
Revocable Locks for Non-Blocking Programming

Tim Harris
Microsoft Research, Cambridge

tharris@microsoft.com

Keir Fraser
University of Cambridge Computer Laboratory

keir.fraser@cl.cam.ac.uk

Abstract
In this paper we present a new form of revocable lock that stream-
lines the construction of higher level concurrency abstractions such
as atomic multi-word heap updates. The key idea is to expose re-
vocation by displacing the previous lock holder’s execution to a
safe address. This provides mutual exclusion without needing to
block threads. This brings many simplifications, often removing the
need for dynamic memory management and letting us strip opera-
tions from common-case execution paths. As well as streamlining
algorithms’ design, our results show that the technique leads to im-
proved performance and scalability across a range of levels of con-
tention.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming – Parallel programming; D.3.2
[Programming Languages]: Language Classifications – Concur-
rent, distributed, and parallel languages; D.4.1 [Operating Sys-
tems]: Process Management – Concurrency; Synchronization;
Threads

General Terms Algorithms, Experimentation, Performance

Keywords Non-blocking algorithms, locks, transactional memory

1. Introduction
It is hard to build scalable concurrent programs using ordinary
locks. To ensure correctness programmers must identify which op-
erations are conflicting. To ensure liveness they must avoid intro-
ducing deadlock or priority inversion. To ensure good performance
they must balance the granularity at which locking is performed
against the number of locks that threads need to acquire and re-
lease.

To sidestep these problems, alternative abstractions have been
developed to provide atomic multi-word updates [12, 16, 6, 11]. For
instance, in recent work we showed how to provide atomic code
blocks of the formatomic { S } in a high level language: the
statements inS and all of the methods that they call are performed
atomically with respect to other code [11, 10]. This abstraction al-
lows single-threaded operations to be made safe for multi-threaded
use.

However, although software implementations of atomic blocks
can scale well, they have high baseline performance costs – around

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

a factor-of-two overhead in uniprocessor cases is typical. Our re-
search is looking at how much we can reduce these costs: if they
are unavoidable then that provides motivation for hardware sup-
port [17, 25]. If costs can be reduced then that suggests hardware
resources should be deployed elsewhere.

In this paper we make three contributions to the construction
of non-blocking multi-word updates. Firstly, in Section 2 we in-
troduce a new taxonomy of the problems involved, dividing them
into partial update problems anddelayed operation problems. The
former are usually easy to solve, but the latter are insidious.

Secondly, in Section 3, we define a new form of revocable lock
which allows us to avoid delayed operation problems.

The key novelty is in how conflicts are managed: if a threadA
attempts to acquire a lock held by threadB then the lock is passed to
A and, atomically with this,B’s execution is displaced to a recovery
function whichB specified when it acquired the lock. Typically, the
recovery code would either propagate revocation as a higher level
failure (for instance, returningfailed to commit in a transactional
memory implementation), or it would retry the operation (after
some contention-management delay to avoid live-locking withA).

As with ordinary locks, it is usually profitable forA to spin
briefly in the hope thatB releases the lock before the heavyweight
revocation operation proceeds. We describe three implementation
schemes based on widely available operating system support.

Our final contribution, in Section 4, shows how revocable locks
can be used to streamline the implementation of two non-blocking
algorithms from the literature: Greenwald’stwo-handed emulation
and our ownword-based software transactional memory (STM).
We obtain major simplifications to both algorithms and, as our
results show in Section 5, these yield improved performance and
scalability across a wide range of workloads.

Revocable locks are not intended for direct use by application
programmers in the ways that atomic regions, mutexes, semaphores
or barriers may be used. Rather, they are for use within the imple-
mentation of these higher level abstractions. For instance, we use a
revocable lock just within the implementation of an STM commit
operation: we do not need to hold such a lock through a complete
transaction. This allows us to make clear simplifications in build-
ing revocable locks – in particular, we allow threads to hold at most
one such lock at a time.

The performance improvements we achieve come from the fact
that theability to revoke locks allows us to safely simplify the
common-case paths through the abstractions that we build using
them, at the expense of high costs when revocation is actually per-
formed. However, as we quantify in our results, weexpect revoca-
tion to be extremely rare and so, as Amdahl’s law suggests, it is a
trade-off worth making.

We believe this is an acceptable assumption to make – the same
assumption is made when using optimistic concurrency in the kind
of non-blocking data structures that we can build using revocable
locks. In cases where contention is high, one could switch to or-

dinary mutexes and use logging for roll-back as Welcet al have
suggested [27].

2. Non-blocking algorithms
Non-blocking algorithms have been studied as a way of avoiding
the problems caused by traditional locks [13]. For instance, recent
algorithms for performing atomic multi-word updates are examples
of non-blocking designs [12, 16, 6, 11]. A system is non-blocking
if the suspension or failure of any number of threads cannot prevent
the remainder of the system from making progress. This provides
robustness against poor scheduling decisions as well as against ar-
bitrary thread termination. It naturally precludes the use of ordinary
locks because, unless a lock-holder continues to run, the lock can
never be released.

In common with most contemporary work on non-blocking
systems, we assume the existence of a single word compare-and-
swap operation (CAS):

Single-word CAS operation
word t CAS(addr t a, word t o, word t n)

This operation atomically reads from memory addressa and, if
the value seen is equal too it updates the location to holdn. It
returns the value that it read from memory. CAS is implemented in
hardware on SPARC, IA-32 and IA-64 processors and it can readily
be constructed on Alpha, MIPS and PowerPC architectures.

2.1 Problems in non-blocking design

It is possible to identify two kinds of difficulty which occur when
building non-blocking algorithms. The first arepartial update prob-
lems which occur because new operations can start at any point and
may therefore interact with partially-complete updates being per-
formed by other threads. This means that system invariants must be
maintained by each individual step of an update, rather than just by
the operation as a whole. It also means that sufficient information
must be available for threads encountering a partial update to either
complete the operation (giving lock-free behaviour [13]) or to undo
it (giving obstruction-free behaviour [15]). These problems can be
readily solved by having threads publish their intentions in shared
memory before starting to perform an operation ([12, 16, 6, 11]
give numerous illustrations).

The second, and more severe, difficulty stems from what we
term delayed operation problems. These occur because, once
started, there is no guarantee about when the scheduler will ac-
tually select a given thread for execution. This means that, for any
instruction reachable during an operation, the scheduler can poten-
tially run the thread to that point, preempt it, and then resume at that
instruction at any time in the future. Non-blocking algorithms must
be designed so that the effect of any delayed operation is benign.

As an example, consider the insertion of a new node holding
the value 15 into a sorted singly-linked list currently holding nodes
with values 5, 10, 20 and 25. The insertion can proceed in three
steps. Firstly, the predecessor and successor are identified in the
usual way:

10

pred succ

5 20 25

Next, the new node is prepared in thread-private storage:

105 20 25

15

Finally, a CAS is used to splice the new node into the list between
the predecessor and the successor:

105

15

20 25

This example illustrates the three kinds of delayed operation prob-
lem:

• Delayed reads can cause segmentation faults if the address
being accessed is no longer valid. For instance, a thread cannot
free the memory containing the 5 node while it might be seen by
threads traversing the list. Solutions include the use of garbage
collection or techniques based on threads publishing sets of
objects that they may access in the immediate future [20, 14].

• Delayed writes are more problematic: they have the potential
to update the contents of a memory location. The usual way
of making these writes benign is to arrange that they do not
affect the logical state of the system even though they update its
physical representation. For instance, the writes which initialise
the 15 node are made to thread-private storage and will not be
seen by other threads until the insertion is complete.

• Delayed CASs can cause segmentation faults as before and, in
addition, can update the contents of a memory location if it
holds theexpected value specified by the CAS. In many cases
designers must avoid so-called A-B-A problems [21] in which
a thread is about to perform a CAS conditional on a location
holding a valueA, but then a series of operations by other
threads changes the value toB and then back toA allowing the
delayed CAS to succeed even though the update may no longer
be correct. Typical solutions to A-B-A problems are to avoid
re-using values while there may be delayed CASs conditional
on them – for instance, during this insertion it would be unsafe
to re-use the storage holding the 20 node.

With these kinds of problem in mind, we can view the use of
traditional locks and conventional non-blocking techniques as two
points in a design space. At one extreme, locking provides a way
for preventing partial updates from being visible and for preventing
delayed operations from occurring. At the other extreme, non-
blocking designs without locking require the programmer to make
the algorithm robust against both kinds of problem.

3. Revocable locks
In this paper we introduce a new kind of non-blocking revocable
mutual-exclusion lock which allows us to avoid delayed operation
problems and thereby simplify non-blocking systems’ design. As
with conventional mutexes, these new locks allow at most one
thread to hold them at any instant in time. However, if a threadA
attempts to acquire a lock held byB then, instead of blockingA, the
lock is revoked fromB and passed on toA. BeforeA’s lock-acquire
operation returns,B’s execution is displaced to a recovery function
thatB supplied when it acquired the lock.

As Figure 1 indicates, these semantics provide a middle-ground
between using traditional mutexes and attempting to build non-
blocking algorithms without any form of locks. They are sufficient
to avoid delayed operation problems because at most one thread
can execute code protected by each lock at any time: revocation has
the effect of canceling delayed operations which would otherwise
occur. Of course, revocation can occur at any stage through a lock-
holder’s operation and so this means that we cannot prevent partial
updates from being visible.

By avoiding delayed operations we get a number of simplifica-
tions in the examples that we have studied. In these examples we

Partial updates Delayed operations
visible possible

Traditional locks No No
Revocable locks Yes No

No locks Yes Yes

Figure 1. Revocable locks provide a middle-ground between tradi-
tional locks and the direct construction of non-blocking algorithms.

typically associate a revocable lock with some form ofoperation
descriptor structure in which a thread sets out the details of a multi-
word operation that it is performing. The lock holder is responsible
for performing this operation and has sole use of the structure. This
lets us:

• replace dynamic heap allocation with static or on-stack alloca-
tion,

• avoid the need for tracing garbage collection, or for reference
counting the operation descriptors (with its attendant costs in
terms of memory write barriers),

• safely assume that the contents of descriptors are unchanged
by other threads, meaning that we can replace manyCAS oper-
ations by direct updates, and change many other double-word
CAS operations into single-word variants.

We describe these cases in more detail in Section 4. We have yet to
find an algorithm which requires more than a single revocable lock
per thread – revocable locks are typically only used within critical
parts of library functions, for instance in building the commit op-
eration of an STM, or the contended lock-acquire case of a mutex
implementation. We would not expect a thread to hold a revocable
lock between libary calls – for instance while executing a software
transaction, or while holding or blocking on an ordinary mutex.

3.1 Hold-release operations

In our current design we associate revocable locks with heap loca-
tions and provide operations to access a data item at that location
along with operations to lock and unlock it. Four operations are
provided in total:

Hold-release operations
hr word t HRRead(addr t a)
void HRWrite(addr t a, hr word t w)
void HRHold(addr t a, pc t r)
void HRRelease()

HRRead andHRWrite correspond to conventional reads and writes.
The data values they deal with are of typehr word t which, in the
implementations we present in Section 3.2, is an ordinary machine
word with one bit reserved.

The third operation,HRHold, acquires a revocable lock on the
locationa. The lock is held until either (i) the thread releases it
with a HRRelease operation, (ii) the thread invokesHRHold on
a different location, or (iii) the lock is revoked by another thread
performing aHRWrite or HRHold operation on the same location.
If the lock is revoked then the program counter of the thread holding
it is moved to the revocation targetr.

3.2 Implementation of hold-release operations

In this section we describe three software-based implementations
of the hold-release operations. In all cases, heap locations acted on
by these operations have a single reserved bit: ordinarily this is 0
and said to beunmarked; if the location is held then it is 1 and
said to bemarked. The operationsMARK, UNMARK andIS MARKED

struct {
addr t addr;
word t displaced;
int holds started;
int holds completed

} hr per thread t;

hr word t HRRead(addr t a) {
if (a == st −> addr) {

return st −> displaced;
} else {

do {
owner = *a;
if (IS UMMARKED(owner)) return owner;
holds started= owner −> holds started;
if (owner −> addr == a) {

val = owner −> displaced;
if (owner −> holds completed==

holds started) {
return val;

}
}

} while (TRUE);
}

}

void HRWrite(addr t a, hr word t w) {
if (a == st −> addr) {

st −> displaced= w;
} else {

do {
expected= FETCH (a);

} while (CAS(a, expected, w) != expected);
}

}

void HRHold(addr t a, pc t d) {
HRRelease();
st −> holds started++;
do {

expected= FETCH(a);
st −> addr = a;
st −> displaced= expected;

} while (CAS(st −> addr, expected, MARK(st)) != expected);
st −> holds completed++;

}

void HRRelease() {
if (st −> addr != NULL) {
*(st −> addr) = st −> displaced;
}
st −> addr = NULL ;

}

Figure 2. Implementation of the hold-release operations.FETCH
performs revocation where necessary. The identifierst refers to
the per-thread data structure of the current thread.

are used to set, clear and interrogate such bits and are implemented
using the obvious bit-wise operations.

If a location is not held then its contents are stored directly
in it as an unmarked value. If a location is held then it con-
tains a marked pointer to a statically allocated per-thread structure

of the holder. The format of this structure is shown in Figure 2
(hr per thread t). If addr is non-NULL then it indicates the ad-
dress currently held by the thread anddisplaced holds the value
logically held at that location. The two counters,holds started
and holds completed are incremented respectively before and
after the thread performs aHRHold operation.

In each of our three implementations the representation used
in memory is the same; the differences lie in how revocation is
implemented. We exploit this commonality by presenting the im-
plementation in two stages, firstly using aFETCH operation which
returns the current contents of the address after revoking any thread
holding it, and secondly by showing showing howFETCH is imple-
mented.

FETCH operation
hr word t FETCH(addr t a)

HRRead andHRWrite act ondisplaced if the thread holds the
indicated location. Otherwise, forHRRead, there are two cases to
consider: if the value in the location is unmarked then it can be
returned directly, if the value is marked then the value from the
owner’sdisplaced field is returned. The owner’sholds started
andholds completed fields are used to allow the reader to take a
consistent snapshot of theaddr anddisplaced fields.

HRWrite proceeds in two stages if the invoker does not hold
the indicated location. The first stage is toFETCH the location,
meaning to revoke the current holder (if any) and to return the
location’s current value. The second stage is to perform a CAS on
the location from the value FETCHed to the new value: this ensures
that the location has not become held again since retrieving its
value.HRHold also uses aFETCH operation: the location is fetched,
the caller’s structure is updated and then a CAS is used to install
a marked pointer to the structure. Figure 2 provides pseudo-code
implementing these operations.

The first implementation ofFETCH is a straightforward one
which does not provide non-blocking behaviour: instead of per-
forming revocation, the fetcher waits until it reads an unmarked
value from the location.

The second implementation, for Solaris UNIX, does allow revo-
cation. It uses the/proc/ interface to suspend the thread currently
holding a location and then to update its PC to its revocation target.
In order to prevent deadlocks, for instance two threads suspending
each other at the same time, a process-wide lock is employed to al-
low at most one thread to be performing a suspend operation at any
time. This prevents the implementation from being non-blocking,
however, we do not believe that this is a practical concern in a
multi-threaded application running in a single process. We use the
schedctl interface to discourage a thread holding the suspension
lock from being descheduled. Similar facilities for thread suspen-
sion and control exist in the Win32 Platform SDK and other oper-
ating systems.

The third implementation, again for Solaris UNIX, allows revo-
cation and is non-blocking. In it, each thread runs a separate copy of
any functions executed while holding a revocable lock. Revocation
is implemented by usingmprotect to remove execute permission
from the page holding the owner’s copy of the functions.

In our performance results in Section 5 we use a hybrid scheme
in which threads spin for a short while, waiting for the current
holder of a location to release it voluntarily, before taking a slow
path which uses the/proc/ interface to revoke them. As with
common implementations of mutual exclusion locks, this antici-
pates that the incumbent is likely to release the location in the near
future. Even a modest spin limit (1000 iterations of a tight loop)
is sufficient to make the slow path virtually never executed: the

heavyweight cost of taking it is rarely incurred. We quantify this in
Section 5.

4. Using hold-release operations
In this section we consider two example non-blocking data struc-
tures from the literature and show how their design can be simpli-
fied by using revocable locks. The purpose of this is to demonstrate
that revocable locks provide a general solution to delayed opera-
tion problems and that algorithms designed using it are simplified
and more ‘clearly correct’ than their original counterparts. In Sec-
tion 4.1 we consider Greenwald’stwo handed emulation scheme
and then in Section 4.2 we consider ourword-based STM [11].

4.1 Two-handed emulation

In his paper at PODC 2002, Greenwald introduces the mechanism
of two-handed emulation as a way of simplifying the construction
of non-blocking data structures [8]. Greenwald posits that his de-
sign provides evidence in favour of hardware support for adouble-
word compare-and-swap (DCAS) operation which takes six param-
eters:

Double-word CAS operation
bool t DCAS(addr t a1, word t o1, word t n1,

addr t a2, word t o2, word t n2)

DCAS acts as a double-word version of CAS, checking the contents
of addressesa1 anda2 againsto1 ando2 and, if both addresses
hold their expected values, updating them withn1 andn2 respec-
tively. In general DCAS returns a boolean result indicating success
or failure. Although many published algorithms use it, DCAS has
not been supported in hardware since the Motorola 68k processor
family [1].

To perform non-blocking updates using two-handed emulation,
each shared data structure is augmented with acurrent operation
field. If any thread is performing an operation on the structure
then this field points to a record describing the operation being
done and how far that operation has progressed through a series
of steps. An operation proceeds by using DCAS to increment the
step counter while performing an update relating to the current
step. The ‘two hands’ refer to the two atomic accesses which
DCAS is able to make at each step. The scheme leads to a non-
blocking implementation because if a threadA encounters thread
B performing an operation which obstructs it, thenA can helpB
complete its operation. The step counters avoid delayed operations
during this helping.

For instance, Figure 3 shows how a thread performing an in-
sertion into a doubly-linked list could proceed. Step (a) installs an
operation record describing the insert. Step (b) links the new node
in the ‘forward’ direction. Step (c) links the node in the ‘reverse’
direction. The final step, (d), removes the operation record.

However, the use of DCAS makes this design ineffective for
two reasons. Firstly, no modern processor provides a hardware im-
plementation of DCAS. Although software implementations exist,
they expand each DCAS into a series of CAS operations (7 in the
original design [12]) and require temporary dynamically allocated
data structures. Secondly, in cases where contention is rare, the pro-
cessor’s ability to re-order memory accesses will be constrained by
the need to serialise the execution of the DCAS operations.

In contrast, an implementation of insertion in doubly-linked lists
can be developed using hold-release without needing DCAS. The
new design proceeds using the same basic steps as two-handed
emulation, but with the thread performing the insertion holding
list->op. This ensures that that thread remains the only one
acting on the data structure.

(a) (b) (c) (d)

10 30

20

insert(20)

step 0

node:

op:list:

10 30

20

insert(20)

step 0

10 30

20

insert(20)

step 1

10 30

20

insert(20)

step 2

Create update record (op) DCAS(&op -> step, 0, 1, DCAS(&op -> step, 1, 2, DCAS(&op -> step, 2, 3,
andnode in private storage &node->pred->succ, &node->succ->pred, &list->op,

node->succ, node) node->pred, node) op, NULL)
CAS(&list->op, NULL, op)

Figure 3. Insertion of a node into a doubly-linked list using two-handed emulation. Shaded boxes indicate the locations that are to be accessed
by a CAS or DCAS in the current step.

(a) (b) (c) (d)

10 30

20

insert(20)

step 0

10 30

20

insert(20)

step 0

10 30

20

insert(20)

step 2

10 30

20

Construct update record and
new node in private storage.
Hold list->op

Publish update record in case
of contention

Perform updates using
ordinary reads and writes

Remove update record, then
release hold on location

Figure 4. Insertion of a node into a doubly-linked list using hold-release operations. The grey rectangle indicates the location being held.
Other memory accesses use ordinary read and write operations. DCAS is not required.

Figure 4 shows the resulting steps. Note that the operation
record must still be published in the list structure in order to give
non-blocking behaviour: it allows other threads, after revoking the
hold, to continue the operation that was in progress. However, the
design based on hold-release can use ordinary memory accesses
to make the actual updates to the data structure and to the step
counter without needing either CAS or DCAS. In some algorithms
– although not in this list-based example – it may still be necessary
to refactor the design to make each step idempotent since steps are
no longer performed atomically with the step count updates.

4.2 Streamlined STM

In this section we show how the hold-release operations can be
used to produce a streamlined word-based STM based on our de-
sign at OOPSLA 2003 [11]. After presenting the interface that the
STM exposes we outline the common-case implementation of the
STM for non-contended transactions in Section 4.2.1. Then, in Sec-
tion 4.2.2 we discuss contended heap accesses and show how the
hold-release operations can be used to avoid the delayed operation
problems that occur.

Four operations are provided for transaction management:

Transaction management
void TransactionStart()
void TransactionAbort()
boolean TransactionCommit()
boolean TransactionValidate()

These have their usual meaning in transaction processing. Invoking
TransactionStart begins a new transaction within the executing
thread.TransactionAbort aborts the transaction in progress by
the executing thread.TransactionCommit attempts to commit the
transaction in progress by the executing thread, returningtrue
if this succeeds andfalse if it fails. TransactionValidate
indicates whether the current transaction would be able to commit.

Two operations are provided for performing memory accesses
within a transaction:

Memory accesses
word t TransactionRead(addr t a)
void TransactionWrite(addr t a, word t w)

The memory locations accessed throughTransactionRead and
TransactionWrite are disjoint from those accessed directly
through ordinary read and write operations.

4.2.1 Non-contended transactions

The STM uses a form of optimistic concurrency control with a
commit operation based on version numbering. Transactions ini-
tially execute in private, building up values in atransaction de-
scriptor which sets out the memory accesses that it has performed.
We indicate such accesses using the notationa1:(o,vo)->(n,vn)
to indicate an access to heap addressa1 updating it from valueo at
version numbervo to valuen at version numbervn. For a read-only
access,n==o andvn==vo. For an update,vn==vo+1. Additionally,

Application
heap

Transaction
descriptors

Ownership
records

a2

r1a1

200

100

r2 version 21

t1

Status: ACTIVEversion 15

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

(a) The transaction executes in private until it attempts to com-
mit.

a2

r1a1

200

100

r2 version 21

t1

Status: ACTIVE

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

version 15

a2

r1a1

200

100

r2

t1

Status: ACTIVE

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)
version 21

(b) CAS is used to acquire ownership records r1 and r2, replac-
ing the expected version number with a pointer to the transac-
tion descriptor.

a2

r1a1

200

100

r2

t1

a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

Status: ACTIVE

(c) CAS is used to set the status to COMMITTED.

a2

r1a1

r2

t1

Status: COMMITTED200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

(d) The updates are written back to the heap.

a2

r1a1

r2

t1

Status: COMMITTED200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

a2

r1a1

r2

t1

Status: COMMITTED200

100 a1: (100,15) −> (200,16)

a2: (200,21) −> (100,22)

version 16

(e) Ownership is released on r1 and r2, installing the new
version numbers.

Figure 5. An uncontended commit swapping the contents ofa1 and
a2. Grey boxes show where CAS operations are to be performed
at each step. While an orec is owned, thelogical contents of the
locations involved are available via the transaction descriptor.

the descriptor has a status field indicating that it is eitherACTIVE,
COMMITTED or ABORTED.

The TransactionCommit operation then attempts to validate
these updates and, if successful, atomically exposes them to other
threads. The STM uses a set ofownership records (orecs) to co-
ordinate concurrent validation and commit. Anownership function
maps each heap address to an associated orec – this may be a many-
to-one mapping and, in our implementation, we simply take a fixed
number of the significant low-order bits of the heap address. Each
orec either holds a reference to the transaction currently owning
it, or it holds a version number indicating how many updates have
been committed to locations associated with the orec.

An uncontended transactional commit proceeds in four stages.
In the first stage it acquires ownership of the orecs associated
with the locations that it has accessed, installing a pointer to the
transaction descriptor in each of them using CAS. This serves two
purposes: as well as acquiring ownership, it confirms that each orec
held the version number expected by the transaction. In the second
stage the transaction’s status is set toCOMMITTED using CAS. This
is the point at which the update appears to occur atomically: threads
reading from the locations while they are owned will take values
from the owner’s transaction descriptor on the basis of the status
field. This single update therefore has the effect of atomically
updating thelogical contents of all of the locations involved.

In the third stage the transaction’s updates are made to the heap.
Finally, in the fourth stage, it releases ownership of the orecs it
acquired, updating the version numbers.

Figure 5 illustrates this process for a transaction which is at-
tempting to swap the contents of heap addressesa1 anda2.

4.2.2 Delayed operation problems due to contention

Contended heap accesses pose two problems. Firstly, a call to
TransactionRead or TransactionWrite may be performed on
an address whose orec is currently owned, meaning that the version
number is not directly available and that the value held in the
location may be out of date (for instance just after the state shown
in Figure 5(c)). This can be dealt with by obtaining the information
from the owning transaction descriptor.

The more insidious problem is that one threadA performing
TransactionCommit may encounter an orec which is already
owned by another threadB. In order to get non-blocking behaviour
it must be possible forA to continue with its commit without having
to wait forB. There are a number of cases to consider based on the
state ofB’s transaction descriptor:

• If B’s transaction descriptor is currentlyACTIVE then A can
set it toABORTED using CAS. This gives rise to potential A-
B-A problems which prevent descriptors from being re-used
directly: re-use would allow a delayed CAS byA to abort a
subsequent transaction byB.

• If B’s transaction descriptor is already set toABORTED thenA
can proceed to unlinkB from the orecs that it acquired. This
unlinking step again gives rise to potential A-B-A problems if
the descriptor were re-used whileA was unlinking a previous
version of it.

• If B’s transaction descriptor is currentlyCOMMITTED then A
cannot revokeB’s ownership:B may be performing its updates
to the heap (Figure 5(d)) and, even thoughA may perform those
updates on behalf ofB, there is nothing to preventB being
scheduled at some time in the future and performing the updates
a second time.

In the first two cases, A-B-A problems can be dealt with by ref-
erence counting descriptors in order to prevent re-use. This re-
quires that descriptors are dynamically allocated and adds reference

counting operations (and associated memory barriers) to the STM’s
implementation.

In the third case, delayed writes can be made benign by avoiding
unlinking a transaction descriptor from an ownership record until it
is certain that no delayed writes may exist. This is done by adding
an ownership count to each orec, holding the number of threads
which may be performing writes to locations associated with that
orec (i.e. step (d) in Figure 5). The version number is only restored
to the orec when the count reaches zero. When one thread wishes to
steal an orec from another, the thief merges the victim’s transaction
descriptor into its own and then performs an atomic update to swing
ownership to the new record and to increment the ownership count.

This scheme based on stealing has three problems. Firstly, each
orec must be large enough to accommodate the count field as well
as a pointer to the owning transaction descriptor. This increases
the cache footprint of the orecs and means that double-word-width
CAS must be used to update them.

Secondly, if a thread is preempted while holding ownership
records then, although others can make progress by stealing owner-
ship, the orecs involved cannot be released until the original thread
resumes execution. This slowsTransactionRead operations to
locations managed by the orec because they must search the trans-
action descriptor rather than being able to read directly from the
heap.

Finally, when merging transaction descriptors before stealing
ownership, the thief must ensure that sufficient space exists in their
descriptor to accommodate the new entries.

4.2.3 Using hold-release

The hold-release operations provide a remarkably simplified mech-
anism for avoiding these delayed operation problems. During a
commit operation, each thread holds the status field of the trans-
action descriptor that it is working on. This means that, while the
thread is still executing the commit operation, it can be certain that
it is exclusively responsible for performing the operations set out
in the transaction descriptor: in Figure 5 stages (b)–(e) are all per-
formed while holding the descriptor.

If a threadA encounters an orec owned by another threadB
thenA releases the status field on its own transaction descriptor and
instead takes hold of the status field ofB’s descriptor. At that point,
it can be certain that it is the only thread acting onB’s descriptor
becauseB will have been displaced to its revocation target. Once
A has completedB’s operation it can release the status field of
B’s descriptor, take hold of its own, and re-try its original commit
operation.

In effect, the transaction descriptors are used to represent pieces
of work which some thread wishes to perform. The revocable locks
provide a way to ensure that at most one thread is performing the
work specified in a given descriptor at a given time. This lets us
make a series of simplifications to the implementation of the STM:

• Transaction descriptors can be statically allocated and a thread
can immediately re-use its descriptor after committing a previ-
ous update in it.

The single-ownership enforced by hold-release takes the
place of memory management schemes such as reference
counting, PTB [14] or SMR [20] in preventing A-B-A prob-
lems caused by delayed CAS instructions. This simplification
(i) removes memory management operations from the com-
mit code, (ii) means that a thread can continually re-use the
same descriptor, perhaps giving improved data-cache locality
and (iii) removes a level of indirection between a per-thread
structure and that thread’s current descriptor.

• Since revocation prevents delayed writes, it is no longer neces-
sary to allow multiple threads to own the same orec at the same

time. This removes the need for ownership counts in the orecs
and removes the need to merge updates from one descriptor into
another.

This simplifies the acquire and release steps (b) and (e) and,
in our implementation, means that orecs can be updated with a
single-word CAS rather than a double-word CAS.

5. Results
In this section we evaluate the performance of a system built us-
ing revocable locks. We are concerned with two aspects of per-
formance: the overall run-time of a variety of workloads and the
likelihood of needing to perform a lock revocation.

Our baseline is a non-blocking implementation of the STM de-
sign from Section 4 built directly from CAS. This incorporates a
number of low-level optimisations which are not present in the pub-
lished algorithms. Instead of being a single table, the orecs are split
into page-sized chunks with a main table giving the address of each
chunk. This lets chunks be distributed throughout the memory on
a ccNUMA machine in order to reduce contention in the intercon-
nect. We also use a ‘second chance’ commit operation for read-only
transactions: a read-only transaction can commit if all of the loca-
tions accessed still contain the values seen, even if the version num-
bers seen are no longer current. We compare this baseline against
the equivalent STM built using revocable on each transaction de-
scriptor.

We use a 106-processor ccNUMA SunFire e15k machine and
perform experimental runs with 1..96 processors on an otherwise
unloaded system. For workloads using small numbers of proces-
sors we confirmed that the results from this machine were consis-
tent with those from a 4-way SMP system using the same processor
family. In our tests we measure the CPU time required for each op-
eration on a shared data structure and present median-of-five results
with error bars indicating the minimum and maximum results seen.

We use two synthetic benchmarks built by implementing red-
black trees and skip lists over the word-based transactional memory
interface. A specified number of threads loop performing insert,
delete and lookup operations on the tree. We can produce various
forms of contention by varying (i) the number of active threads,
(ii) the proportion of updates versus reads, (iii) the range of key
values used.

TheHRHold operation was configured to spin up to 1000 times
before attempting revocation. As Figure 6 indicates, this was suffi-
cient to avoid almost all revocations. Notice that, unlike two-phase
locking with mutexes, our revocable locks are heldonly when com-
mitting a transaction, not throughout the transaction’s execution.
Furthermore, two threads only contend for a revocable lock when
they attempt to access the same STM orec concurrently: this means
that non-conflicting commit operations will usually not contend
with one another.

Figure 7 compares the performance of the streamlined STM
with our original design when performing red-black tree opera-
tions. The simplifications to the fast-path code for uncontended
updates reduce the mean time taken to perform a tree update by
over 30% on a single-threaded workload. This speed-up remains
typical on workloads with low contention, for instance when per-
forming operations with a key space0 . . . 220. The STM based on
hold-release scales better under higher contention than the original
scheme – with a key space0 . . . 210 at most 12% of commit opera-
tions fail when using hold-release, compared with over 18% when
using CAS directly.

Figure 8 presents similar results from a skip-list implementation
over the two STM designs.

 0

 20

 40

 60

 80

 100

 120

 140

101 102 103 104 105 106

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

Spin limit

64 CPUs

16 CPUs

4 CPUs

0.000

0.001

0.002

0.003

0.004

0.005

0.006

101 102 103 104 105 106

N
um

be
r

of
 th

re
ad

 s
us

pe
ns

io
ns

 p
er

 o
pe

ra
tio

n

Spin limit

64 CPUs

16 CPUs

4 CPUs

(a) Operation duration (b) Number of thread suspensions

Figure 6. The impact of delaying a thread before attempting to revoke a held location. Threads execute search, insert and delete operations
on a skip list with keys uniformly picked from0 . . . 210 and 75% read-only operations.

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

(a) Key space0 . . . 210 (b) Key space0 . . . 220

Figure 7. Red-black tree performance using an STM built directly from CAS (top lines) and one built using hold-release (lower lines)
performing operations on a red-black tree. 75% of operations were read-only.

6. Related work
Herlihy and Moss first introduced the concept of atransactional
memory [17]. Their hardware design builds on existing multipro-
cessor cache-coherency mechanisms to buffer accesses within a
private transactional cache, the contents of which are exposed to
other CPUs and written back to main memory at the end of a suc-
cessful transaction.

Rajwar and Goodman explore similar implementation tech-
niques for automatically executing lock-based operations using
hardware transactions [25]. As with their earlier work on specula-
tive lock elision, they suggest that the processor can identify op-

erations that are likely to be implementing locks [24]. This allows
existing lock-based code to be executed.

These hardware schemes have the potential to allow very fast
commit operations. They also allow direct sharing of locations
between transactional and non-transactional access. However, they
inevitably impose limits on the number of locations which can be
buffered within the CPU.

Shavit and Touitou proposed the first software-based non-
blocking transactional memory [26]. As with other early designs,
it used nesting LL/SC operations. These are not directly supported
by hardware and possible implementations, using basic LL/SC or
CAS, operate by reserving per-processor ‘valid’ bits or counters in
each word [22] or by having several per-processor data structures

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

 0

 5

 10

 15

 20

 25

 30

 10 20 30 40 50 60 70 80

C
P

U
 ti

m
e

pe
r

op
er

at
io

n
/ µ

s

CPUs

Word-based using CAS

Word-based using H-R

(a) Key space0 . . . 210 (b) Key space0 . . . 220

Figure 8. Skip-list performance using an STM built directly from CAS (top lines) and one built using hold-release (lower lines) performing
operations on a skip-list. 75% of operations were read-only.

for each word in the heap [18]. These space costs make the design
impractical for general use.

Recently a number of practical STMs have been developed di-
rectly from CAS. As well as theword-based interface studied here,
other researchers have investigatedobject-based STMs in which
transactions ‘open’ the objects that they are acting on and are pro-
vided with a private copy which they then access directly. Usually
each object is implemented with an additional level of indirection
from an object header which points to the current contents of the
object: a commit operation updates the object headers in a way that
atomically installs the transaction’s updates as the current versions
of the objects. Herlihyet al designed an obstruction-free object-
based STM [16]. Fraser produced a lock-free design [6]. Revocable
locks could be applied to either design: as in Section 4.2, one lock
would be associated with each transaction descriptor.

Other researchers have investigated using operating system sup-
port to help the design of non-blocking systems. Bershad describes
how CAS can be implemented on systems which lack it as a na-
tive operation [3]. On a uniprocessor system the OS can inspect
the state of the previous process when switching from it and de-
termine if it was executing within a special library function that
implements CAS. The operation is rolled forward if the shared lo-
cation has been updated. Otherwise it is rolled back. This unipro-
cessor scheme can, of course, be generalized to other operations,
as Greenwald and Cheriton do in their software implementation of
DCAS [9].

Alemany and Felten describe how the OS can help maintain
a count of ‘in progress’ operations which the scheduler reduces
after preempting a thread performing an operation on a shared data
structure [2]. Threads use this count to avoid contending with other
threads which are actively working on the same structure. They
also describe a roll-back scheme in which each process builds a
change log which the OS can use to restore the shared structure if
the process is preempted before completing its update.

Implementation schemes based on revocation notifications or
thread suspension have been used in a number of systems. Dice
and Garthwaite consider the problem of controlling access to state
such as memory allocation meta-data that is CPU-local (rather
than thread-local). They introduce multiprocessor restartable crit-

ical sections during which a thread receives an up-call if it is pre-
empted or migrated to another CPU [5].

Burrows describes a scheme for implementing fast-path oper-
ations in a mutex implementation by using thread suspension and
controlled roll-forward [4]. Kawachiyaet al used the same under-
lying technique as our revocable locks in their implementation of
mutexes for Java [19]. They allow each Java mutex to bereserved
by a thread and use thread suspension and displacement when one
thread wishes to acquire a lock reserved by another.

Pizlo et al implemented implemented atomic transactional
methods for real-time Java [23], logging the values overwritten
when executing inside a transactional method and restoring these
if the transaction is aborted. Their implementation allowed at most
one active transaction at any time – a subsequent transaction would
abort an ongoing one by causing an exception to be raised in it. Re-
vocable locks might provide a way of extending this infrastructure
to support multiple ongoing transactions – although care would be
needed if the analyzability necessary for real-time performance is
to be retained.

Welc et al used a roll-back mechanism to allow locks to be
preempted from Java threads [27]. Preemption is transparent to the
programmer – the updates made within a synchronized block are
rolled back and execution of the thread resumes at the start of the
block. The implementation of roll-back is simpler than with a non-
blocking transactional memory because the program is written in
ordinary Java using locks rather than using optimistic concurrency
control.

In distributed systems,leasing can be employed to avoid bad
interactions between mutual exclusion and failures [7]: other pro-
cesses can be certain that a lease has expired once sufficient time
has elapsed. The benefits of our revocable locks have a similar feel,
except at shorter timescales and using termination that is explicit
rather than implicit.

7. Conclusions and future work
In this paper we have shown how to build a form of revocable lock
which simplifies the design of many non-blocking data structures.
The key novelty in the design is to expose lock revocation by

displacing the previous holder to a safe location, avoiding a class
of problem relating to delayed operations.

When applied to Greenwald’s scheme oftwo-handed emulation
it allows CASs to be used in place of DCAS. When applied to
our word-based STM it simplifies the management of temporary
data structures, allows their size to be bounded by the number of
locations accessed in a single active transaction and reduces the
size of the ownership records used to co-ordinate transactions.

We originally considered whether the hold-release operations
would be suitable for implementation in hardware: with the usual
MESI cache coherence protocol, a held location would have to be
retained in modified or exclusive mode and revocation would be
triggered if it was invalidated. However, at least in the algorithms
that we have studied, the short durations for which locations are
held seem to make software implementations sufficient when cou-
pled with a brief period of spinning before performing revocation.

References
[1] Motorola M68000 Family Programmer’s Reference Manual. Mo-

torola Inc, 1992.
[2] A LEMANY, J., AND FELTEN, E. W. Performance issues in non-

blocking synchronization on shared-memory multiprocessors. In
Proceedings of the 11th Annual ACM Symposium on Principles of
Distributed Computing (Aug. 1992), ACM Press, pp. 125–134.

[3] BERSHAD, B. N. Practical considerations for non-blocking
concurrent objects. Technical Report CMU-CS-91-116, Carnegie
Mellon University, School of Computer Science, Oct. 1991.

[4] BURROWS, M. How to implement unnecessary mutexes. In
Computer Systems: Theory, Technology and Applications (Dec.
2003), Springer-Verlag.

[5] DICE, D., AND GARTHWAITE, A. Mostly lock-free malloc.
In Proceedings of the third international symposium on Memory
management (2002), ACM Press, pp. 163–174.

[6] FRASER, K. Practical lock freedom. PhD thesis, University of
Cambridge Computer Laboratory, 2003.

[7] GRAY, C., AND CHERITON, D. Leases: an efficient fault-tolerant
mechanism for distributed file cache consistency. InProceedings of
the twelfth ACM symposium on Operating systems principles (1989),
ACM Press, pp. 202–210.

[8] GREENWALD, M. Two-handed emulation: how to build non-
blocking implementations of complex data-structures using DCAS.
In Proceedings of the 21st Annual Symposium on Principles of
Distributed Computing (PODC-02) (July 2002), ACM Press, pp. 260–
269.

[9] GREENWALD, M., AND CHERITON, D. The synergy between
non-blocking synchronization and operating system structure. In
Proceedings of the 2nd Symposium on Operating Systems Design and
Implementation (OSDI ’96) (Oct. 1996), pp. 123–136.

[10] HARRIS, T. Exceptions and side-effects in atomic blocks. InPro-
ceedings of the 2004 Workshop on Concurrency and Synchronization
in Java programs (July 2004), pp. 46–53. Proceedings published as
Memorial University of Newfoundland CS Technical Report 2004-01.

[11] HARRIS, T., AND FRASER, K. Language support for lightweight
transactions. InObject-Oriented Programming, Systems, Langauges
& Applications (OOPSLA ’03) (Oct. 2003), pp. 388–402.

[12] HARRIS, T. L., FRASER, K., AND PRATT, I. A. A practical multi-
word compare-and-swap operation. InProceedings of the 16th
International Symposium on Distributed Computing (Oct. 2002),
pp. 265–279.

[13] HERLIHY, M. A methodology for implementing highly concurrent
data objects.ACM Transactions on Programming Languages and
Systems 15, 5 (Nov. 1993), 745–770.

[14] HERLIHY, M., LUCHANGCO, V., AND MOIR, M. The repeat
offender problem: a mechanism for supporting dynamic-sized,
lock-free data structures. InProceedings of the 16th International
Symposium on Distributed Computing (Oct. 2002), pp. 339–353.

[15] HERLIHY, M., LUCHANGCO, V., AND MOIR, M. Obstruction-

free synchronization: Double-ended queues as an example. In
23rd International Conference on Distributed Computing Systems
(ICDCS’03) (May 2003).

[16] HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, III,
W. N. Software transactional memory for dynamic-sized data
structures. InProceedings of the 22nd Annual ACM Symposium on
Principles of distributed computing (2003), ACM Press, pp. 92–101.

[17] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:
Architectural support for lock-free data structures. InProceedings of
the 20th Annual International Symposium on Computer Architecture
(May 1993), IEEE Computer Society Press, pp. 289–301.

[18] JAYANTI , P.,AND PETROVIC, S. Efficient and practical constructions
of ll/sc variables. InProceedings of the twenty-second annual
symposium on Principles of distributed computing (2003), ACM
Press, pp. 285–294.

[19] KAWACHIYA , K., KOSEKI, A., AND ONODERA, T. Lock reserva-
tion: Java locks can mostly do without atomic operations. InOOPSLA
(2002), pp. 130–141.

[20] MICHAEL, M. M. Safe memory reclamation for dynamic lock-free
objects using atomic reads and writes. InProceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing
(July 2002), ACM Press, pp. 21–30.

[21] MICHAEL, M. M. ABA prevention using single-word instructions.
Tech. Rep. RC-23089, IBM Research Division, Jan. 2004.

[22] MOIR, M. Practical implementations of non-blocking synchroniza-
tion primitives. InProceedings of the 16th Annual ACM Symposium
on Principles of Distributed Computing (Aug. 1997), pp. 219–228.

[23] PIZLO, F., PROCHAZKA, M., JAGANNATHAN , S., AND VITEK, J.
Transactional lock-free objects for real-time Java. InProceedings of
the 2004 PODC Workshop on Concurrency and Synchronization in
Java Programs (July 2004).

[24] RAJWAR, R., AND GOODMAN, J. R. Speculative lock elision:
Enabling highly concurrent multithreaded execution. InProceedings
of the 34th Annual International Symposium on Microarchitecture
(Dec. 2001), IEEE Computer Society TC-MICRO and ACM
SIGMICRO, pp. 294–305.

[25] RAJWAR, R., AND GOODMAN, J. R. Transactional lock-free
execution of lock-based programs.ACM SIGPLAN Notices 37,
10 (Oct. 2002), 5–17.

[26] SHAVIT , N., AND TOUITOU, D. Software transactional memory.
Distributed Computing, Special Issue 10, 2 (1997), 99–116.

[27] WELC, A., HOSKING, A. L., AND JAGANNATHAN , S. Preemption-
based avoidance of priority inversion for java. InProceedings of the
2004 International Conference on Parallel Processing (ICPP) (Aug.
2004), pp. 529–538.

