each data point a Gaussian distribution centered
on this point is fitted. A summation of those functions gives an
estimate of the real density of the data distribution.
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Figure 2: An illustration of how the estimate of the distribution
is constructed.
The selection of the statistical bandwidth, as defined in the previous
paragraph, plays an important role in the accuracy of the model and
some nice theoretical properties are mentioned in [24]. Bandwidth
has an effect on the accuracy of approximation, which is very often
measured by Mean Integrated Squared Error, which is defined as:

MISE(f̂) = E

[∫ (
f̂(t)− f(t)

)2

dt

]
.5 (8)

Figure 3 illustrates different ways of estimating the density. For
the purpose of this paper, the value of the parameter h is taken to
be the default value of the WEKA software suite used to perform
calculations in this paper. All tools used in this paper are described
in section 5.
In [24], it is shown that the Kernel Estimation method performs
much better in situations when the normality assumption is strongly

5It is important to understand that f̂(t) is in fact a random function
since data observations are random. It therefore makes sense to
take the expectation in (8).
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Figure 3: Different estimators of the density that generated the
data. The black line represents the Gaussian density whose pa-
rameters were estimated from the data, the two dashed lines
represent the kernel estimated density with two different val-
ues of the bandwidth.

NAÏVE BAYES KERNEL
Operation Time Space Time Space

Train on n cases O(nm) O(m) O(nm) O(nm)
Test on q cases O(qm) O(qnm)

Table 3: Algorithmic complexity for Naı̈ve Bayes and Kernel
Estimation method, given n training instances and m discrimi-
nators.

violated, but on the other hand it performs just as well when the data
is Gaussian as long as there are enough instances.
There are however computational issues related to the Kernel Esti-
mation method. When computing f(. | cj) to classify an unknown
instance, Naı̈ve Bayes has to evaluate the Gaussian distribution
only once whereas Kernel Estimation must perform n evaluations.
Table 3 contrasts the computational and memory requirements for
the two methods.

4.4 Discriminator selection and dimension
reduction

Discriminator selection and dimension reduction plays a very im-
portant role in Machine Learning by acting as a preprocessing step,
removing redundant and irrelevant discriminators. As described
in [22], the prediction accuracy of the Naı̈ve Bayes algorithm suf-
fers from the presence of irrelevant and redundant attributes. The
ability to identify the most important discriminators of the Inter-
net traffic is useful not only because the results will reveal what
discriminators are best for traffic classification, but also because
classification accuracy can be improved and, a reduction in number
of flow discriminators is computationally attractive.
Before going into the theory, it is important to define what is meant
by irrelevant and redundant discriminators.
Definition 1: A discriminator is said to be irrelevant if it carries no
information about different classes of interest. This discriminator
has no discriminative power. For example, a discriminator may
take only a single value and, on that basis, no classification could
be made.
Definition 2: A discriminator is said to be redundant if it is highly
correlated with another discriminator. The reason for removing
redundant discriminators is supported by the fact that redundant



discriminators either worsen the accuracy or increase over-fitting.
Consider a discriminator that is a not a very good one and assume
that there is another discriminator that is very highly correlated to
the first one. Using Naı̈ve Bayes technique, considering two dis-
criminators is equivalent to putting a greater weight on one of the
them without considering their relative merits.
There exist two different approaches to discriminator selection,
namely the filter and the wrapper methods. Filter methods use the
characteristics of the training data to determine the relevance and
importance of certain discriminators to the classification problem.
For example, a measure of relevance could be the degree of correla-
tion between discriminators and the class, or some measure of sepa-
ration of classes based on the discriminator in consideration. On the
other hand, wrapper methods make use of the results of a particular
classifier (e.g. Naı̈ve Bayes) to build the optimal set by evaluating
the results of the classifier on a test set for different combinations
of discriminators. By re-iterating the algorithm, the user can iden-
tify the optimal set of discriminators that are suited for a particular
classification method (e.g. Naı̈ve Bayes). One such method would
be the “forward selection” method, where one starts with no at-
tributes and progressively adds one attribute after the other, check-
ing the outcome after each additional attribute. A second example
is “backward elimination”, where one starts with the full set of dis-
criminators to work “backward” by eliminating discriminators one
after the other. The main drawback of this method is that it is very
computationally expensive, particularly in high dimensions as one
needs to try each combination of a number of different discrimina-
tors.
In this paper, we will be using Fast Correlation-Based Filter (FCBF),
described in [21], as well as a variation of a wrapper method in
determining the value of the threshold (described later in this Sec-
tion). The FCBF filter method performs very well in improving the
performance of Naı̈ve Bayes when contrasted with other related
techniques [21].
According to [21], a discriminator is good if it is relevant to the
class concept but it is not redundant to any of the other relevant
features. In FCBF, goodness of a discriminator is measured by its
correlation with the class and other good attributes. That attribute
becomes good if it is highly correlated with the class, yet not cor-
related with any other good attributes.
The correlation measure used in FCBF is based on the entropy of
a random variable — a measure of uncertainty. The entropy of a
discrete random variable X taking values in {x1, . . . , xn} is given
by

H(X) = −
∑

xi

p(xi) log2 p(xi), (9)

and the entropy of a discrete random variable X given Y is given
by

H(X | Y ) = −
∑

yj

p(yj)
∑

xi

p(xi | yj) log2 p(xi | yj), (10)

where p(xi) = P [X = xi], p(yj) = P [Y = yj ] and p(xj |
xj) = P [X = xi | Y = yj ]. Similarly, the information gain, [25],
is expressed as

IG(X | Y ) = H(X)−H(X | Y ). (11)

Information gain (11) is a measure of correlation between two dis-
criminators. In practice, the discriminator X is considered to be
more correlated to the discriminator Y , than to discriminator Z, if
IG(X | Y ) > IG(X | Z). Moreover, [21] show that the informa-
tion gain is symmetric for random variables X and Y .

Using equations (9) and (11), symmetrical uncertainty is defined in
the following way:

SU(X,Y ) = 2

[
IG(X | Y )

H(X) +H(Y )

]
. (12)

Symmetrical uncertainty (12) takes values in [0, 1], where the value
1 means that the knowledge of discriminator values induces the
value of the other, while 0 suggests that attributes X and Y are in-
dependent. By this point, Equation (12) has only been defined for
nominal values 6, therefore FCBF continuous discriminators dis-
crete before the core analysis [21].
The FCFB algorithm selects good discriminators via a two stage
process by:
• identifying the relevance of a discriminator,
• identifying the redundancy of a feature with respect to other

discriminators.
To describe these concepts mathematically, let C denote the ran-
dom variable of traffic classes taking values in C. Further, let SUi,c
and SUi,j denote the value of the symmetric uncertainty between
Ai and C and betweenAi andAj respectively. A discriminatorAi
is believed to be relevant if SUi,c ≥ δ, where δ is some threshold
value to be determined by the user.
Identification of redundancy is often done by computing the pair-
wise cross correlations between discriminators. However, [21] note
that this method is quite computationally expensive and so the solu-
tion they propose considers SU values, because symmetrical uncer-
tainty captures pairwise cross correlation information. As a result,
FCBF works in the following way. Initially, SUj,c, 1 ≤ j ≤ m
are calculated and discriminators are ordered in descending order
according to the values of SU . A set S is created, containing Ajs
that satisfy SUj,c ≥ δ. Then, the discriminator with the largest
SUj,c (call it Ap) is compared to SUj,q , where Aq ∈ S \ Ap. If
SUj,q ≥ SUp,c, the discriminator Aq is considered redundant and
is therefore removed from S. The procedure is repeated for allAp’s
in S. The complexity of this algorithm is O(nm logm).
At last, the question arises as to how to determine the optimal value
of the threshold δ. To overcome this difficulty, we use a wrapper
method based upon Naı̈ve Bayes algorithm, i.e. computational re-
sults of the Naı̈ve Bayes algorithm will be used to estimate the opti-
mal value of the threshold. This approach has the goal of maximiz-
ing some measure of accuracy (e.g., percentage of correctly classi-
fied flows). The advantage of this approach is that it is less com-
putationally expensive that the “forward selection” or “backward
elimination”, since only m cases are needed to be checked com-
pared to 2m− 1. In addition, this method specifically improves the
predictive capability of Naı̈ve Bayes technique alone, rather than
trying to improving the accuracy of all available Machine Learning
tools.
The following algorithm is used to identify the best number of dis-
criminators to be used for a particular training set.
• Rank all discriminators in order of importance as calculated

by the FCBF method.
• The goal is the to determine how many of the most impor-

tant discriminators to choose. To do that an independent set
of test data is chosen and it is used to evaluate the perfor-
mance of Naı̈ve Bayes classifier trained on different number
of discriminators.
• For n from 1 tom, train Naı̈ve Bayes on the training set with
n discriminators and evaluate the resulting classifier on the
test set.

6Although it is possible to define it for continuous random vari-
ables; the estimation of probabilities is then much harder.



Total Flows WWW MAIL BULK SERV DB
377526 328091 28567 11539 2099 2648

INT P2P ATTACK MMEDIA GAMES
110 2094 1793 1152 8

Table 4: Data statistics (number of flows).
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Figure 4: Heuristic illustration of how data blocks were ob-
tained. The line represents the instantaneous bandwidth re-
quirements during the day, while the dark regions represent
the data blocks that are used in the analysis of the accuracy of
Naı̈ve Bayes methods.

• Choose n such that it maximizes the classification accuracy.
It is can be seen that this algorithm uses both filter and wrapper
methods to determine the optimal set of discriminators.

5. RESULTS

5.1 Setup

Analysis Data
This section describes how the data for training and testing was
obtained, as well as the characteristics, trends of this data. In the
analysis of the accuracy of different methods in consideration, ten
different data sets were chosen. An eleventh dataset is separately
described and used in Section 6. In order to construct a set of flows,
the day trace was split into ten blocks of approximately 1680 sec-
onds (28 min) each. In order to provide a wider sample of mixing
across the day, the start of each sample was randomly selected, uni-
formly over the whole day trace. Figure 4 illustrates heuristically
our technique. It can be seen from Table 4 that there are different
number of flows in each data block, due to a higher density of traf-
fic during each block of 28 minutes. Since time statistics of flows
are present in the analysis, we consider it important to keep a fixed
time window when selecting flows.
Table 4 contains information about the structure of the dataset (a
sum of flows in each of datasets 01 through 10, etc.) that is being
used in the evaluation of different methods. While the table sum-
marizes the break-down, it is clear from these numbers that for the
INTERACTIVE and GAMES classes there is not enough data to
make the accurate analysis of these classes tractable.
The accuracy of each method is evaluated by training the classifier
using one data-set and then testing it against the remaining (9) data
sets. This process cycle of training with one data-set and training
against the other data-sets is repeated once for each data-set. The
gross statistics for accuracy and trust are accumulated for all ten
evaluations. Using the group of tests against data-sets each taken at

Memory # of discriminators max # of instances
32M 132 6500–7000
64M 132 13000–13500

128M 132 25000
32M 265 3000–3500
64M 265 6500–7000

128M 265 12000–12500
256M 265 24500–25000

Table 5: Memory usage by WEKA.

a different period over the day allows us to draw conclusions based
upon data drawn over the whole 24-hour period. Additionally we
can gain insight about the average of results for each technique.

Analysis Tools
In this work, analysis with the Naı̈ve Bayes, kernel density esti-
mation and FCBF methods were performed using version 3.4 of
the WEKA software suite [22]. WEKA, written in the Java lan-
guage, allows tracking of its memory footprint. Table 5 illustrates
the memory constraints relating these to both the number of objects
over which to construct the model and the number of discrimina-
tors used to describe each object. Numbers in Table 5 should be
interpreted in the following way. Given X amount of memory and
Y number of discriminators, this table shows an estimate of the
maximum number of instances that can be loaded into the WEKA
software.
Due to its simplicity, the Naı̈ve Bayes method is quite fast, com-
pared to other methods. Figure 5 shows how much time it needs to
build a model on the training set of 24863 flows and test it against a
test set of 23801 flows in relation to the number of discriminators.
It can be seen that the line obtained is almost linear and in fact some
variation in the linearity is due to the complexity of the discrimi-
nators in use (by complexity we mean whether the discriminator is
discrete or continuous).
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Figure 5: Time taken to build a model on a training set (24863
flows) and test it against the test set (23801 flows) in relation to
the number of discriminators in consideration.

Evaluation Criteria
The authors of this paper use two metrics to assess the performance
of different techniques. In particular, refinements to those tech-



Method NB NB, Kernel Dens. Est.
Accuracy 65.26% 93.50%
Method FCBF+NB FCBF+NB, Kernel Dens. Est.

Accuracy 94.29% 96.29%

Table 6: Average percentage of accurately classified flows by
different methods.

niques will be assessed on the basis of those evaluation criteria.
Accuracy. The accuracy is the raw count of flows that were classi-
fied correctly divided by the total number of flows. This metric can
be used to describe the classification accuracy for the whole system
and can also provide an accuracy of classification on a per-class ba-
sis.
Trust. This is a per-class measure and it is an indication of how
much the classification can be trusted. In other words, this measure
is a probability that a flow that has been classified into some class,
is in fact from this class.
Accuracy by bytes. The accuracy is the raw count of correctly clas-
sified flow bytes divided by the total amount of bytes in all flows.

5.2 Naı̈ve Bayes approach to traffic described
by all discriminators

This section considers the Naı̈ve Bayes technique, applied to flows
categorized by all discriminators described in Table 1, and eval-
uates its performance against each of the nine other test sets of
Section 5.1.
At the beginning of the analysis of the Naı̈ve Bayes algorithm, it is
important to establish the accuracy of it. This information is given
in Table 6, which also demonstrates the accuracy of other models.
Naı̈ve Bayes algorithm performed on real Internet traffic described
by all discriminators is on average 65.26% accurate. This means
that on average 65.26% of flows have been classified correctly into
their natural classes. This result is not satisfactory and throughout
this paper we work to improve this value. We consider that this re-
sult is due to the violation of the Gaussian assumption by some dis-
criminators as illustrated in Figure 3 and therefore kernel density
estimation tools may provide a good alternative. Throughout the
analysis of classification, it has been noticed that the model trained
on one dataset in particular performed badly, which suggests that
not all sorts of different flows have been captured in the analysis.
In addition, BULK (and in particular FTP-DATA) and SERVICES
have been very well classified (average of about 90%) and also not
many flows are misclassified into those classes which suggests a
good class separability in each discriminator (Section 4.2). On the
other hand, Naı̈ve Bayes confused in a very large extent WWW
and ATTACK classes, by classifying a large percentage (22.90%)
of ATTACK into WWW and some percentage of WWW into AT-
TACK (26.75%). This could be caused by similarities in the struc-
ture of the corresponding flows.
As mentioned in the previous section one of very important metrics
of goodness of the model is the trust that a system administrator
can place on a particular classification outcome. Table 7 illustrates
how accurate a particular classification is. It can be seen that we
can trust WWW and MAIL classification very well, however this
is not the case for ATTACK for example, since there is a lot of
similarities between WWW and ATTACK.
In addition to the above discussion, we illustrate the performance of
Naı̈ve Bayes technique by considering how many bytes were clas-
sified correctly. Here again, we have used all datasets to estimate
the average amount of bytes correctly classified. Table 8 shows the

WWW MAIL BULK SERV
Trust (%) 98.31 90.69 53.77 35.92

DB P2P ATT MMEDIA
Trust (%) 61.78 4.96 1.10 32.30

Table 7: Measure of belief if a certain class occurred in the
Naı̈ve Bayes method.

Method NB NB, Kernel Dens. Est.
Accuracy (bytes) 83.93% 79.09%

Method FCBF+NB FCBF+NB, Kernel Dens. Est.
Accuracy 81.49% 84.06%

Table 8: Average percentage of classified bytes by different
methods.

classification accuracy by bytes for different methods. For Naı̈ve
Bayes technique there were 83.93% of bytes classified correctly.

5.3 Naı̈ve Bayes method, with kernel density
estimation, performed on all
discriminators

In this section, Naı̈ve Bayes using a kernel density estimation method
is considered. As in the previous section, the analysis have been
performed on all discriminators.
It can be noticed that the average classification accuracy (93.50%)
is much better than in the previous section. This is due in a very
large extent to the improvement in classification of largest classes,
such as WWW, MAIL, BULK where the average accuracy varies
between 76% and 97% and in the decrease of accuracy in the other
smaller classes. This is due to the fact that large classes such as
WWW, MAIL, BULK have multimodal distributions of discrimi-
nators and this is why there is a significant increase in number of
correctly classified flows. This result also suggests that there are
some redundant discriminators in the analysis, an issue to be dealt-
with in the next section. The results also showed that the BULK and
SERVICES are very well separated and the classification within
those classes is very good.
The results for the trust in the classification using Naı̈ve Bayes
method with kernel density estimation can be found in Table 9. It
can be seen that there has been a general improvement in the trust
metric of each class in consideration. Trust percentage is still high
for WWW and MAIL. There has been a significant improvement
for BULK, SERVICES, DATABASE and MULTIMEDIA classes,
suggesting that there has been a more accurate classification. AT-
TACK is still suffering from being very similar (in the statistical
sense) to WWW traffic. However, it could be seen in Table 8 that
there has been a decrease in classification accuracy by bytes. We
conclude this is due to an improvement in classification of flows,
such as control sequences, that only carry small quantities of data.

5.4 Naı̈ve Bayes, after FCBF prefiltering
The FCBF prefiltering was performed in the way described in sec-
tion 4.4. First, FCBF algorithm ranked the discriminators in order
of importance and then by performing experiments on an indepen-
dent dataset, we were able to identify the optimal number of dis-
criminators. Table 10 demonstrates those numbers for each training
set.
It could be seen immediately that the aim of FCBF filtering has
been fulfilled. Classification accuracy has been substantially im-
proved. The average accuracy of the classification is calculated to
be 94.29%, which much higher than for Naı̈ve Bayes without FCBF



WWW MAIL BULK SERV
Trust (%) 97.12 96.99 77.32 86.94

DB P2P ATT MMEDIA
Trust (%) 87.62 22.87 8.52 77.76

Table 9: Measure of belief if a certain class occurred in the
Naı̈ve Bayes method with kernel density estimation.

prefiltering. There is a major improvement in the classification of
WWW and MAIL (97.60% and 90.29%), allowing us to conclude
that those classes could be potentially modelled by a Gaussian dis-
tribution.
Classification of BULK and SERVICES classes are well modelled
and the results are very similar to those in the previous section,
and P2P classification has also improved. In general, the overall
accuracy of classification has been improved mainly by improving
the classification of the largest classes and reducing the accuracy in
smaller classes. This suggests that there are probably not enough
good discriminators or that the normality assumption is clearly vi-
olated. We will exploit the latter issue in the next section. In the
results obtained it could be noticed that results on the training sets
07 and 08 were not very good. This suggests that those training
datasets are not representative of the overall set of Internet flows.
Similarly to before, Table 11 demonstrates the values of the trust
metric for each class of interest for Naı̈ve Bayes method after FCBF
prefiltering. This table show results similar to those obtained by
Naı̈ve Bayes method for main classes such as WWW, MAIL, BULK,
SERVICES, however there is an improvement in the other classes.
As for the other metric, there has been 81.49% of correctly classi-
fied bytes.

Training set NB NB, Kernel Dens. Est.
01 7 4
02 3 3
03 10 7
04 6 7
05 6 11
06 3 5
07 4 15
08 3 16
09 2 28
10 12 49

Table 10: Number of optimal discriminators for each training
set.

5.5 Naı̈ve Bayes, kernel density estimation
technique after FCBF prefiltering

In this section we are considering the most advanced tool in this
paper, Naı̈ve Bayes with kernel density estimation after FCBF pre-
filtering. The number of discriminators chosen for the analysis of
each dataset is demonstrated in Table 10. These numbers were ob-
tained as described in the section 4.4.
As results show, this method produced the best results for traffic
classification. The overall average accuracy of classification has

WWW MAIL BULK SERV
Trust (%) 98.29 90.56 66.66 36.73

DB P2P ATT MMEDIA
Trust (%) 80.88 28.92 10.38 76.91

Table 11: Measure of belief if a certain class occurred in the
Naı̈ve Bayes method after FCBF.

WWW MAIL BULK SERV
Trust (%) 99.27 94.78 82.25 63.68

DB P2P ATT MMEDIA
Trust (%) 86.91 36.45 13.46 80.75

Table 12: Measure of belief if a certain class occurred in the
Naı̈ve Bayes method with kernel density estimation after FCBF.

been found to be 96.29% and the accuracy of each particular class
has been significantly improved. An increase in accuracy has been
observed for WWW, MAIL, BULK and for most of other classes
without significantly reducing the accuracy of others. Most impor-
tantly, it could be seen that the trust in Table 12 has increased for
all classes of interest. In particular for 5 classes out of 8 the trust in
the classification is greater than 80%. In addition, 84.06% of bytes
have been correctly classified. This is a slight improvement on the
other methods. It is interesting to note that the classification by
bytes was between 80% and 85% for either methods. This suggests
that some flows are not very well described by those discriminators
that were available to the authors of this paper.

6. EVALUATION
This section will evaluate the methods using a different dataset
dealing with a different time period. As noted in Section 3, we
use datasets taken over different periods of time. While we have
used datasets taken from a single 24-hour period for the previous
sections of this paper, the dataset we use in this section was taken at
the same site some 12 months later. Using this sample we are able
to illustrate the temporal stability of our approach and test how well
Naı̈ve Bayes tools perform when using an old model to classify new
data.

Method NB NB, Kernel Dens. Est.
Accuracy 20.75% 37.65%
Method FCBF+NB FCBF+NB, Kernel Dens. Est.

Accuracy 93.38% 93.73%

Table 13: Average percentage of accurately classified flows by
different methods. Evaluated with a dataset from a later time.
The performance of different methods considered in this paper eval-
uated on a different dataset is demonstrated in Table 13. It is clear
from this table that accuracy of Naı̈ve Bayes technique performed
on all discriminators is very poor (20–30% accuracy), suggesting
that over time there has been a change in the distribution of certain
discriminators or that the training datasets used were not represen-
tative. On the other hand, the results were impressive for Naı̈ve
Bayes methods after the FCBF prefiltering. The accuracy of these
methods is about 93%. The main reason for this happening is that
there wasn’t much variation in the distribution of those discrimi-
nators used after the FCBF prefiltering. These discriminators are
described in the next section.

WWW MAIL BULK SERV
Trust (%) 97.73 85.20 89.76 58.45

DB P2P ATT MMEDIA
Trust (%) 32.11 53.50 N/A N/A

Table 14: Measure of belief if a certain class occurred in the
Naı̈ve Bayes method after FCBF prefiltering. Evaluated with a
dataset from a later time.
Further, Tables 14 and 15 give an idea of how much we can trust
the classification on the new dataset after the FCBF prefiltering. It
could be observed that the trust in the classification is at a very high



level of more than 87% in 3 classes out of 6. It also is worth noting
that the P2P traffic has been classified better than in previous sec-
tions implying that the model we have trained previously is getting
more accurate over time.

WWW MAIL BULK SERV
Trust (%) 98.06 87.54 90.03 44.54

DB P2P ATT MMEDIA
Trust (%) 68.63 55.18 N/A N/A

Table 15: Measure of belief if a certain class occurred in the
Naı̈ve Bayes, kernel density estimation method after FCBF pre-
filtering. Evaluated with a dataset from a different time.

7. IDENTIFICATION OF IMPORTANT
DISCRIMINATORS

The refinement of our classification is impacted by the selection of
the appropriate discriminator. Firstly, a good discriminator must
provide good separation among the classes, thereby agreeing with
the theory in Section 4. Secondly, the ideal discriminator provides a
function for each class that can be well approximated by a Gaussian
distribution.
The example given in Figure 6 illustrates how the data is distributed
for the discriminator: SACKs send from client to server. Clearly
this distribution provides reasonable separation for the three classes
shown and allows for a Gaussian distribution — important for Naı̈ve
Bayes — to approximate at least two of them.
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Figure 6: Example histogram of SACKs send from client to server

The FCBF used in Sections 5.4 and 5.5 allowed us to identify dis-
criminators that provided good separation. We provide them here
as an example of the variety of inputs that may be algorithmically
valuable. In order to identify which discriminators are considered
the most important, we examined the first 20 discriminators for
each training set and chose 12 most frequently used.
The most important discriminators that were identified are:
Port server
No. of pushed data packets server→ client
Initial window bytes client→ server
Initial window bytes server→ client
Average segment size server→ client
IP data bytes median client→ server
Actual data packets client→ server
Data bytes in the wire variance server→ client
Minimum segment size client→ server

RTT samples7 client→ server
Pushed data packets client→ server
These results illustrate two important properties of our approach:
firstly, it validates providing the FCBF and Naı̈ve Bayes algorithms
with as many different discriminators as possible — a human se-
lecting valuable discriminators would not have decided upon the
discriminators in this list. Additionally, it reinforces to us the po-
tential for as-yet-undiscovered and more-valuable discriminators
for the description of flows.
Clearly the value of a discriminator depends upon the application to
which it will be put. It would have been hard for a human to a priori
predict the valuable discriminators, yet an appropriate technique,
such as FCBF, can both identify valuable predictors and aid the
classification process. A full investigation of such properties would
be a valuable contribution for further work.

8. CONCLUSIONS & FURTHER WORK
In this paper we have demonstrated the application of supervised
Machine-Learning to classify network traffic by application. We
capitalized upon data that has been hand-classified allocating flows
of traffic to one of a number of categories. We illustrated the perfor-
mance both in terms of accuracy and trust in the resulting classifica-
tion of traffic. We showed that in its most basic form a Naı̈ve Bayes
classifier is able to provide 65% accuracy for data from the same
period and can achieve over 95% accuracy when combined with a
number of simple refinements. We further illustrated the tempo-
ral stability of our technique using test and training sets separated
by over 12 months. Significantly, while we achieved a relatively
low performance for the simplest Naı̈ve Bayes configuration, we
then showed the full benefits of our refined techniques (Bayes based
upon kernel-estimates combined with the FCBF technique for dis-
criminator reduction) which lead to an accuracy of up to 95%.
The technique we have described uses our ability to train the clas-
sifier with known data. We have demonstrated that a classification
model constructed using this technique is then able to be applied
when far less information is available about the traffic. Critically,
we have illustrated a classification technique that may be used ret-
rospectively on data-traces that have previously not been examined
in any detail due to the lack of complete information.
We have in the process of applying Naı̈ve Bayes also provided in-
sight into the behavior of the technique itself. We illustrate that
the algorithm is sensitive to its initial assumptions and we demon-
strate that the use of two techniques, one to break the Gaussian as-
sumptions and the other to improve the quality of discriminators as
input. This led to significant improvements in accuracy. We hope
this paper inspires others to apply their own techniques to this prob-
lem space and we consider we have demonstrated the extraordinary
value such techniques may bring to bear.
Full details enabling readers to download our training sets are pro-
vided in [15].

Future Work
Within the work detailed in Section 2, this paper is one of several
that have applied machine-learning techniques to the problem of
network-traffic classification. In future work we plan to test spatial-
independence of our approach through the application of models
trained using one set of network-traces upon an entirely different
location.
We also acknowledge a significant number of refinements to the

7A curious discriminator that is part of the output of the tcp-
trace utility. This value counts the number of valid estimations
of RTT that tcptrace can use [26].



technique we use. Naı̈ve Bayes assumes the independence of each
discriminator, other approaches such as QDA (Quadratic Discrim-
inator Analysis) account for dependence between discriminators,
therefore leading to better results.
Additionally, the field of Machine Learning (ML) has a large base
of literature and experience. It would be naı̈ve of us to consider
that this field has nothing to offer by way of improvements. A com-
mon problem in the field is the reduction of dimensionality; that is,
the reduction in the number of discriminators. While we have de-
scribed our use of a powerful technique to this end (FCBF), other
techniques such as forward-selection and backward-elimination are
valuable to pursue.
An issue we identify in this work and share in common with the
ML community is the need for the best-possible discriminators. We
believe that the scope for the refinement of discriminators is wide
and admit to a limitation of our object model: the independence of
flows. To this end we look to combine the relationship observed
between objects as a further discriminator and input to the classifi-
cation process. An example application that would benefit is peer-
2-peer which tends to exhibit specific, identifiable access patterns
across numerous flows [4].
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