Techniques for flow inversion on sampled data
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Abstract—The distribution of flow sizes is a quantity of appropriate traffic shaping strategies in order to ensure
interest fundamental to traffic engineering and network adherence with the quality of service agreement levels.

thd]f’”ing a”ﬂ only likely t‘]f bheccame Imorehirgpor_tt;emt_ in It is common for network administrators to investigate
the future. The recovery of the flow-length distribution 0 herformance of a network by collecting sampled
from (sampled) packet data is referred to as flow-inversion. . . )

information about packets. The sampling method known

Traditional packet sampling methods cause distortions in . L
a recovered distribution of flow-length. We propose an &SSample-and-holds a method for sampling which is

improved method for inverting data sampled using the aimed at better estimates of long flows [1], [5]. This
technique known as sample-and-hold. We show that the paper describes an inversion method for packet data
technique improves upon existing inversion techniques sampled using sample-and-hold and tests it on real and
illustrated using both real and artificial data sets. The artificial data sets.

technique described may have applications to other inver-

sion problems.
on p A. Background and related work

. INTRODUCTION _ . :
ing i itical ¢ today’ K A flow in a network is a set of packets which have
Sampling is a critical part of today's networ Mmeag, e sameb—tuple (source IP address, destination IP

surement and mcl)(nltormg. Th_e VIT)Iu_me of d_alta tfraveizs'%ldress, source port, destination port and protocol). The
core routers makes it practically impossible for thef,; jength distributionis the set of probabilities that

to keep track of all the packets and their sources a‘F%&jndomly selected flows have given lengths. Assume that

destinations. Hence nearly all commercial routers nowas o given sample of packets there is some maximum

days imple_ment samplling the packets_and forming _ﬂOHY)W length M (this may not be known) and therefore the
records, with the dominant format being that of C'SCBistribution is{01,...,01/). where; is the probability

1
NetFlow °. . that a randomly selected flow is of length The flow

Although sampling eases the measurement and Mofiersion problerris the problem of estimating the flow
toring burden on core routers, it also lends itself to 'naféngth distribution from sampled packet data

curacies. Many smaller flows are missed and the IongerOne common sampling scheme is to sample evét
flows can be truncated due to various time-outs. Much

has b it th bl f estimati ati t.gacket. A similar sampling scheme is to sample in an

foarsﬂot\al\?sn Vg” eln Og aﬁdpf]a:moczh;ss'rr}i;n?n?/;éisolhnsdependent and identically distributed (iid) manner ttha
» €9 [ .]._[ ] . y ) is simply sampling each packet with a given probability

problem is of critical importance for network operators.) The differences between these two methods can

Aside from flow length being an obvious part of auditin e important [6]. Duffield et al [2] used a Maximum

and accountl_ng, flow Iengt_h estlmatlo_n and INVETSION Ny elihood Estimator (MLE) based method for flow in-
general provides an effective mechanism to improve the . .

: . : vérsion on both schemes but encountered problems with
accuracy of traffic-matrix computation [4]. In day-to-da

%djusting the process to get accurate results. Hohn and

network operations, the increasing adoption of StreamlQ/éitch [3] discuss inversion methods for iid sampling and

media and peer-to-peer applications makes it vital for Wme up with mathematically sound solutions although

na‘lese have some practical limitations. Ribeiro et al [7]
Use several methods to estimate the flow distribution
*http:/Amww.cisco.com/univercd/cc/td/doc/cisintwk/intsolns/ from iid sampled packets. Using features of the TCP

netflsol/nfwhite.htm protocol (sequence numbers and the SYN flag) they give

identifying heavy-hitters on the network and developi



an MLE for flow lengths but only for “short” flows (in  Let ¢; be the probability that packets are sampled

their paper, less than one hundred packet flows). in a randomly chosen flow (notg¢, # 0 — some flows
The majority of sampling techniques distort the floumay have no packets sampled). Now,

distribution and are subject to one or more of the i = j’iiqu’iej 1>0

following problems: short flows may be totally missed; v ;?-;0 qjgj i=0.

it is hard to estimate the length of long flows; flows mayet X;, i € N be the distribution of flow lengths

be misranked [8] and large flows may be split due to flovbserved. The expectation value & is given by,

expiry [2]. Recent work on the flow inversion problem E[X;] = IP[Sample length =|Sample length> 0]

includes [2], [3], [7]. Previous researchers have noted & % 490,

that different sampling techniques may be desirable to = e = — = = :
improve the ability to recover longer flows [1], [5]. Yr=1Pk ¢ 60050 a7

One such sampling method found in the literature Bvaluating>>;_, ¢* gives, .
sample-and-hold. This method has advantages for the v _ '(1 _‘J)' ;.iz 0 _ Q — 925 Q?Hj'
flow inversion problem. Cohen et al [9], [10] have =~ " ¢ X5, ¢/(¢7 —1)0;  ¢'[1 -3, qwj]l

produced an inversion method to recover the flow-length
distribution from data sampled using sample-and-holgubtractinggE [X; 1] from E[X;] and rearranging gives
The authors of this paper independently derived thdfte final answert; = (E[X;] — ¢E[X;11])/(1 — ¢ +
method but improved upon its accuracy. In addition [9}E [X4]).
[10] detail many ways to get useful statistical properties This is an exact solution but [&;] is unknown.
from data sampled using the sample-and-hold technicggVviously X; is an unbiased estimator for [&;] and
(and variants thereof). it can be seen that, therefore, an unbiased estimator for
The sample-and-hold method involveacked flows ?i 1S
For each tracked flow it5—tuple, as described in Section S Ok 2
|, is stored. Every packet which is in the set of trackefhs is similar to [9, Lema 6.1]. Their version does
flows is sampled. If a packet is not in the tracked sght give the normalising constarit/(1 — ¢ + ¢X1)
then this flow may be added to the set of tracked flows;t this could trivially be calculated since tife must
with a fixed probabilityp € (0,1). (Note that to prevent gym to one. Note that this equation is not guaranteed
the number of tracked flows growing until it CONSUMeR, he in the rangdo, 1]. In particular negative values
all available memory some method is needed to expiggularly occur whenX,.; > X,. Obviously one
old flows. For a summary of some flow expiry issues s@@yid arbitrarily set negative values to zero but this

b — Xi —qXit1

[11]) _ o would have two undesirable effects, firstly the estimator
The proportion of packets S?V?prd for a gVems  would no longer be unbiased and secondly the estimated
Peamdp) =1 — L—p—-3isi6:(1—p) distribution would then sum to more than one. Because

PN, kO ) _ these negative values are more likely to occur in the tail
wheref; and M are as defined in the previous Sectionef the distribution, introducing a minimum of zero and
The original description of sample-and-hold [S] prorescaling the distribution would also produce a bias by

posed a probability varying with packet length=- (1 —  increasing the probability of longer distributions.
p)?, wherep € (0,1) andb is the length of the packet

in bytes (it can be thought of as considering samplirfgy 'MProving this inversion

every byte with probabilityp). If E[X;] is known then the previous calculations
would completely solve the problem. Whil&; is an
[I. METHODOLOGY unbiased estimator for E;] it may have a high coef-

ficient of variance. In particular, when|[K;] is small a
problem occurs since&X; is the observed proportion of
The basic flow inversion for sample and hold is noflows of lengthi then it must, by definition, be an integer
given. A similar solution was independently discoveredivided by the total number of observed flows. Consider,
[9, Lemma 6.1] although the derivation is different. Fodior example, a sample with one thousand observed flows,
each packet not in the set of tracked flows there istlden X; can take values if0,0.001,0.002,...}. If the
probability p that the flow will be added to the set oftrue value of BEX;] is 0.00001 then X; will not be a
tracked flows. Defing =1 — p. reasonable estimate. Since it is likely that nearby values

A. Inverting sample-and-hold



of E[X;] are close for large then é;, an improved O(1/i). Therefore

estimator for BX;] for large i, might be given by a E[X)] = qE[Xin1] + E[Xi] L.
weighted sum of nearby values. ‘ . 1+¢ ’
Zn(i) Wi X wheree ~ O(1/i) is an error term and
5. j=—n(i) ~J It 2(E [Xi—l] — qE [Xz])
O T : @) el < . :
k=—n(i) Wk . L — e
where thew; are a series of weights and;) is awindow "€Nce a good approxllsz)a('Flor} frE'[f’;f(Q%] given by
sizewhich depends ori. The question then is how to E[X;] ~ 4 i+ . =
selectw; and alson(i). Similar manipulations will yield that fok < i,

Firstly, the problem of picking the weights will be E[X] ~ "E[Xiik] + E[Xi ] 5)
dealt with. A common assumption with flow distributions " k ’
is that they have a heavy-tail. Assume initially thatlthough the bounds on the error term grow weaker as
the flow length distribution is a Zeta distribution (thige gets larger.
assumption will be weakened later to heavy-tailed andThis leads to a possible scheme for choosing the
the consequences of the assumption not being met Wigightsw; in (3),

be examined experimentallyy) = ((«)i~* for some 1 j=0
a € (1,3) where () is the Riemann-Zeta function. w; =< ¢/(1 —j/[n(i) +1]) n(i)>j>0 (6)
Assume that the data has been sampled using sample- 1+ j/[n6) + 1)) “n(i) < j <0,

and-hold with probability parameter(and letg = 1—p  This includes a linear fall off which reduces thg to 0
as usual). Therefore, substituting the above formula fgytside the window (i) in addition to they’ factor from

b; for the zeta distribution into (1) gives (5). In fact this linear fall off makes no major difference
E[X)] = (- a)q J=i q]C(.O‘)J and the results are largely unaffected without it.
1= @ ¢(a)j™ An obvious question is how this is affected when the
RN distribution is not a zeta distribution. For a heavy-tailed
= Cgaq Zq Jo 4)  distribution wheret; = Ki— for largei, someK > 0

anda € (1, 3) will yield exactly the same result. Many

Jj=t
whereC, ., is a constant fixed for a givepanda. It is \ iyt i -
heavy-tailed distributions have this approximate form.

iven b
° d C(a)(1—gq) The question of what happens if the distribution does
Coo = 11—, ¢l(a)j— not have a heavy-tail is dealt with empirically in section
From (4) fori + 1 andi " then 1-B.

E[Xi1] =E[Xi]q ' — Cgaqg 'i™®

C. The final estimation procedure
E[Xi] = ¢E[Xita] + Cgai™

A final issue remaining is the choice of window size

- EXia] = ¢E[X] + Cpali - 1)7" n(i). The critical issue is how many sampled flows had
Substitute to get , N a given sizei packets. If the number of sampled flows
E[X;] = ¢E[Xi11] + (Z — 1) [E[X;_1] —¢E[X;]]  of sizei is high thenX; is likely to be a good estimate
of E[X;]. So fori = 1 a window size of zero (which
= E[Xi1] + <1 T io: <a> (_Z-)k> means simplyg; = X;) is likely to still get a reasonable
o \k estimate. On the other hand, for largein a given
[E[Xi_1] — ¢E [X)]] sgmple it is 'Ilkely that there were no floyvs at all with
E[Xio] + E[Xi_4] size exactly: packets and the window size should be
= =Rt Ul O increased. However, if the window size is too large the
144q error in (5) will also become large. One obvious strategy
(21311 (2)(—73)*’“) [E[Xi-1] — ¢E[Xi]] is to set a desired number of sampled flows within the
1+q ’ window size. Letl" to be the desired number of samples

where (¢) = 1//9!1’1;?;3(0[ — j). Fora € (1,3) then within the window. That is, the window size should be
‘(z), < 2 since (z) = [(a — 1)/1][(c = 2)/2] - - [(x — adjusted so thafl" or more flows were observed with
k +1)/k] and the modulus of each of the terms is legicket lengths in the range— n(i) to i + n(i). The
than 1 apart from the first which is at most 2. Sincestimation procedure then becomes the following.
S, (—i)7% = 1/(i — 1) then the right hand term is 1) Seti:= 1 and the sample window usediis:= 1.



2) Get an estimate for ;] using the weights in (6)
in conjunction with (3). ol @

3) Use this to get an estimate féy using (2).

4) If fewer thanT flows were observed with packet
lengths in the rangeé — n to i + n then increase
the sample window, := n + 1.

5) Seti := i+ 1. If ¢ is less than the largest flow

Original distribution  +
Sampled distribution ~ x
Sample inverted (simple method) ©
X

0.01 |

0.001 |

P (X>x)

0.0001 |

length available in the observed data then go to 1605 |
step 2.
Note that the last step terminates the algorithm when oo
observations run out. This is practically necessary but L -

Originél distribution
B Sample inverted (simple method)
01F ® Sample inverted (with window 20)

does mean that the inverted distribution will, by neces-
sity, not estimate the tail of the original distribution.rFo

reasons of practicality, in these experiments, a maximum
window size of 1,000 was enforced. This is because,
in extreme cases with a few very fat flows of 100,000

ox +

0.01

0.001 |

0.0001

P (X>x)

packets the algorithm was having to estimate the flow 1e-05 F 1

size at hundreds of thousands of points using a window 16-06 | B —

size of tens of thousands. 1007 L ]
1le-08 L L L

I1l. RESULTS 1 10 100 1000

The results on simulated and real data are showia. 1. The distribution of sampled and reconstructed flow lengths
in the following sections. The experiments are firder packets where flow lengths have a zeta distribution.
performed on simulated data with a zeta distribution in
Section IllI-A. Simulated data using a non-heavy tailed
distribution is tried in Section IlI-B. Real data fromThe notationgm(lj_) or Ea(l,—) will be used to

several sources is tested in Section IlI-C. indicate the error over all flow lengths from to the

In this section, the graphs are presented on a logscai@ximum flow length present in the reconstructed sam-
as a complimentary cumulative distribution functiople (which is the maximum flow length in the sampled
(CCDF), P[X > z] versusz wherez is a given flow data).
length. In fact the data given here are troublesome
to display in any form. Because of the nature of th8. Results on simulated data with a zeta distribution

estimation procedure, the estimated probabilities can berpe top part of figure 1 shows results using simulated
negative as noted in [9] and this remains true even for thgia for a million packets. The flows in this experiment
improved estimates. The CCDF is no longer strictly n0fve a zeta distribution witle = 2 and the simplest
increasing and can become negative hence some valpgig$ection method using (1). The figure (and all figures
cannot be seen on a logscale. in this section) plot® [X > x] vs z on a logscale. The
The errors in estimating the sample distribution argost obvious thing from this plot is the severe distortion
given by the following procedure. Lef; be the value to the flow length distribution. As can be seen, the
of the CCDF at pointi before sampling. Let; be the econstruction is very good far < 5, quite good for
estimated value of the CCDF at poin@fter inversion. .. — 10 put becomes very poor far > 20.
Let [ be the lowest flow length of interest ahdbe the  The lower part of figure 1 shows the same data set
highest flow length of interest. Two error measures aggconstructed with the algorithm given in Section 1I-C
used here, the mean error (which is a measure of bias;jin 7 — 20 and the windows set as in (6). As can be

the data) N seen, the inversion is greatly improved when compared
em(l ) = L=l 0i € with Figure 1.

and the mean absolute error 1 The top of Table | shows the errors as described in

S o — el the introduction to this section using inversion with and

call;h) = h—1+1 without the window. The method called “Simple” is the



reconstruction just using the method of Section II-A. ! AT
For methods using windows parameters from (6) the
value of the parameter is given. Window parameters
T = 1,20,100,500 are shown here. As will be seen
the method is relatively insensitive to this parameter (a
desirable property) and the value 500 is large enough

01F

P (X>x)

that errors begin to increase again. 0oL ¥
From the table first we can see that the results for o 3065 o]
. . . . Original distribution ~ +
the window method is, largely an improvement on the samgle inverted r(lzlgw&?nrgg@hggg x
results using the simple method. The exceptions are 0001 10 100
the results wherd” = 500 and for ¢,,(1, —) which is X

slightly worsened. The reason for this may be that tHg. 2. Reconstr_uction of the QUAINT data using the simple method
simple estimator was already an unbiased estimator fof @ Window with” = 20.

the probability that a flow had a given length and hence

the mean error might be expected to be low already. The

method can be seen not to have great sensitivity to #f errors in the inversion remain high in this case, the
value of T and' for examp|e’ the results f@r= 20 and window method much more than halves them in the best

T = 100 do not vary greatly. casel’ = 100.
(20 %2 o &l C. Results on real data
Zeta distribution
Smple | —0.0012  0.00d1 _ 0.0032  0.0069 The same tests were performed on four real data sets,
T=1 0.00028 0.0039 0.0047 0.0056 .
T =20 | 0.00051 0.0027 0.0048 0.0054 two from the CAIDA website?, one from the QUAINT
Too0 | 00055 00008 0006 00088 project [12] and one from the NLANR projedt For full
| distributi H -
ST o details on the data consult the references given. The data
-2 | Zooss  orir —ooe 0% set CAIDA 1 is 7.5 million packets and 5500 flows. The
T = 100 —0.086 0.098 —0.052 0.08 1 il
T=100 1 —0.08 0-99 “Q0s2 008 data set CAIDA 2is 11 n_nl_llon packets and 7535 flows.
TABLE | The NLANR data is 47 million packets and 26000 flows.
ERROR ANALYSIS FOR THE ESTIMATION ON THE ZETA The QUAINT data is 2.7 million packets and 1200 flows.
DISTRIBUTION AND NORMAL DISTRIBUTION. In all cases the methodology was the same. The data was

processed into flows using no sampling to get the base
case to compare with and then sample using sample-and-
B. Results of simulated data which is not heavy-tailediold with p = 0.001 and inverted using the techniques

The next obvious test is to test on some simulated da('fgm Section 1. Figure 2 shows the CCDF reconstructed

which definitely does not meet the assumption of hea $ing inversion fpr the QUAINT dat_a using the simple
ethod and a windowed method wiih= 20.

tailed flow lengths. In this section, therefore, a simulat Table 1l sh h its £ I th | dat |
data set ridiculously far from this assumption is created. apble 1l shows the results for all the real data anal-

The flow lengths of the data set in this section are chos_\é%ed' As can be seen, the windowed method provided

to have a normal distribution with mean 100 and variané@proved reconstruction of the flow distribution, in marny
20. This is obviously a hopelessly unrealistic model f ses, greatly SO. Because of the larger sample__3|_zes,
real data but should test whether the method used faild/If €rTors were in general lower here than the_artlflual
the assumption of heavy tails is not met. Again a miIIioHalta tested. _AS WOUId b(_e hoped th_e method IS r_o_bust
packets are generated using this assumption and Samﬁ?e&hanges in window size and this is not a critical
using sample-hold withp = 0.001. parameter.

The bottom half of table | shows the errors calculated IV. CONCLUSIONS AND FUTURE WORK
using inversion techniques on the normal distribution
data. In this case, perhaps surprisingly, it can be seen tg
the window method is a great improvement although th
data set does not meet the assumptions that the met
was designed for. Again the sensitivity to the window 2ttp:www.caida.org
parametefl’ is not great which is a positive sign. While ®http:/pma.nlanr.net/Special/leip2.htm|

This paper has demonstrated a technique for recov-
ﬁﬂg estimates for the flow length distribution from
Og:l sampled using the sample-and-hold technique. The



[ em(1,20)  €4(1,20)  em(l,—) ca(l,—) .
CAIDA data set 1 One approach taken by some authors is to use features
Simpl —0.014 0.016 —0.0016 0.0017 .
0 | ooz oois L x 10-5 0.00013 of the TCP protocol (for example SYN flags) to increase
T = 20 —0.012 0.015 1.2 1075 9.8 1075 1 1 ithihi
N B e e s el inversion accuracy. Another possibility yvould be to look
_ CAIDA data set 2 at correlations in the TCP/IP header fields (source and
Simple 0.0045 0.0096 —0.00097 0.001 . . . . .
T=1 0.0055 0.0099 11x107%  23x1077 destination port) since different types of traffic would be
T = 20 0.0055 0.0099 1.2 x 107° 1.9 x 107° h diff fl | h distributi
T — 100 | 00053 0.0081 12%10-5  16x10-5 expected to have different flow length distributions.
QUAINT data
Simple —0.038 0.067 —0.0087 0.0087 Acknowledgments
T=1 —0.029 0.065 —5.1 % 105*5 7.1 % 10*?
T =20 —0.027 0.061 —5 x 10~ 6.6 X 10~ H H
T =100 | —oo2 0 080 A 105 e x10-5 This work was funded under the MASTS project,
_ NLANR data EPSRC grants GR/T10503/01, GR/T10510/03, and
Simple —0.0076 0.0079 —0.00037 0.00037
T=1 —0.0073 0.0077 9.5 x 10~ 7 2.3 x 1075 GR/T10527/01
T =20 —0.0073 0.0077 1.1 x 1076 2.2 x107°
T =100 | —0.0073 0.0077 1.2 x 1076 2.2 x 107° REFERENCES
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