
A Survey of Practical Software Adaptation Techniques

Stephen Kell

(Computer Laboratory,

University of Cambridge, United Kingdom

Stephen.Kell@cl.cam.ac.uk)

Abstract: Software adaptation techniques appear in many disparate areas of research
literature, and under many guises. This paper enables a clear and uniform understand-
ing of the related research, in three ways. Firstly, it surveys a broad range of relevant
research, describing and contrasting the approaches of each using a uniform termino-
logical and conceptual vocabulary. Secondly, it identifies and discusses three commonly
advocated principles within this work: component models, first-class connection and
loose coupling. Thirdly, it identifies and compares the various modularisation strategies
employed by the surveyed work.

Key Words: adaptation, coupling, reuse, communication, coordination, software com-
position, modularity, software architecture, software measurement

Category: D.2.6, D.2.7, D.2.11, D.2.12, D.2.13

1 Introduction

Like all systems, software systems consist of multiple interacting parts. As these

systems become more complex, and the space of applications becomes ever larger,

it becomes more economical to develop them by composition, extension and more

generally re-use rather than from scratch. These goals, in turn, demand under-

standing of the individual system parts: how they communicate dynamically in

a running system, and how we describe them statically as executable code.

Widespread re-use of software poses two specific difficulties: designing a sys-

tem in pieces such that each might individually be re-used (which I will call

modularisation), and composing a required system out of whatever pieces are

already available for re-use (which I will call mismatch). The latter is a com-

mon problem, since units of software developed independently are unlikely to be

directly compatible. Rather, some additional work is necessary to join them to-

gether appropriately, overcoming the mismatch—this is adaptation. Meanwhile,

the desire to specify adaptation in a different style, notation or language from

other code means that much adaptation work also proposes a novel approach,

or novel criteria, for modularisation.

There has been much research aimed at tackling these problems, within many

communities and under a large number of headings. These headings include

software composition, adaptation, coordination, software architecture, module

systems, interconnection languages, linking languages, and more. Unfortunately,

the large number of sub-areas into which this related work is divided makes it

difficult to acquire a uniform understanding of the whole. I hope to facilitate

better understanding through the following contributions.

– I survey several research fields related to adaptation, describing and con-

trasting their approaches using a consistent conceptual and terminological

vocabulary.

– I identify three broad themes advocated by much of the existing surveyed

work: explicit connection, component models and loose coupling. For each,

I summarise and discuss the various arguments found in the literature, ex-

posing subtle differences in motivation, application and terminology.

– I identify the class of configuration languages running through the litera-

ture, discussing several different modularisation strategies advocated by the

surveyed work and showing how they overlap.

I begin by surveying several existing research areas and their contribution to

adaptation.

2 Guises of adaptation

One difficulty faced by adaptation researchers is that relevant work is spread

over many fields and communities. Much relevant work does not describe itself

as “adaptation”. In this section, I make a non-exhaustive survey across several

research fields, using a uniform vocabulary to describe and contrast the work

in each. My emphasis will be on existing practical work relating directly to

adaptation.

2.1 Definitions and exclusions

I define adaptation as any process which modifies or extends the implementation

or behaviour of a subsystem to enable or improve its interactions, or synony-

mously, its communication with the surrounding parts of the system (which

we call its environment). Note that “communication” here includes not only dy-

namic interactions at run-time, but also interactions occurring statically, perhaps

in the compiler [see 1].

From this definition, we may distinguish multiple kinds of adaptation. The

first is adaptation done for functionality and correctness—the ability for two

subsystems to exchange information in a way which preserves meaning. This is

the kind of adaptation which relates most fundamentally to re-use.

[1] This may seem strange, but consider that we are concerned only with the input
artifacts to the composition process, and not whether our tools happen to precompute
certain interactions—which is highly dependent on implementation. I simply state this
for now, but will return to this interpretation of communication in [Section 3.3].

A second kind is adaptation for the sake of extrafunctional properties, such

as performance, reliability, security, quality of service and so on. This is a much

harder problem, in that components lacking these innate qualities are more likely

to require deeper changes. However, I will survey some especially invasive and

low-level techniques that are capable of performing such adaptations.

In a closed system, “adaptation” or “adaptive” can refer to the ability of a

system to configure itself in response to changing network conditions, resource

constraints and the like. This is a form of adaptation for the sake of optimisa-

tion. Since they do not involve novel compositions of code, but rather run-time

selection among a closed set of modules, I will refer to this kind of adaptation

as “dynamic reconfiguration”, and subsequently use “adaptation” to refer only

to the other kinds. I do not cover any work on dynamic reconfiguration in this

paper.

Finally, we note that in an open system with a dynamically changing compo-

nent population, such as a mobile environment, a particular adaptation problem

arises: as devices encounter other devices, it is desirable to automatically and

dynamically construct an adaptor which will allow them to successfully com-

municate. Several of the synthesis techniques surveyed may serve as a basis for

this; however, they must be augmented by some further automatic techniques,

such as ontology matching, in order to bootstrap meaningful communication.

These latter techniques are outside the scope of this survey, which covers user-

or developer-guided techniques only.

2.2 Taxonomy

There are several dimensions along which different adaptation techniques may be

clearly distinguished. In order to compare and contrast adaptation techniques,

I introduce a few simple taxonomies over the various properties of adaptation

techniques.

Input representations What representations of software are targeted by the

technique? This is typically either source code, perhaps restricted to par-

ticular languages, or else binaries of particular formats. Some techniques

require multiple kinds of input, each in a language with some particular

role or expressive bias. I therefore split language roles into the following

notation classes : implementation, the typical role of conventional program-

ming languages; specification, meaning high-level domain-specific languages

for describing some intent or constraint (typically used as input to synthe-

sis algorithms); and configuration, description of the structure and nature

of relationships among multiple components. Examples of configuration lan-

guages include all architecture description languages and linking languages;

strictly speaking, almost all implementation languages may be included, but

I only use “configuration languages” to refer to those which are not designed

for use also as implementation languages. Finally, certain metadata may also

be part of a technique’s input notation, particularly when targeting binary

representations—this is described in the next paragraph.

Domains of adaptation Some techniques let us arbitrarily alter the imple-

mentation of existing components. Most, however, are constrained to one or

more particular domains, which constrain the kinds of mismatches that it

can resolve. For example, a technique might let us make changes or additions

only around the interfaces to components. I distinguish four domains of adap-

tation: implementation, the most general, which allows arbitrary changes

to arbitrary pieces of implementation; structure, which concerns changes

only to the wiring or referential topology of the system; messages, which

concerns the rewriting or replacement of data items sent between commu-

nicating components (whether these data items be procedure invocations,

database queries, packets in a network or files on disk, etc.); timing or se-

quencing which concerns the ordering and timing constraints over messages;

and metadata, which refers to descriptive elements such as typing metadata

of components. (The latter do not directly concern the functionality of a

component, but may need to be adapted to enable composition in the pres-

ence of type-checkers, signature verifiers or other extra-functional checks.)

Modes of adaptation Given our split of input representations, we can also

describe what kind of process yields or achieves the adaptation, and usually

how adaptations are represented. The process of adaptation is always either

an edit, meaning an invasive change to one or more of the input notations, or

else involves some separate entity which we call an adaptor. Adaptors may be

introduced by definition from scratch in some notation (which may or may

not be one of the input notations), by selection from a set of known adaptors,

or by synthesis from a description in some specification notation. Adaptors

themselves are always classifiable as either deltas or containers with respect

to one or more input components. The distinction here is that containers

are opaque and contain complete specifications of their own interfaces, as in

the adaptor pattern (see [Section 2.3]), whereas deltas are transparent and

expose the underlying original components’ interfaces wherever these are

not explicitly modified, just as with implementation inheritance or mixins

[Bracha and Cook 1990] in OO languages. For deltas and containers it is

also useful to distinguish whether it can use knowledge of the entirety of

the input notation, in which case it is called white-box, or only on some

interface-like abstraction of the input, when it is black-box [see 2]. Deltas

[2] I also use the terms invasive and non-invasive synonymously with white-box and
black-box respectively. Note that I do not distinguish whether or not the particular im-

Figure 1: The space of modes of adaptation

and containers often target exactly one component, but may target more.

An intermediary is a black-box delta which joins two or more components.

A wrapper is a black-box container applying to one or more components.

[Fig. 1] summarises the space of these modes of adaptation.

It is also useful to illustrate these taxonomies with concrete examples of what

the technique supports. For this reason, I will also highlight what concrete rep-

resentation of adaptation logic a technique supports (a refinement of its domains

of adaptation), and what concrete range of primitive adaptations is provided (a

refinement of the modes of adaptation).

Finally, some derived properties are of interest. Most adaptation techniques

are a manual process, but we consider those involving synthesis to be partly

automatic. Note that even these techniques rely on some kind of initial (hand-

written) specification. Adaptations can be supplied at various times: perhaps

ahead-of-time, at compile time at load time, or at run time. The adaptation

might be applied straight away, meaning eagerly, or might be delayed for a while

for optimisation reasons. Finally, we have already mentioned invasiveness, but

must be careful to distinguish three separate issues: edits, which are adaptations

made by changing input notation; adaptors described invasively, i.e. in terms

of the internal details within an input notation, but modularised separately;

and adaptors implemented invasively, perhaps for efficiency, where these may

or may not be defined with reference to internal component details (consider

plementation of a delta or container examines the internals of the target components—
only whether their definition may logically depend upon those internals. Efficiency
concerns, for example, might motivate the use of invasive “white-box” program trans-
formation techniques to implement what is logically a black-box container.

using a load-time optimiser after performing otherwise non-invasive black-box

adaptation).

I begin with brief summaries of relevant conventional programming practice,

and scripting techniques, continuing into work which describes itself using the

term “adaptation”, and then beyond into other relevant fields. Throughout, I

have grouped work according to the words and terminology by which that work

describes itself, since this correlates reasonably with the research communities

from which each piece of work originates, while avoiding the inevitable sub-

jectivity of attempting to judge conceptual similarity. Where particularly clear

conceptual similarities exist, I provide cross-references. In addition to the text,

a summary table is provided at the end of the survey.

2.3 Conventional programming practice

The simplest and best-understood way to adapt a piece of software is to copy its

source code and make the necessary changes. This practice is commonplace, and

for some kinds of software, notably device drivers, is often anecdotally reported

as the dominant approach. Its disadvantages are many and obvious: it is labour-

intensive, error-prone, requires a high degree of program comprehension by the

adapting programmer, is only applicable when source code is available, and yields

a forked and non-reusable adapted component which must be redeployed in its

entirety. This unsatisfactory technique is the baseline upon which all techniques

presented in this survey are trying to improve.

Adaptation is familiar to programmers in conventional object-oriented lan-

guages thanks to the “adaptor design pattern” described by [Gamma et al. 1995].

This itself was proposed as a more flexible alternative to implementation inher-

itance: while the latter effectively defines a delta over the overridable methods

of a statically chosen superclass definition, the former provides a wrapper over

a dynamically chosen target object. The “adaptor pattern” is simply the doc-

umented practice where an object with one interface is rendered composable

with clients of a different second interface, by interposition of an adaptor object

which consumes the first interface and exposes the second. It is, of course, a

useful programming pattern which has been employed for decades, but in this

survey we are interested in techniques for specifying and performing adaptation

more effectively than these conventional approaches.

It is also worth noting that in conventional software development terminol-

ogy, “porting” (e.g. of programs to new run-time environments, or features to

new codebases) is synonymous with our definition of adaptation. It is typically

performed by one or both of the above two techniques: wholesale edit-based mod-

ification of all environment-specific code, or creation of a “compatibility layer”

adaptor.

Adaptors also appear in the world of distributed middleware as a general-

purpose point of interposition. CORBA, a distributed object middleware stan-

dard, features both a “basic object adaptor” and later a “portable object adap-

tor”. These are server-side objects responsible for dispatching incoming requests

to other server-side objects, which may or may not implement the interface be-

ing consumed by the client [see Pilhofer 1999]. Again, this provides a highly

general interposition mechanism but does not contribute any special techniques

for performing adaptation.

2.4 Scripting and glue

There is a common distinction in programming practice between “scripting” lan-

guages and other “systems” or “component” programming languages. Although

expounded in comparatively recent literature, notably by [Ousterhout 1998], the

distinction goes back far into history: at least to the 1970s and the Unix shell,

and perhaps further still. Certain attributes are usually associated with script-

ing languages: lack of static type-checking, brevity, expressivity, and support

for dynamic code evaluation. The key underlying characteristic is the trade-off

of safety and performance for brevity and dynamism [see 3]. The combination

of dynamism and brevity makes it quicker to alter scripts—i.e. to perform edit-

based source-level adaptation on script components—than to modify components

written in conventional languages.

The composition language Piccola [see Achermann and Nierstrasz 2001] is

founded on this latter observation: its mantra “applications = components +

scripts” intends that scripts should be used for parts which are less stable,

since they are likely to be more convenient to modify invasively [see Nierstrasz

and Achermann 2000]. Piccola is a scripting language with formal semantics

based on an extended pi-calculus. It allows the definition of customised com-

positional styles, each with their own rules and composition operators. These

operators may be tailored to particular domains, such as GUI component com-

position, Unix-style pipelines, or various object-oriented composition techniques.

Although adaptors might be conveniently integrated into a compositional style

as special composition operators, Piccola provides no special support for imple-

menting adaptors themselves.

As well as being more amenable to edit-based adaptation, scripting languages

often have special features for adapting the components they script. Mainstream

[3] Ousterhout claims that typed interfaces “prevent other types of objects from being
used . . . even where that would be useful”. Perhaps so, but a better solution is to
improve type systems rather than abandon them. Brevity of scripting languages comes
in part from eliminating type annotations; a better trade-off might be to add type
inference. The “uniform representation” offered by text-based data interchange is a
serious hindrance to re-use, since different developers may devise countless incompatible
textual encodings for their data, entailing the use of error-prone techniques such as
regular expression-based rewriting.

scripting languages such as Perl and Python have extensive support for regular

expression-based string matching and rewriting. This is useful for adapting data

between different encoding conventions; it is also error-prone. These languages

also support invocation of external code using a wide variety of communication

mechanisms: calling other scripts, accessing the file system or network, invoking

external programs, manipulating environment variables, and so on. This “Swiss

army knife” philosophy makes them convenient for glue code which integrates

components that are heterogeneous with respect to their chosen communication

mechanisms.

2.5 Adaptation by name

Adaptation of procedural interfaces was first directly addressed by the Nimble

system [see Purtilo and Atlee 1991]. It provides a new pattern-based language

for rewriting the arguments and return values of procedure call. It can reorder,

duplicate or omit arguments, or supplement them based on default values, and

can also call on external functions where necessary to convert representations

and types. However, it lacks the statefulness necessary to express adaptations

over sequences of invocations.

[Yellin and Strom 1997] address this shortfall in their work on finite-state

protocol adaptation. This work brings a semi-automatic approach in which each

component’s source-code is annotated with a finite-state protocol description,

and a complete adaptor is synthesised from a high-level partial specification.

[Passerone et al. 2002] add a game-theoretic interpretation of the adaptor syn-

thesis algorithm, showing that the process of synthesis is equivalent to that of

testing for synthesisability. [Bracciali et al. 2005] replace finite-state automata

with a replication-free pi calculus. This remains finite-state, but introduces the

channel abstraction, hence capturing the dynamic evolution of communication

structure.

Binary component adaptation for Java (BCA) [see Keller and Holzle 1998]

implements a load-time adaptation for Java binaries. Adaptations to a class

definition, such as member renamings and method additions, are specified in a

“delta file” using a special language syntactically resembling Java. However, the

range of adaptations available is narrow, being essentially limited to addition

of new code, renaming of symbols, and changes to typing metadata (such as

effectively adding an “implements” clause). Later work under the heading of

“program transformation” (see [Section 2.8]) extends these abilities.

AxML [see Haack et al. 2002] supports adaptation over a purely functional

subset of Standard ML. Programmers annotate candidate adaptation code with

specification axioms, built from arbitrary predicates whose meaning is opaque to

the tool. The axioms are expressed in propositional logic extended with univer-

sal quantification. Adaptation is triggered by defining data structures or func-

tors as “synthesis requests” which describe, using the same vocabulary of predi-

cates, the signature type and specification of the required code. The adaptation

is performed by source transformation, at compile time. Since it operates on

purely functional code, the domain of AxML is effectively the same message-

based transformations as with Nimble, but with added support for higher-order

features (such as adaptation between curried and uncurried versions of the same

function). This range of primitives suffices because the target code contains no

explicit state or communication, unlike procedural code.

The work of [Rine et al. 1999] is similar to Nimble, but includes a more

heterogeneous notion of component. Adaptors in their system are the default,

rather than a special case: each component is accessed only through an adaptor.

Adaptor logic is specified in a configuration file which can specify signature-

level remappings. Unlike Nimble, procedural requests and responses are fully

separated into effectively an asynchronous event-based model—the return path

of a method call is modelled with a separate signature invoked by the callee,

and may be separately adapted. Adaptors also control the implementation of

event-based communication: they are responsible for constructing the system-

level communication paths between each other at initialisation time. Auxiliary

information in the configuration file can specify details of this (e.g. whether to

use procedures, pipes or message queues).

LayOM [see Bosch 1999] is an implementation of a “layered object model”

for C++, based on a concept of adaptation called “superimposition”. Adapta-

tion primitives are captured as operators known as superimposing entities, each

defining a “layer” or black-box delta over the underlying object. Adaptations

are implemented as deltas, and include member renaming, interface restriction,

selective delegation (of field or method accesses), run-time configurable method

dispatch, and interposition on field and method accesses. It improves on the ex-

pressivity of systems such as Nimble by separating out the generic nature of an

adaptation from its particular uses in a given composition: existing operators

can be specialised or combined by the user into new ones. New operators may

also be defined from scratch, as a preprocessing stage for C++: the LayOM pre-

processor can be extended with new syntax for the new superimposing entities,

described by new lexing, parsing and code generation rules.

FLAME [see Eisenbach et al. 2007] is a tool for “flexible dynamic linking”,

targetting the Microsoft .NET Common Language Runtime. It performs a very

restricted form of adaptation, affecting only system structure [see 4]. Bytecode

for the CLR embeds not only the names of external classes, but also often em-

[4] Curiously, this paper also introduces a spurious distinction between “software adap-
tation” and “software adaption”. The alleged distinction can be traced to a typograph-
ical error in their citation of [Bracciali et al. 2005]. The latter paper’s correct title ac-
tually uses the typical word, “adaptation”; “adaption” is a little-used term which has,
to this author’s knowledge, never been explicitly differentiated from “adaptation” in
any other work.

beds names of component implementations or “assemblies”. The latter kind are

not merely type names or package names (such as in Java), but are specific

to individual implementations of those packages—for example, the name mscor-

lib is embedded by the Microsoft compiler into bytecode which consumes the

CLR standard library. On other implementations of .NET, the library will have

a different name, such as monolib [see 5]. Mismatches of these names prevent

linking. FLAME modifies the compiler to embed metadata into the generated

code, specifying which class or assembly names are to be treated as substitutable

metavariables. Since the .NET runtime supports versioned libraries, FLAME’s

modified linker extends the existing version substitution support in the .NET

configuration file format, so that it can also specify class- and assembly-name

substitutions. The resulting adaptation capabilities are a proper subset of those

of BCA.

Concept maps, a feature in the forthcoming revision of the C++ language,

have been demonstrated [see Järvi et al. 2007] to resolve mismatch of data struc-

tures across the interfaces of generic libraries (i.e. libraries for template metapro-

gramming). Concepts provide a compile-time analogue of run-time subtype poly-

morphism: a concept is a constraint on a type variable, say T, as might be used

in a template definition of the form template <typename T> A concept map

is a declaration that a particular type satisfies a particular concept. If existing

code for the type does not already satisfy the concept, a concept map may con-

tain auxiliary code to specify how that concept may be satisfied using that type.

To support run-time dispatching, for cases when the type used to instantiate

the generic library interfaces is not known when compiling the client, concept

maps may be used to adapt between early-bound nonmember functions and late-

bound member functions. Since templates are elaborated statically, run-time

performance is mostly identical to hand-crafted implementations. Local static

variables can be used to implement protocol (stateful) adaptors within concept

maps, using regular C++ code. In general, concept maps can be thought of as

a syntactically convenient “adaptor pattern” analogue, applying to meta-level

concepts rather than conventional interface types.

2.6 Linking and interconnection languages

Many researchers have proposed languages which give explicit control over the

relationships between modules in a large system. These languages are usually

called “module interconnection languages” or “linking languages”. Often they

are designed to be useful as high-level structural descriptions of a large system de-

veloped, frequently also embodying a novel development method or information-

hiding technique [see Parnas 1972]. The first example of such a language was

[5] This is the name used in the Mono implementation; see http://www.mono-project.
com/.

probably MIL 75 [see DeRemer and Kron 1975]. Clearly these descriptions are a

convenient domain to adapt the structure of a system, as compared with manu-

ally renaming symbols within source code or binaries.

The Knit linking language [see Reid et al. 2000] confers full and explicit

control over the linkage relation over a set of object files, by rewriting symbol

names at link-time from a high-level description of object file instances and their

intended linkage. It also supports hierarchical information hiding, and supports

cyclical inter-module reference structures. While operating at the object code

level, it optionally transforms the originating C source code for whole-program

optimisation purposes. Jiazzi [see McDirmid et al. 2001] applies the same model

and linking capabilities to the more complex case of Java linkage.

As already described, renaming is also the technique used by Flexible Dy-

namic Linking (see [Section 2.5]). DITools [see Serra et al. 2000] provides a dy-

namic analogue to Knit, supporting load- and run-time rebinding of dynamically-

linked symbol references, as described in a configuration file. (Much as the adap-

tor pattern is a more flexible and more dynamic alternative to implementa-

tion inheritance, DITools offers such an alternative to such mechanisms as the

LD PRELOAD supported by Unix dynamic linkers.)

A surprisingly similar technique is “dependency injection” [see Fowler 2004].

This is implemented by certain “containers”, such as Spring [see 6] or Castle [see

7], targetting enterprise application development for the Java or Microsoft .NET

runtimes. Containers are run-time environments supporting an event-driven or

“inversion of control” programming style. User code is purely reactive, and the

proactive part of a program (e.g. an event loop) is provided by the container [see

8]. Dependency injection is an additional technique which eliminates the need for

explicit references to implementation classes. Rather than explicitly instantiating

classes in order to consume their services, the client programmer simply declares

a field or constructor through which an object fulfilling the dependency can be

passed at run-time. The fulfilment of these dependencies, including the choice

of implementation classes, is described separately in a configuration file. This

file is interpreted at load-time by the container. Like a linking language, the

configuration language can be used statically to capture and alter the wiring

between objects.

The first linking technology with extensive adaptation support was the com-

bination of the OMOS linker and the Jigsaw language [see Bracha et al. 1993].

OMOS is a long-running linking service, while Jigsaw is a language of transfor-

mations over object files. The latter is founded on Seeley’s earlier insight that

module instances (such as instances of object files) and objects (as in object-

[6] http://www.springframework.org/
[7] http://www.castleproject.org/
[8] This separation between proactive and non-proactive is the same as that suggested
by service-oriented computing (see [Section 2.11]).

oriented programming) may be unified [see Seeley 1990]. OMOS may be invoked

not only on concrete modules, but also on “meta-object” descriptions, specified

as transformations of existing concrete objects. Jigsaw defines an abstract data

types for objects, including many operations used to transform and combine

objects: symbol hiding, renaming, rebinding and copying, merging two modules,

and others. These primitives are shown to support derived constructs such as

functional interposition, although there is no support for modularising these de-

rived constructs into more abstract adaptation functions (cf. LayOM), nor for

finer-grained transformations (e.g. at argument level, cf. Nimble and the like).

2.7 Aspects, subjects and decentralised modularisation

Several technologies provide alternative ways to modularise large codebases, and

in so doing, provide a domain which expresses some kinds of adaptation. Perhaps

the most longstanding scheme used to modularise widely-scattered changes to

codebases is the patch, as supported by Unix’s patch command. Coccinelle [see

Padioleau et al. 2008] generalises from this to provide a “semantic patch”, with

the aim of reliably and reusably capturing the semantic intent of a patch. Its

target domain is the patchsets arising from evolution in large codebases, such

as the Linux kernel, where development is continuous and decentralised. The

system’s semantic patch language SmPL uses pattern-matching to avoid manual

specification of each source code location requiring modifications. Patches are

merged with the main-line code ahead-of-time, as a manual process separate

from compilation or loading.

Aspect-oriented programming is a relatively new and popular modularisation

technique. Aspects in their most general form, as described by [Filman and Fried-

man 2000], are modules expressing modifications or additions to existing code

in a way which supports quantification and obliviousness : points of application

are identified by some logical expression quantifying over the existing codebase,

and the existing code’s developer may remain oblivious to these changes. Typ-

ically aspects are advocated as a convenient way of modularising cross-cutting

concerns within a single project [see Kiczales et al. 1997], but the obliviousness

property makes them useful for specifying adaptation.

AspectJ [see Kiczales et al. 2001] is the best-known implementation of as-

pects; it operates on source-level representations of Java programs. Points in a

program’s execution where control is transferred to aspect code are identified

by quantifying expressions called pointcuts. This quantification is dynamic, in

that it may be predicated on the program’s execution context (e.g. on the class

of the current method context’s object). Pointcuts frequently embed particular

class and method names, so are usually highly specific to a particular target

codebase.

Conceptually similar to aspect-orientation is the idea of “subject-oriented

programming” introduced by [Harrison and Ossher 1993]. Its goal is to enable

the construction of new applications out of separate codebases, where this sepa-

ration is motivated either by encapsulation concerns or by independent develop-

ment. Codebases, or “subjects”, share a common domain, but concern partially

differing properties, operations and taxonomies (i.e. class hierarchy structures)

of that domain’s objects. The approach separates the identity of an object from

the multiple collections of state and code which realise it concretely. Each sub-

ject may specify different instance variables and different method suites for a

particular object, and arrange objects in a different class hierarchy. Composition

rules are used to specify correspondences between the subjects’ class hierarchies,

instance variables, and dispatch strategies for method calls (since the latter may

trigger execution of multiple subjects’ code). [Ossher et al. 1995] proposes rules

composed of essentially the same primitives as Jigsaw’s [see Bracha et al. 1993],

but allowing specification in the form of general rules (quantifying over all sub-

jects, or classes, methods etc.) supplemented with exceptions for special cases.

2.8 Program transformation

Several projects have developed systems for transformation of Java programs.

These are of similar spirit both to BCA (Binary Component Adaptation; see [Sec-

tion 2.5]) and aspect-oriented Java (see [Section 2.7]), but support more powerful

white-box adaptors.

JOIE [see Cohen et al. 1998] is a load-time transformation system. In it,

“transformers” are Java-language components which inspect and modify existing

class definitions using a reflection-like API. Transformers can be specified highly

invasively, and are specified essentially as programs operating over bytecode

(down to the level of instruction mnemonics). Unlike with AspectJ and other

ahead-of-time techniques, there is no pattern language for identifying modifica-

tion sites; regular Java-language iteration and if–else tests are required. There

is a strong resemblance between JOIE transformers and COMPOST metapro-

grams (see [Section 3.2]). However, JOIE’s level of abstraction is lower, being at

the binary bytecode level rather than the source level.

Javassist [see Chiba 2000] similarly introduces an expanded reflection API

to Java, designed as a general-purpose interface upon which to write tools such

as BCA-like adaptation primitives, AspectJ-like pointcut or “hook”-based in-

terposition rules, and load-time stub generation for remote method invocation

systems. Unlike JOIE, its interface does not descend to the instruction level;

rather, it provides only higher-level primitives, such as method wrapping and

field access redirection.

JMangler [see Kniesel et al. 2001] is yet another project with similar goals.

Its expressivity lies between those of JOIE and Javassist: unlike Javassist, it ex-

presses all transformations which preserve binary compatibility of Java bytecode,

whereas unlike JOIE, it rules out transformations which break compatibility. It

also addresses the unanticipated combination of multiple independently devel-

oped transformers, where a change specified by one transformer may trigger

changes in others. This is done by introducing a distinction between interface

and code transformations: the former are shown to yield an order-independent

fixed point when applied iteratively, which can be done mechanically, whereas

the latter’s fixed points are order-dependent and therefore must be combined

manually.

2.9 Software connectors

Architecture description languages (ADLs), much like linking languages, are de-

signed to describe, explain and reason about large-scale structural properties of

systems. They also promote re-use of high-level designs, and to enable checking

and traceability between implementation and design [see Garlan and Shaw 1994].

As such, they not only offer the same structural view as that of linking languages,

but have, in a few cases, introduced other features useful for adaptation—mostly

concerning the notion of “connectors”. These may be thought of as re-usable ab-

stractions concerning how two modules might be connected—in other words,

how they communicate. Traditional programming languages do not cleanly cap-

ture such abstractions, and implementation of communication mechanisms is

typically spread across program modules and in tool-generated code [see Shaw

1994].

UniCon [see Shaw et al. 1995] was among the first architecture description

languages to feature connectors [see 9]. UniCon resembles a module intercon-

nection language, but introduces a distinction between components (which are

C source files in the implementation presented) and connectors. Connectors are

implementations of communication abstractions, such as local or remote pro-

cedure calls, pipes, real-time resource schedulers and shared variables. Compo-

nents’ binding points, or “players”, are wired to the connectors’ binding points,

or “roles”. The UniCon compiler uses built-in knowledge of each connector type

to build the complete system, first generating intermediate artifacts (such as

RPC stubs or makefiles) and later invoking a conventional build system. The

system can be extended with new connectors through a slightly complex process

which generates a new compiler [see Zelesnik 2000]. The ability to mix-and-

match these communication implementations gives it a very limited additional

domain of adaptation, above the structural domain offered by linking languages.

[9] The other, Wright [see Allen and Garlan 1997], was a complementary language
developed to demonstrate a formal semantics for software connectors. Since it was
of a less practical bias than UniCon, and had no special features directly supporting
adaptation, I do not discuss it here.

COMPOST [see Assmann et al. 2000] explicitly combines adaptation tech-

niques with connectors. Connectors in this system are defined by metaprograms

which not only generate the necessary communicational code, but can also refac-

tor or “rebind” the source code of existing components, written in Java or C++.

First, existing code using method calls is rewritten into a generic “abstract”

model of communication based on object exchange. Secondly, this abstract code

is rewritten to use a new concrete communication mechanism, weaving in the

necessary glue code. These rewriting procedures are expressed as metaprograms

over Java or C++ abstract syntax—they are white-box [see 10] deltas over the

input implementation.

The term “connectors” has been re-used by the coordination community.

I will discuss this work in [Section 2.12], and contrast the two communities’

interpretations of the idea in [Section 3.2].

2.10 Packaging

The term “packaging” was used by [Callahan 1993] to refer to the “details of how

software configurations are ‘packaged’ into executables”. These details include

both programming-level details—data encodings, control flow patterns and APIs

required by communication mechanisms—and lower-level details (such as make

rules) for building binaries compatible with loading and linking mechanisms.

Packaging systems may support whole-system description, like ADLs, or else

only single-component packaging, but in either case clearly provide adaptation

techniques.

Callahan’s Polygen system [see Callahan and Purtilo 1991] accepts declar-

ative descriptions of modules in several procedural languages, together with a

composite system description, and uses a “rule base” to generate a makefile

which can construct a complete system. The rule base contains knowledge about

different procedural packaging styles—such as rules for invoking RPC stub gen-

erators or language-specific wrapper generators. Like the later UniCon, discussed

in [Section 3.2], the system description can select different among different im-

plementations of various communication abstractions, and new implementations

can be defined (using rules written in Prolog). However, Polygen is tied to a pro-

cedural communication abstraction, and therefore can’t adapt between different

styles such as event-, stream- or dataflow-based communication.

Packaging has subsequently received attention from the software architec-

ture community. As described in [Section 2.9], UniCon’s notion of connectors,

together with its ability to generate system implementations, give it essentially

the same capabilities as Polygen. Later work considers the orthogonalisation of

packaging from the implementation of functionality [see Shaw 1995]. DeLine’s

[10] . . . or grey-box, according to the authors’ definitions.

system Flexible Packaging [see DeLine 2001], based on UniCon, provides support

for composing more heterogeneous communication styles at a packaged compo-

nent’s interface, at the cost of requiring that a raw component (or “ware”) is

programmed to a channel abstraction. UniCon is used to describe packaging re-

quirements, with extensions to describe details such as syntax of pipeline data.

2.11 Orchestration and service-oriented architectures

Several technologies with relevance to adaptation have emerged from the World-

Wide Web. I will discuss three: orchestration, XML-based data transformation

languages, and service-oriented architectures.

The word “orchestration” often refers to scripting of network-enabled ser-

vices, most typically Web Services. Owing to the widely distributed nature of

such services, orchestration languages such as BPEL [see Peltz 2003] and Orc

[see Misra and Cook 2006] provide special features relating to concurrency, la-

tency and failure. For example, Orc provides a parallel composition operator,

support for pipeline-like streamed continuous communication, and both pruning

(as a feature) and timeout (as an idiomatic derived form) for late-responding

services. Orchestration may therefore be seen as scripting tailored to wide-area

distributed execution [see 11].

As with scripting, orchestration’s main contribution to adaptation is its pro-

vision of a domain, separate from component code, which centralises integration

details and is convenient for adaptation by source-level edits. Orchestration lan-

guages might also usefully integrate adaptation primitives, such as analogues of

the regex-based rewriting seen in scripting languages. To this author’s knowl-

edge, no current orchestration languages have these features. However, exactly

this kind of rewriting function is provided by technologies such as XSLT [see 12]

and XQuery [see 13]. Both were developed to operate on XML documents: the

former as a customisable specification language for XML-to-HTML prettyprint-

ers, and latter as a query language. Both have grown into Turing-complete lan-

guages [see Kepser 2004] with useful adaptation facilities such as projection,

renaming and (in XSLT’s case) pattern-based rewriting of tree structures.

Service-oriented architectures are software architectures which decompose a

system into passive “services” (such as web services) and proactive components

(as might be written in an orchestration language). It is generally agreed that

service-oriented architectures aim to integrate separately developed applications,

without rewriting them from scratch [see Channabasavaiah et al. 2003; Pisello

[11] Indeed, there are many similarities between orchestration and recognised scripting
languages. For example, the Unix shell has special features for parallel and redundant
execution in its & and || operators.
[12] http://www.w3.org/TR/xslt
[13] http://www.w3.org/TR/xquery/

2006]. Two other properties of service-oriented architectures are commonly cited:

service interfaces are constrained to be “uniform” in some sense, and requests

to a service (e.g. procedure calls) are encoded in a self-describing extensible

form [see He 2003]. “Loose coupling” is a commonly claimed consequence of this

design [see Papazoglou 2003; He 2003]. Despite these goals and claims, no specific

adaptation techniques have emerged from service-oriented technology. Rather,

the migration process—of remodularising existing systems into reactive re-usable

services and proactive, process-specific orchestrations—is implicitly to be done

manually and conventionally. I will return to the idea of “loose coupling”, and

the uniform interfaces technique, in [Section 3.3].

Orchestration is often seen as a special case of coordination. The next section

will discuss coordination more generally.

2.12 Coordination

Coordination is notoriously difficult to define, but might be described as the

composition of components under a special awareness of parallel execution, syn-

chronisation and scheduling constraints. It has been described as “managing

dependencies between activities” (cited by [Papadopoulos and Arbab 1998]), by

[Gelernter and Carriero 1992] as “gluing together of active pieces”, and by [Weg-

ner 1996] as “constrained interaction” . The word “interaction” is often used to

describe the domain of coordination, and I consider this word technically syn-

onymous with “communication”.

Many coordination languages, such as Linda [see Carriero and Gelernter 1989]

and its many variants [see Papadopoulos and Arbab 1998], are simply special

communication interfaces embedded into conventional programming languages.

Linda provides a simple set of input and output primitives which manipulate tu-

ples in a shared memory abstraction called a tuple space. Ongoing computations

also appear in this space—this gives orthogonal treatment of already-computed

and to-be-computed tuples, and hides synchronisation from the programmer.

However, Linda is not convenient as an adaptation domain. In particular, its

nondeterministic input semantics make precise interposition impractical.

Exogenous coordination [see Arbab 1998] techniques, however, are useful for

adaptation. Exogenously coordinated components never interact directly, but

instead exchange opaque messages with a coordination engine, which is respon-

sible for routing, synchronisation and scheduling concerns. In Reo [see Arbab

and Mavaddat 2002], the behaviour of this engine is specified as a network of

channel primitives with specified synchronisation and data-flow behaviours. Not

only do the connectors express the linkage relation between components, but

they enable changes to the concurrent execution, synchronisation and schedul-

ing behaviour of the system. For example, the network of connectors may be

modified, independently of components, to prevent deadlock or improve par-

allelism. This permits component aggregation, interposition and also protocol

adaptations. However, apart from filtering, Reo’s coordinators do not inspect or

modify the messages themselves, so any adaptation of messages must be done

in a manner opaque to Reo, by adding or changing components. (Combining

Reo with aspect-oriented techniques has been proposed by [Eterovic et al. 2004],

using pointcuts to exogenously instrument components with channel endpoint

logic; one could also add message adaptation logic in this way.)

2.13 Systems performing specialised adaptation

The practice of software adaptation far predates research into general or prin-

cipled approaches. Many specialised adaptation techniques have been developed

to answer particular application needs. Each of the following examples is usually

considered in isolation as its own technique, but I show that each is simply a

particular kind of adaptation or adaptor.

Virtual machine monitors (VMMs) are one kind of special-purpose adap-

tor [see 14]. Operating system kernel binaries are written to execute in the priv-

ileged (kernel) mode of the underlying instruction set architecture (ISA). Inter-

posing a virtual machine monitor requires the kernel to run in the unprivileged

mode (user mode), which provides a somewhat different interface, so the VMM

must perform adapt between these. Some ISAs permit black-box “unmodified”

virtualisation, since they generate traps when privileged instructions are exe-

cuted by the virtual machine. Other ISAs, including Intel’s x86, preclude this,

since certain instructions with differing user-mode semantics do not generate

traps [see 15]. Two techniques addressing this are binary rewriting [see Devine

et al. 2002], as adopted by VMware, and paravirtualisation as adopted by Xen

[see Barham et al. 2003]. The former rewrites binaries at run-time to replace

the problematic instruction sequences with calls into the VMM; the latter uses

ahead-of-time manual source-code edits so that the resulting binary contains no

such sequences. While being merely manually-coded adaptors, rather than tech-

niques for adaptation, VMMs have been used as an interposition mechanism to

enable several related adaptations, e.g. for device driver re-use [LeVasseur et al.

2004] or software device implementations [Whitaker et al. 2004].

[14] One might also consider “virtual machine” language runtime implementations,
such as those of Java or Microsoft’s CLR [Meijer 2002], as adaptors. I do not, for the
following reason. There is usually a considerable abstraction gap between the virtual
machine architecture these systems provide, and the real machine architecture they are
built upon. This contrasts with virtual machine monitors, which provide an interface
little more abstract than that of the underlying machine. This “semantic gap” test
is a plausible one for determining whether a piece of implementation is more like an
adaptor, or more like a regular component. Of course, there is neither a rigid distinction,
nor a need for one.
[15] Intel has since extended x86 with support for unmodified (hardware) virtualisation,
although only after the popularisation of the two techniques described.

notations (see [Fig. 1]) N = {I, C, S, M, . . . }1,2

edit to a notation n Edit(n)

adaptor selection from a set s ASel(s)

adaptor definition in notation n ADef(n)

adaptor synthesis from notation n ASyn(n)

yielding an adaptor of kind. . . →

container applying to notations s ⊆ N Cont(s, b ⊆ {�, �})3

delta applying to notations s ⊆ N ∆(s, b ⊆ {�, �})3

1 named languages may also be included
2 for notation n, n+{e} means n extended with the set of features e;

n− means a constrained form of n
3 Contn and ∆n refer to containers or deltas applying to exactly n

components

Table 1: Concise language for modes of adaptation

Wrapper generation for programming language interoperability is another

example of specialised adaptation. Tools such as Swig [see Beazley 1996] adapt

a module written in one language such that it can be consumed by another.

The process is parameterised by rules controlling how features of one language

should be mapped to those of the other. This permits some flexibility in how

each module concretely captures the interface of the other, and can therefore

be used for adaptation, although it is unlikely to be sufficient to avoid further

manual glue coding. Many languages’ foreign function interfaces, such as Java’s

JNI [see Liang 1999] and Haskell’s FFI [see Chakravarty et al. 2002], provide

similar wrapping capabilities, but offer still less flexibility.

Network proxies or middleboxes have long been used to alter or extend the

features of a network. Recent work has applied this idea in order to adapt appli-

cations for mobile use under intermittent connectivity [see Kouici et al. 2005].

The various successes and limitations of such systems emphasise the influence of

system infrastructure design—particularly the available points of interposition—

on the space of feasible application-level adaptations.

Stub generation in RPC systems [see Birrell and Nelson 1984] or, more re-

cently, in Web Services and Remote Method Invocation [see Waldo and Clems-

ford 1998], is another domain-specific form of adaptation. The automatically

generated stubs (for the client-side invocation) and skeletons (for the server-

side dispatch) are adaptors from local procedural communication, passing mes-

sages on the stack, into a distributed version of the same, passing messages over

some network socket. They are mostly black-box, although some implementa-

tions may force client code to add extra error handling, for errors associated

Table 2: Summary and comparison of surveyed practical adaptation systems

with distributed execution.

2.14 Summary

To concisely describe the modes of adaptation of each technique, a concise lan-

guage is given in [Tab. 1]. This is intended as a concise and familiar notation,

interchangeable with the terms shown in [Fig. 1]. It does not imply any under-

lying mathematical formalism.

Using this language, [Tab. 2] summarises the bulk of the adaptation systems

surveyed, with reference to the criteria outlined at the start of the survey.

3 Review of design principles

It is difficult to measure the value or effectiveness of an adaptation technique.

We have seen a wide variety of techniques, each occupying a particular point

in the design space. In this chapter I critically examine some cross-cuts of the

material surveyed, attempting to refine out various different implied notions of

what constitutes a good adaptation technique.

3.1 Component models

Perhaps the most-used term when considering software re-use is “component”,

which originates with [McIlroy 1969]. Each adaptation technique has its own

constraints on what representations of software it can adapt: these constraints

constitute its component model. All systems performing composition of software,

whether or not they provide special adaptation techniques, have some kind of

component model. Sometimes, as with component middlewares such as Enter-

prise JavaBeans, COM+ or CORBA, the model is explicitly termed as such,

and standardised in a document. At others, such as with most conventional pro-

gramming languages and operating systems, it is defined using different words,

such as “module system” or “linkage model”.

Most authors’ implicit perception of a good component model is one which,

when combined with the adaptation techniques applicable to it, minimises the

cost of developing a complete system out of independently evolving and/or inde-

pendently developed components. Therefore, the goodness of a component model

is dependent on the goodness of adaptation techniques which are applicable to

it, and vice-versa.

So far I have written as if any notion of component, however defined and

whatever its properties, constitutes a component model. However, many authors

reserve the term “component model” for a subset of these notions, i.e. those

meeting some minimum criteria. In this section we analyse these criteria as a

source of wisdom about what makes a good model, with reference to some of the

adaptation techniques surveyed in the previous section.

3.1.1 Component middleware

Industrial adoption of the term “component” followed the popularisation of

object-oriented programming techniques in the 1980s and 1990s. [Szyperski 1998]

defines a component as “a unit of composition with contractually specified in-

terfaces and explicit context dependencies only. . . [it] can be deployed inde-

pendently and is subject to composition by third parties”. Meanwhile, another

definition is proposed by [Councill and Heineman 2001]: “a software component

is a software element that confirms to a component model and can be indepen-

dently deployed and composed without modification according to a composition

standard” [see 16].

There are several consequent good properties of such models. Explicit “re-

quires” interfaces, symmetric with explicit “provides” interfaces, are a form of

information hiding in the sense of [Parnas 1972]. They ease integration into a new

environment, by helping third parties to identify a mutually satisfying selection

of components and any necessary adaptation logic.

Heineman and Councill’s definition includes two requirements not stated by

Szyperski. One is some kind of homogeneity: something is a component only if

it conforms to a well-defined standardised component model, where standardisa-

tion is implicitly a tool for cutting down on the extent of necessary adaptation. It

does so by reducing the potential for diversity among candidate components, at

the cost of narrowing the field of such candidates. (This makes it a coupling mit-

igation technique—see [Section 3.4.3].) This definition echoes the design choices

behind systems targetting relatively more homogeneous component implementa-

tions, such as C++ generic libraries (in the case of concept maps [see Järvi et al.

2007]) or Java classes (in the case of BCA [see Keller and Holzle 1998], JOIE

[see Cohen et al. 1998] and similar systems).

The second additional requirement is that component composition treats each

component as a black-box, i.e. that components are composed “without modifi-

cation”. This echoes the benefits claimed by non-invasive adaptation systems,

exogenous coordination and the like, which frequently observe that non-invasive

adaptation is cheaper than invasive adaptation [see Bosch 1999; Arbab 1998;

Purtilo and Atlee 1991; Keller and Holzle 1998].

Are components static or dynamic? The two definitions above agree that

“components” is to mean “component implementations”: the units of implemen-

tation and deployment, firmly static entities. Meanwhile, component instances

are the corresponding dynamic artifacts. This distinction would appear to be

one of terminology: preferring the term to mean “component instances” (roughly

equivalent to “objects”) can also be justified, and consistency is more important

than the choice itself.

[16] “Composition standard” and “component model” are defined, albeit slightly
loosely, elsewhere in the same chapter.

However, since we are considering adaptation, and have established that any

component model is implicitly partnered with a set of applicable adaptation

techniques, a closely related distinction does become important. Some adapta-

tion techniques operate on dynamic objects (e.g. the adaptor pattern, aspect-

oriented programming), and the meaning of the adaptation performed can de-

pend on dynamically evaluated properties of these objects. Meanwhile, others

operate only on static artifacts (e.g. Knit, FLAME, and most other binary-level

techniques). Among the latter, there is an additional related distinction: whether

adaptation is applied on a per-instance or per-implementation basis. For exam-

ple, Knit and Jigsaw allows multiple instances of each module, and each can be

composed differently, even though composition is performed statically. Mean-

while, systems such as FLAME and the various patch-based tools do not offer

this discrimination: they clearly affect all instances at once [see 17]. In systems

that provide it, this discrimination is usually cited as a benefit; without it, adapt-

ing different instances differently would most likely require manually duplicating

the component implementation, and incur associated overheads.

In summary, we have observed a preference for the ability to distinguish

between multiple instances of a component, whether statically or dynamically.

We will revisit the “static versus dynamic” issue in the next subsection.

3.1.2 Software architecture

Typically components are defined in the software architecture literature as things

which “roughly correspond to compilation units of conventional programming

languages” [see Shaw 1994]. Expanding on this “architectural” view of compo-

nents (and connectors), [Allen and Garlan 1997] give us insight into whether

components should be considered as static or dynamic artifacts.

They describe a toy system Capitalize, which transforms an arbitrary al-

phabetic character stream by outputting it in alternately lower- and upper-case

characters. The system is a network containing four computational components

and four pipes. From the diagram, we see that at the architectural level each

pipe is distinct, despite being implemented by the same code.

They do not describe the precise differences between the “implementation”

and “architectural” notations, but there are four: logical containment (shown

by the larger Capitalize box enclosing the other features); abstraction by elimi-

nation of uninteresting modules (shown by the absence of a config component);

first-class dynamic objects (shown by the presence of four distinct pipes, instead

of connections to the I/O library); and finer-grain interfaces (shown by the dis-

tinction between the input and output ends of the pipes). [Fig. 2] shows the

[17] Note that in the dynamic case, this is not an issue: systems such as aspect-weavers,
which can identify target component instances using dynamic properties, invariably
include object identity as one such property.

effect of progressively adding these notational features.

Figure 2: From implementation to architecture.

Clearly, dynamic objects are considered architecturally significant, whereas

the static views of the system (first three pictures) hide this significant informa-

tion. This is in agreement with the designs of Knit and Jigsaw, since it implies

that an architectural notion of components (and connectors [see 18]) should ac-

[18] Although the pipes in the example are termed “connectors” rather than “compo-

cept that component instances are significant, rather than the identity of their

implementations—the meaning of a component derives from its participation in

a running system.

In summary, we have observed that the significance of a component instance

need not be shared by other instances sharing the same implementation. Con-

sequently, although we may perform adaptation ahead of time, this should not

affect our ability to differentiate individual component instances when doing so.

Additionally, since, in general, component instances may be created dynamically,

ideally any adaptation logic’s ability to distinguish instances should extend to

dynamically created ones. Although this ability is found in systems such as As-

pectJ, where a pointcut may be predicated on dynamic properties of the current

object, most systems we have seen do not provide it. However, since many adap-

tation tasks will not require this dynamic ability, and since it most likely incurs

run-time overhead, its absence can be justified.

3.1.3 Programming language research

In programming language research, subtle details distinguish one module system

from another—for example, the mathematical properties of their type systems.

These distinctions have been used to draw “component” versus “not component”

distinctions between modules. [Owens 2007] defines a component as “a stand-

alone entity (with respect to other components) that can be shipped to another

developer who can use it, consistent with its interface, without knowledge of the

encapsulated details of its implementation” and further states that “a component

can be implemented, compiled, and deployed independently of other components

that might link with it”. The requirement for independent compilation introduces

a distinction between components, which support external linkage, and less well-

encapsulated modules which do not qualify as components, since they support

only internal linkage.

In other words, this definition argues that a good component model will be

one in which components are required to support external linkage. This res-

onates with certain adaptation techniques surveyed earlier, including FLAME

[see Eisenbach et al. 2007] and Jiazzi [see McDirmid et al. 2001], whose adap-

tations are designed to directly circumvent the problems caused by existing de-

velopment platforms (respectively Microsoft’s CLR and Java) embedding names

from neighbouring components into generated code. A good component model

would not suffer any need of such adaptations.

The above definition seems to return us to a static notion of components,

in which components are units of implementation, compilation and deployment.

nents”, this is immaterial: consider multiple instances of a hash table or some other
non-shared data structure, each of which might also have its own architectural signifi-
cance.

However, clearly linking with a component—the activity of concern—entails ei-

ther instantiating it anew within the system image being constructed (as when

linking with a library), or gaining a reference to an existing instance outside that

image (as when connecting to a network service). Making a static requirement

that a component be independently compiled, linked and deployed, is simply a

conservative means of ensuring that these properties hold for all instances, in-

cluding those created dynamically. Therefore, we should not consider this view

to oppose earlier arguments emphasising the significance of instances over im-

plementations.

3.1.4 Communication primitives

We have so far observed several connections between adaptation techniques and

particular definitions of the class of component models. We would also like to

examine specific component models, since any useful adaptation system ought

to be applicable to at least some of these. [Tab. 3] lists some computational

abstractions (or component models) and their communication primitives [see

19].

Considering real component models highlights two practical issues of compo-

nent model design, both concerning implementability and checkability.

Homogeneity Different adaptation techniques assume different degrees of ho-

mogeneity among their components. This trades off two benefits. On the

one hand, less homogeneity means potentially more re-use, since there are

more candidate components. On the other hand, the technique can make

fewer assumptions about the behaviour and implementation of components.

The latter rules out techniques such as metaprogramming, while the former

brings the challenge of a sufficiently expressive black-box model of software.

Such a model would ideally capture the entire range of primitives found in

the table. In general, less homogeneity makes it harder to implement adap-

tors and to check compositions.

Elegance versus precision Some abstractions, such as the Unix process, of-

fer a wide variety of non-orthogonal communication primitives. Others, such

as the pi-calculus, offer only a small and elegant set. Which are better for

writing easily adaptable components? Elegance correlates with orthogonality

and minimality, and hence with the absence of arbitrary distinctions which

might prevent two compatible components from being combined. (Contrast

this with Unix, where a somewhat arbitrary choice of IPC mechanism can

[19] Here I am implying that a computational abstraction is a component model if and
only if it can express not only Turing machines but also “interaction machines” in the
sense of [Wegner 1997]. In other words, it includes a notion of the “environment” or
“outside”, with which a component can communicate.

Table 3: Communication primitives of selected component models

hinder composition with components which chose alternatives.) Static check-

ability is also a benefit, for revealing compositions which are not correct. The

two are somewhat at odds, since simpler models tend to offer less semantic

discrimination between different kinds of communication, making it harder

to distinguish correct from incorrect compositions [see 20]. I claim that we

[20] This argument is essentially the same as for pluggable type systems [see Bracha

would like to find a point along this trade-off which is optimal with respect

to coupling. We return to this idea in [Section 3.3].

3.1.5 Summary

By examining definitions of component models, we have seen a broad agreement

that adapting instances is preferable to adapting entire shared implementations ;

that orthogonalising the static or dynamic nature of components is desirable; and

that adapting components without manual invasive modification is preferable.

We have observed trade-offs in implementability and checkability, concerning the

homogeneity of components and elegance (or orthogonality) of their communi-

cation primitives.

3.2 First-class connectors

If we understand the usefulness of adaptation, we understand the need to capture

details about how components fit together. All the surveyed work has some par-

ticular mechanism for, or description of, this fitting-together. A similar concept,

referred to either as “explicit connection” or the similar “first-class connectors”,

is popularly advocated in the literature of both software architecture [see Shaw

1994; Allen and Garlan 1997; Mehta et al. 2000] and coordination [see Arbab

and Rutten 2003; Barbosa and Barbosa 2004]. Here I will review the origins,

meaning and interpretation of the concept, and describe how it relates to adap-

tation. Later I will attempt to refine out precise statements of its intent and

benefits, from what has become, in parts, a somewhat muddled literature.

Before proceeding, I remind the reader that the “confusion” described in

this section does not imply that the concept of connectors in any one particular

tool, paper or strand of work is at all confused. Rather, I am assessing the

different interpretations of the term, across multiple (yet mutually referencing)

research communities and technologies. These differences have made the research

discourse less transparent than it might otherwise be.

3.2.1 The concept of connectors

The term “connectors” arose from the software architecture community. [Shaw

1994] provided the first published conceptualisation. Her paper observes that

conventional programming languages are poor at expressing inter-module rela-

tionships and at localising the details of inter-module communication. These

observations are sound and uncontroversial, today more than ever. The paper

goes on to argue for the “first class” consideration of connectors as a logical

2004].

peer of components. It provides no precise definition of connectors, but plenty

of examples and intuitions.

Later work by [Allen and Garlan 1997] and [Mehta et al. 2000] makes further

contributions to the conceptualisation of connectors. However, the meaning of

“connectors” is still far from uniformly understood, and the term is sometimes

used in confusing ways. For example, in the coordination community, connectors

are sometimes described as a particular kind of coordination primitive [see Arbab

and Mavaddat 2002; Barbosa and Barbosa 2004], whereas according to Mehta’s

taxonomy, coordination is only of several possible roles of a connector.

A related problem is that the term has spawned an unhelpful dogma. Some

work such as Darwin [see Magee et al. 1995], which doesn’t make explicit dis-

tinction between components and connectors, is often criticised for (in the words

of [Mehta et al. 2000]) “obscuring the distinct nature” of connectors. This is de-

spite the fact that Allen and Garlan acknowledge in their formalisation [see Allen

and Garlan 1997] that the distinction is one of practical convenience rather than

logical essence (§11.3, p.241).

In the following subsections I discover a more precise characterisation of

connectors, based on mechanism and agreement, and relate the concept to both

coupling and adaptation.

3.2.2 Mechanism versus agreement

The examples of connectors listed in Shaw’s original paper, and in Mehta’s tax-

onomy, seem intuitively to be many different kinds of thing. They may or may

not have independent identity at run-time. They may be implemented in user

code, or within the programming language or operating system. They may, it

is claimed, simply be abstract conventions, or may be complex pieces of imple-

mentation. They may connect statically known sets of components, or may form

their associations dynamically. If connectors really are a coherent class of entity,

it should be possible to characterise them succinctly.

One unquestionable property of a connector, or specifically of a connector

instance, is that it provides a communication mechanism to one or more com-

ponents within the system which contains it. A clearer phrase retaining the

sense of “connector” might be “communication abstraction”. Communication

abstractions are like computational abstractions in many ways—they have ab-

stract interfaces, and may have many distinct implementations. However, com-

munication abstractions must join multiple parts of a system—perhaps multiple

objects, multiple processes or multiple machines. Agreements on communication

conventions are therefore necessary in order for these disparate parts to commu-

nicate successfully [see 21]. However, clearly these agreements by themselves are

not communication mechanisms.

[21] The word “successfully” here differentiates the exchange of meaning from an ex-

This immediately eliminates some examples of connectors given by Mehta

and Shaw. Shaw mentions shared data encodings, such as Rich Text Format,

and other conventions; while being noteworthy, are not themselves connectors.

Similarly, some examples in Mehta’s taxonomy (e.g. X400, SQL) are agreements

rather than connectors. Importantly, the noteworthiness of agreements is as the

source of coupling, which we will discuss in [Section 3.3].

3.2.3 Connector types, instances and state

Another reason for the apparent diversity of connectors concerns the distinc-

tions between connector types, connector instances, and their state in a running

system. Shaw observes that connectors “manifest themselves as table entries,

instructions to a linker, dynamic data structures, system calls, initialisation pa-

rameters, servers. . . ”. Most of these refer to the state of a connector instance

rather than to its type, identity or implementation. Meanwhile, Mehta’s taxon-

omy contains elements such as inter-thread, inter-process, FCFS and LRU —

these are clearly abstract properties of communication mechanisms, rather than

mechanisms in themselves. I consider these properties as part of the abstract

type of connectors, i.e. some partial specification of a communication mecha-

nism, which may include both its behavioural properties and its programming

interface. This is completely analogous with the type of a component or module.

3.2.4 Illusory distinctions

Shaw mentions some apparent distinctions between components and connectors

which, on further examination, reveal themselves to be illusory. One is the sug-

gestion that components have interfaces while connectors have only protocols.

In fact, they both have interfaces, and in either case those interfaces may in-

corporate protocol constraints. For example, interfaces to data structures may

contain protocol constraints (e.g. that a stack may not be popped more times

than it is pushed). This idea is now familiar from work on protocol adaptation

[see Yellin and Strom 1997; Reussner 2003; Passerone et al. 2002].

An unarguable similar statement would be that while components and con-

nectors may both have interfaces and protocols, it should be possible to modu-

larise definitions of communication abstractions such that knowledge of protocol

state is kept out of clients as far as possible. For example, an application which

communicates using TCP sockets is not responsible for maintaining TCP pro-

tocol state, and its awareness of that state is confined to the simple abstraction

change simply of information, as distinguished by Weaver’s statement [see Shannon
and Weaver 1949] that “two messages, one of which is heavily loaded with meaning
and the other of which is pure nonsense, can be exactly equivalent . . . as regards
information”. Effectively, agreements are agreed coding rules which give meaning to
transmitted information.

offered by the sockets interface—which exposes states such as opened, listening

and closed sockets, but does not expose the entire TCP state space.

Similarly, although Shaw observes that connectors appear not to have typed

interfaces (considering the untyped byte-stream abstraction offered by Unix

pipes), in fact it is simply that they may only be captured by parameterised

polymorphic types. Although particularly common for communication abstrac-

tions, this is also observed in many conventional components, such as generic

data structures.

3.2.5 Adaptors and connectors

Adaptors clearly enable communication between components. Therefore, they

may be seen as some kind of connector. How can we distinguish them from

other connectors? Since information flow is directional, agreements associated

with connectors typically come in complementary or “handed” pairs: caller–

callee, publisher–subscriber, producer–consumer, and so on. This pattern clearly

extends down to the level of data structures: a caller who provides an argument

tuple expects a callee who can accept that same tuple structure. Adaptors are

necessary when these complementary relationships are broken: when different

tuple structures must be consumed than those that are produced, or where the

roles understood by the various participants in the communication do not match

up. Adaptors may even be considered a most general form of connectors, in that

a non-adapting connector is performing a trivial no-op or null adaptation.

3.2.6 The connector–component continuum

Some pieces of software clearly perform no communication, and therefore can-

not be connectors. For example, consider a completely stateless library, such as

a mathematical library, or a storage component with only one client component.

However, in any case involving shared state, it becomes impossible to intrinsi-

cally distinguish computational from communicational code. As a trivial “lower

bound”, covert channel analysis shows us that any stateful shared component

is capable of conveying information between its sharers [see Millen 1999]. More

obviously, many boxes in box-and-line diagrams (such as in the Capitalize ex-

ample of Allen and Garlan) have a clear communicational role. For example, the

filters in a pipe-and-filter system are clearly communicational, since as well as

transforming their input data, they forward the result to their output.

This does not mean that a distinction is not useful for purposes of convenience

or modelling. It is precisely this convenience which is advocated by [Allen and

Garlan 1997]. This is analogous with box-and-line diagrams: lines are merely

very long and thin boxes, but we prefer to treat them differently for purposes

of abstraction. We distinguish components based on what role (computation

or communication) is more significant when understanding the system at the

depicted level of abstraction.

An important corollary of this is that we cannot make decisions about tools

or implementation languages based on whether something “is a component” or

“is a connector”. During implementation, developers should avoid fixing a use-

case in mind, for the sake of re-usability. However, the architectural significance

of a piece of implementation clearly depends on its abstract role within a wider

system, and hence on the context of its use. Consequently, we would ideally like

to choose languages, tools and styles for connector implementation on a case-

by-case basis from the full available range, just as we would when developing

components.

This contrasts with the approach of UniCon [see Shaw et al. 1995], where

introducing a new connector type involves extending the compiler [see Zelesnik

2000], and brings substantial constraints of programming language and style. In

practice, it is quite likely that UniCon users would end up describing at least

some communication abstractions as regular components, simply using the built-

in connectors to wire them up. This avoids the inconvenience of extending the

compiler, but is clearly contrary to UniCon’s intended usage. While this does

not undermine UniCon’s usefulness as a practical system, it suggests that better

solutions are possible, once the context-dependent nature of the component–

connector distinction is understood.

3.2.7 Summary

The observations underlying the concept of connectors are insightful and un-

controversial. Communication abstractions are underrepresented in traditional

programming practices, and better modularisation and separation of communi-

cational concerns can provide great benefits to re-use. The distinction between

mechanism and agreement provides a clearer idea of connectors than do distinc-

tions of protocol, interface or state. Connectors provide mechanisms and demand

agreements; agreements are the source of coupling, and adaptors are connectors

which demand non-complementary agreements. [Tab. 4] lists a few examples of

connectors and distinguishes them according to the various criteria described in

this section.

3.3 Loose coupling

“Loosely coupled” is a term used frequently to describe some perceived good

properties of systems. Unfortunately, this is a rather underspecified term which

can be misleading. Here I will critically examine its use in both the coordination

and service-oriented architecture literature.

Table 4: Examples of communication abstractions, highlighting distinctions be-

tween type, state and other attributes

In the coordination literature, loose coupling is claimed an advantage of most

coordination models [see Carriero and Gelernter 1989; Diakov and Arbab 2004].

Intuitively, these coordination models are loose in the sense that there are few

constraints on concurrent execution, and that the complexity (or at least the

syntactic complexity) of the interface upon which each party has to agree—

typically a simple set of in and out operations—is small.

Meanwhile, “loose coupling” is also cited in the service-oriented architecture

literature. [He 2003] explains this by contrasting “real” and “artificial” depen-

dencies: real dependencies arise from functionality, such as a powered device

requiring electricity, whereas artificial dependencies arise from arbitrary mis-

matches of integration details, such as the physical shape of plug accepted by a

power outlet. Achieving loose coupling is the exercise of minimising artificial de-

pendencies. He claims that service-oriented architectures achieve loose coupling

by two techniques: the use of “small set of simple and ubiquitous interfaces. . .

[where] only generic semantics are encoded”, and the use of “descriptive mes-

sages” based on extensible schemas for communicating with services. He cites

the REST architectural style [see Fielding 2000] as emblematic of this approach.

To evaluate these claims, we must revisit the origins, definitions and treat-

ment of coupling, and the intuitions behind them.

3.3.1 A brief history of coupling

Coupling is a property of structured systems. [Stevens et al. 1974] provided the

first definition of coupling in software systems, as “the measure of the strength

of association established by a connection from one module to another”.

The idea of “strength of association” captures two related empirical proper-

ties of software. Firstly, it includes the likelihood that that changes in one sub-

system will require consequent changes in a disjoint (but coupled) subsystem.

In this case, low coupling predicts extensibility and maintainability. Secondly, it

correlates with difficulty of re-use: the more strongly a module is coupled with

its environment, the more changes are necessary in order to re-use that module

in a different environment.

Two quantities of coupling can be measured: global coupling, which is an

aggregate figure for the total strength of coupling within a modular system,

and local coupling, which is the strength of the specific association between one

component and its environment (or another specific component). Since we are

concerned here with properties of individual components, I consider only the

latter.

Coupling is measured in ad-hoc and language-specific ways. Stevens et al pro-

vided an ordinal scale of perceived severity of coupling. This was derived solely

from experience, and defined in terms of the different modes of inter-module ref-

erence available in the procedural languages of the day. [Fenton and Melton 1990]

added some rigour by grounding this in measurement theory, but the weighting

of each mode of reference remained ad-hoc. Various measures have been de-

fined on object-oriented models of software [see Chidamber and Kemerer 1994;

Briand et al. 1996; Harrison et al. 1998], even in language-independent fashion

[see Lanza and Ducasse 2002; Baroni et al. 2002; McQuillan and Power 2006].

However, so-called “language independent” measures rely on a unifying meta-

model. It is comparatively straightforward to to devise a unifying meta-model for

object-oriented languages, and hence gain a limited sense of language indepen-

dence. However, to this author’s knowledge, there are no measures that account

for coupling which is not accompanied by explicit programmatic reference. Such

coupling is common—for example, it occurs wherever logic concerning proto-

col implementation or string formatting conventions is spread across multiple

communicating systems or modules.

As an example of the latter, consider a Unix pipeline of the form

printenv | sed ’s/=.*//’

which lists the names of all the environment variables defined in the current

shell. The two programs interacting across the pipeline are coupled by the fact

that every line output by printenv contains an equals sign. If printenv were

changed, say to output a header line, then the pipeline’s meaning would be

changed, since the output would include the unwanted header line. This kind

of coupling is similar to “stamp coupling” as described by Stevens, but clearly

would not be captured by an analysis of programmatic reference.

3.3.2 Inevitability of coupling

Coupling is, fundamentally, a consequence of communication. I submit that it

is not possible for two entities, whatever their kind, to communicate without at

the same time being coupled to some degree. Additionally, if two entities do not

communicate through any path, i.e. neither directly with each other nor indirectly

through some intermediate entity, then necessarily they are outside each other’s

cones of influence, and so they cannot be not coupled [see 22].

Intuitively one expects communication to be dynamic, in that it happens

during program execution. However, clearly, coupling can be static, in that we

can observe associations and mismatches between source files without executing

them. These might be caused by simple inter-module references in any source

language, or alternatively perhaps by compile-time composition of templates in a

language like C++. In these cases, it is not immediately apparent who is commu-

nicating with whom, or if indeed communication is occurring at all. Nevertheless,

I claim that these observations of coupling are still fully captured by models of

communication.

To understand this, consider the example of mismatched programmatic ref-

erence. If I change the name of some function or data structure member in one

[22] One could imagine an intermediate case where two entities are within each other’s
cones of influence, and exchange information in the sense of random events, but do
not exchange meaning in that they have established no agreements on the meaning of
each event.

source file, without updating the others to reflect this, the system will break at

compile-time. This is simply because the compiler has detected that the respec-

tive modules’ communicational codes—mappings from symbols to meanings, or

references to referents—are incompatible. The name used in one module is no

longer part of the “code” understood by the other modules. In less statically

checked languages, such as Smalltalk, fewer errors are caught in the compiler:

instead, they appear at run-time, once an actual dynamic occurrence of commu-

nication has failed [see 23].

3.4 Dealing with coupling

Many features of programming languages and software engineering practice are

implicitly intended to reduce coupling. We split these into two categories: min-

imisation and mitigation. Minimisation techniques are designed to limit the ac-

tual extent of coupling, for example in reducing the complexity of the interface

exposed by a module. Mitigation techniques are intended to reduce the practical

harm caused by any coupling which cannot be reduced by minimisation.

3.4.1 Minimisation

Minimisation techniques are designed to prevent unnecessary coupling. Informa-

tion hiding [see Parnas 1972] is the most obvious, and works by confining the

extent of expressible inter-module agreements to interface definitions. The gains

of this approach come from controlling the human tendency to unwittingly write

needlessly specialised code: if knowledge of an implementation detail is not nec-

essary, it will not be part of the interface, whereas if it eventually does prove

necessary, the interface will be somehow revised to accommodate it.

An alternative approach comes from the observation that coupling may be

dynamic as well as static. Consider how not only classes but individual objects

may be coupled. The technique is therefore to reduce static coupling by pushing it

into the dynamic realm. Late binding techniques (including virtual dispatch) take

this approach. Negotiation in network protocols (for example character encoding

negotiation in HTTP) is another example. These are sensible techniques since,

by deferring decisions, these commitments may be made at a finer grain, both in

[23] We might more properly distinguish this mere “reference” from “communication”:
we could say that coupling is a consequence of reference, and that communication
is simply a higher-layer process which makes use of reference. However, in the case
of software, communication is a more intuitively transparent concept than that of
reference. Moreover, in the case of software the distinction is rarely helpful, because
it is easily affected by implementation details. For instance, in the above example,
the fact that the Smalltalk compiler catches fewer errors than a more static-checking
compiler is of no consequence to the abstract relationship between the two modules
concerned. We therefore prefer to say that the modules “communicate” in both cases,
whether or not the compiler implementation happens to “pre-compute” the attempted
exchange of meaning.

space (by committing individual objects, rather than whole classes) and in time

(since commitments hold only for a particular object’s lifetime). Of course, they

introduce run-time overhead.

Minimisation can only go so far. As we stated earlier, the ability to mean-

ingfully communicate relies on some degree of coupling. Mitigation techniques

are, therefore, essential complements to minimisation.

3.4.2 Localisation

We use the term “localisation” to refer to the many features of programming

languages which enable definitions to be made in a single place but referenced

from many others. Examples include symbolic constants, functions, macros, and

aspects. All of these features enable the localisation of definitions which would

otherwise be repeated in-line.

Localisation is most obviously a mitigation technique, since it reduces the

practical cost of embedding assumptions about the outside (by keeping such

assumptions localised). However, since it may reduce the number of distinct ex-

ternal references in source code, it may also reduce the coupling observed by

various measures, and therefore may also be considered a minimisation tech-

nique.

3.4.3 Standardisation

Standardisation is a popular technique for mitigation of coupling, by encour-

aging the adoption of some standard global agreements. When interface details

are standardised across some modular boundary, coupling remains present and

measurable—changing the details of one module would still require changes to

the other. However, the coupling is less problematic in practice, because all candi-

dates for interoperation are also written against the same standard. Maintenance

is easier because the standard is stable. Comprehensibility is easier because de-

velopers are more likely to be familiar with the standard.

There are countless well-known examples of successful standards: the ASCII

character set, Unix tools, the C standard library, the Internet protocol, HTML,

and many more. However, there are functional limitations to any standard—for

example, the inability of ASCII to encode certain non-Western or punctuation

characters. Complex standards may be impractical to implement, and may con-

sequently fail to gain wide adoption (as with some of the OMG’s CORBA stan-

dards [see Henning 2006] or C++ export templates [see Sutter and Plum 2003]).

The fragility of standards is a problem, such as when non-conformant implemen-

tations are widely deployed (either unwittingly or maliciously) [see Ts’o 1997;

Zelnick 1998]. Nonconformance requires workarounds, with consequent mainte-

nance overheads. (These workarounds can be seen as adaptation, and improved

adaptation techniques would reduce these maintenance overheads.)

Even where a standard is successfully made and deployed, innovation will

eventually cause the standard to be superseded. This inherent expense and

fragility makes standardisation suited only to technologies which demand wide

deployment but expect only infrequent innovation. There are many such do-

mains, including network protocols, data encodings and programming languages.

However, there are innumerably more which do not fit these criteria. Many soft-

ware components perform a function that is unique to them; they are often con-

tinually evolving. Some of these changes invariably necessitate changed interface

agreements. If we are to maximise the potential for re-use in these scenarios,

some other approach is necessary.

The main value of standards is therefore in preventing unnecessarily many

competing conventions. By contrast, there will always be reasons why some num-

ber of differing conventions are necessary or unavoidable: functional differences,

local customisation, parallel development, innovation, experimentation, compe-

tition, and so on. In order to compose and re-use artifacts written against dif-

ferent conventions, a complementary technique is necessary—this, by definition,

is adaptation.

3.4.4 A more general theory of coupling

So far we have seen no way of evaluating or comparing the claimed “loose cou-

pling” found in the surveyed work. Here I outline an intuition about coupling

which enables us to do so.

We have already seen the printenv pipeline example of coupling not cap-

tured by existing measurement techniques. Consider, similarly, an untyped, un-

structured communication interface such as Unix pipes or files. In order to com-

municate structured data, the parties must fix on conventions for coding that

structure—typically a combination of whitespace and punctuation characters.

The convention chosen must clearly be understood by both parties in order for

them to communicate, and is therefore a source of coupling.

Clearly, if a component is able to understand multiple alternative structure

codings—for example, if it detects whether commas or tabs are being used to

delimit input fields, and interprets the input correctly in either case—then it is

less coupled to its environment than if it understands only one. This is because

the component and the environment have to agree on fewer choices about the

code in the former case than in the latter. In other words, the coding scheme

upon which communication depends is less complex. We can therefore evaluate

claims of “loose coupling” based on whether they result in less complex commu-

nicational codes between units of software.

3.4.5 Evaluating the claims

We undertook this exploration of coupling in order to evaluate the claims that

coordination models, such as that of Linda, and service-oriented architectural

styles, such as the example of REST used by He, lead to loosely-coupled systems.

In the case of Linda, we see that the complexity of the interface upon which

party must agree with the tuple space is very small—it is simply the set of

operations such as read, in and out. This is the source of the perceived elegance

of Linda. However, in order for a Linda process to communicate with another

process, there must be agreements over and above what each process agreed with

the tuple space. There are two obvious kinds of agreement: tuple structures, i.e.

the number and types of fields in each tuple; and protocol, i.e. the ordering

conventions by which different processes read tuples and deposit new ones.

Clearly, the latter two kinds of coupling are of great practical importance

when re-using or evolving elements of a Linda-based system. Unfortunately, since

Linda provides no way to explicitly define the conventions in a well-modularised,

localised fashion, the coupling is not well mitigated. More subtly, since the com-

munication primitives of Linda are so simple, there are innumerably many ways

in which independently developed Linda processes might have chosen to encode

communication details (such as tuple structures or protocol) of equivalent mean-

ing. This makes the likely extent of mismatch very great. To use He’s words,

it leads to unnecessary artificial dependencies. Consider a Linda process that

wishes to pass a list of tuples to another: aside from mismatches of individual

tuple structure, it might encode the list in a one-at-a-time fashion, by publish-

ing tuples with a fixed “list ID” field value, or in a many-at-a-time fashion by

publishing tuples with contiguous sequence numbers.

Meanwhile, service-oriented architectures appear to suffer similar problems.

Their reliance on a small, simple, “ubiquitous” interface with only “generic”

semantics, means that little semantic detail is present in a request. This ap-

proach mirrors the Unix philosophy of “everything is a file”. Whether our ob-

jects are services, files or resources, this unification-based approach suffers the

same drawbacks: semantic detail becomes implicit within component implemen-

tations, rather than explicit within their interfaces. Little static checking can be

performed, owing to this lack of semantic detail. In practice most objects will

implement some ill-defined subset of the unified interface, discoverable only at

run-time. Worst of all, some operations of some objects simply will not be map-

pable satisfactorily from the unified interface; this forces either an arbitrary local

choice among the many unsatisfactory ways (the approach required by REST),

or the use of an escape-hatch (such as Unix’s ioctl()). In both cases, the orig-

inal benefit is lost, since there is now a high likelihood of mismatch with other

application code.

Service-oriented architectures do improve on both Linda and Unix-like mod-

els, by including metadata with a request. This allows a service to determine

which particular version of itself is required by the client, and to service the

request appropriately. This is precisely the negotiation-based coupling minimi-

sation technique described earlier (see [Section 3.4.1]). Service-oriented architec-

tures therefore suffer less coupling, in like-for-like terms, than either Linda or

Unix-like schemes. However, as always, this negotiation technique has its limits:

only interface variations known to the service may be catered for [see 24]. A more

general, open and semantically-aware interface negotiation technique remains a

current research goal [see Canal 2004].

The problems shared by both Linda and REST are a consequence of choosing

a simple set of communicational primitives. Clearly, at least, most higher-level

application code should not be written directly targetting these “send-receive”

style interfaces. [Gorlatch 2004] gives a comparable critique of send-receive in

the domain of parallel programming. Of course, there is a danger that a larger

and more semantically rich set of primitives would destroy other benefits re-

lated these systems’ simplicity, such as ease of implementation. Similarly, we

saw earlier that primitives may be over-specific—for example Unix’s separate

treatment of shared-memory objects and files, or Java’s unhelpful distinction

between static state and objects. This introduces arbitrary distinctions, causing

unnecessary coupling. Finding optimal points along this space is a hard problem,

and those points depend greatly on the required mix of other benefits. Accord-

ingly, I do not intend to dismiss the benefits of coordination models, nor of

service-oriented architectures. However, the term “loose coupling” does require

careful qualification.

4 Modularisation strategies

Some adaptation techniques, such as the several Java-language transformation

engines surveyed earlier, simply advocate their own use when adaptation is

necessary—that is, if there happens to be a mismatch. Others propose that sys-

tems are habitually written using a particular division of languages or styles. In

the survey we saw many examples of systems employing configuration languages.

These languages span a spectrum from architecture description languages down

to linking languages. A final design issue to examine, therefore, is as follows. If we

accept the value of some split between configuration languages and conventional

programming languages, how should the entire system ideally be modularised?

[24] Giving credit to REST, its application to such a wide domain as service-oriented
architectures goes far beyond its original aims, which were simply to capture the ar-
chitectural style of the World-Wide Web as a non-computational hypertext storage
and retrieval system. In this context, its small set of storage-oriented operations are a
sound design. My discussion of it here is a critique of the over-application of its design
by third parties, rather than of its intrinsic merits.

Which concerns should be separated by this split? Here I will summarise the

separations encouraged by configuration languages surveyed in [Section 2].

Stable from unstable This separation is mentioned explicitly as a design goal

of Piccola [see Nierstrasz and Achermann 2000], and implicitly informs the

design other scripting and orchestration languages. It is intuitively reason-

able, not only because it encourages the localisation and modularisation of

unstable parts of a system, but because specialised languages are likely to

do a better job of making it efficient to develop and modify unstable code.

However, it doesn’t distinguish the many kinds of changes with respect to

which code might be unstable: perhaps different re-use contexts, or perhaps

rapid prototyping within the same project.

Proactive from reactive This separation is again exploited by scripting and

orchestration languages, and also characterises service-oriented computing.

It also answers adaptation needs in the common re-use case where the re-used

artifacts are existing non-proactive services, and the essentially novel artifact

is a script which adapts and composes them. However, we note that not all

cases are well-served by this separation, since both proactive and reactive

components may wish to be re-used—for instance in Garlan’s example of

re-using event loops [see Garlan et al. 1995].

Integration from functionality This separation captures the purest ideal of

software re-use: that any implementation of the desired functionality might

be re-used without concern for how it is implemented. Nimble [see Purtilo

and Atlee 1991], Polygen [see Callahan 1993] and Flexible Packaging [see

DeLine 2001] all target this separation. Unfortunately, realising pure ide-

als is a hard problem, and each of these systems puts constraints on how

functionality can be written: it must be written against either a procedural

abstraction or, in the case of Flexible Packaging, an asynchronous channel

abstraction.

Structure from content This is a weaker version of the previous separation,

and is adopted by linking languages such as Knit [see Reid et al. 2000] and

configuration languages such as Darwin [see Magee et al. 1995]. Although

not addressing traditional adaptation problems, such as mismatches of data

encoding or protocol, explicit structure avoids the maintenance overheads

associated with such error-prone conventions as name-matching. Network-

based coordination models, such as that of Reo [see Arbab and Mavaddat

2002], also provide this structural separation, while additionally being capa-

ble of expressing protocol adaptation.

Computation from communication This separation is an often-cited goal

in many of the research areas we have surveyed, including coordination [see

Papadopoulos and Arbab 1998] and software architecture [see Shaw 1994]. It

relates to precisely the observations which motivated the concept of connec-

tors: communication abstractions are comparatively neglected (by contrast

with computational abstractions such as data structures and algorithms),

and conventional programming languages don’t adequately localise details

of communication. Unfortunately, this separation is not completely possible:

clearly even a maximally computation-oriented component must somehow

express or imply the communication of its results to its environment. A sim-

plistic answer is to allow only very primitive expressions of communication

from within computational components, but this leads to the problems of

insufficient abstraction mentioned in [Section 3.3]. Other separations, partic-

ularly that between functionality and integration, may provide better ways

of framing the problem.

Language-specific concerns Binary Component Adaptation [see Keller and

Holzle 1998], in its ability to augment classes and alter typing information,

separates units of implementation from linguistic units of typing or instantia-

tion (the latter being, specifically, Java classes). This highlights the potential

for more complex type systems to capture additional classes of mismatch,

as more recently echoed by [Bracha 2004]. This is perhaps a more specific

version of the concerns separated by Swig [see Beazley 1996], which sepa-

rates more abstract functionality from the various language-specific ways of

reifying those functions as language constructs.

5 Summary

I have reviewed many adaptation techniques, and many aspects of the design of

adaptation techniques. By examining the claims and intentions behind various

designs, I hope to have provided a clearer understanding of various considerations

and trade-offs. We have seen a very wide design space, and reviewed some ideas

which help us decide what constitutes a good point in that space with respect

to particular requirements. We have also seen how the concept of coupling is a

recurrent and a unifying one when making such decisions.

The design of configuration languages, and the appropriate separations of

concerns, is also of prime importance. Ideally we should like an approach sep-

arates all of the concerns just described, embodying a component model which

encourages minimal coupling, and whose adaptation features effectively mitigate

whatever coupling is unavoidable. For this, we must look to future work.

Acknowledgement

The author would like to thank his supervisor Dr David Greaves, and several

other people who have made helpful comments and suggestions: Jon Crowcroft,

Theodore Hong, Andrew Moore, Derek Murray, Henry Robinson, Mark Williamson

and the anonymous reviewers.

References

[Achermann and Nierstrasz 2001] Achermann, F., Nierstrasz, O.: “Applications =
components + scripts”; Software Architectures and Component Technology; 261–
292; Kluwer, 2001.

[Allen and Garlan 1997] Allen, R., Garlan, D.: “A formal basis for architectural con-
nection”; ACM Transactions on Software Engineering and Methodology; 6 (1997),
213–249.

[Arbab 1998] Arbab, F.: “What do you mean, coordination”; Bulletin of the Dutch
Association for Theoretical Computer Science, NVTI; 1122 (1998).

[Arbab and Mavaddat 2002] Arbab, F., Mavaddat, F.: “Coordination through channel
composition”; Proc. Coordination; 21–38; 2002.

[Arbab and Rutten 2003] Arbab, F., Rutten, J. J. M. M.: “A coinductive calculus of
component connectors”; Proceedings of 16th International Workshop on Algebraic
Development Techniques (WADT 2002); 35–56; Springer-Verlag, 2003.

[Assmann et al. 2000] Assmann, U., Genssler, T., Bar, H.: “Meta-programming grey-
box connectors”; Proceedings of 33rd International Conference on Technology of
Object-Oriented Languages (TOOLS 33); 300–311; 2000.

[Barbosa and Barbosa 2004] Barbosa, M., Barbosa, L.: “Specifying software connec-
tors”; 1st International Colloquium on Theorectical Aspects of Computing (ICTAC
’04); 53–68; 2004.

[Barham et al. 2003] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho,
A., Neugebauer, R., Pratt, I., Warfield, A.: “Xen and the art of virtualization”;
SIGOPS Oper. Syst. Rev.; 37 (2003), 5, 164–177.

[Baroni et al. 2002] Baroni, A. L., Braz, S., Abreu, O. B. E., Portugal, N. L.: “Using
OCL to formalize object-oriented design metrics definitions”; Proceedings of 6th
International Workshop on Quantitative Approaches in Object-Oriented Software
Engineering; Springer-Verlag, 2002.

[Beazley 1996] Beazley, D.: “Swig: An easy to use tool for integrating scripting lan-
guages with C and C++”; Proceedings of the 4th USENIX Tcl/Tk Workshop; 129–
139; 1996.

[Birrell and Nelson 1984] Birrell, A., Nelson, B.: “Implementing remote procedure
calls”; ACM Transactions on Computer Systems (TOCS); 2 (1984), 39–59.

[Bosch 1999] Bosch, J.: “Superimposition: a component adaptation technique”; Infor-
mation and Software Technology; 41 (1999), 257–273.

[Bracciali et al. 2005] Bracciali, A., Brogi, A., Canal, C.: “A formal approach to com-
ponent adaptation”; The Journal of Systems & Software; 74 (2005), 45–54.

[Bracha 2004] Bracha, G.: “Pluggable type systems”; OOPSLA Workshop on Revival
of Dynamic Languages; 2004.

[Bracha et al. 1993] Bracha, G., Clark, C., Lindstrom, G., Orr, D.: “Module manage-
ment as a system service”; OOPSLA Workshop on Object-oriented Reflection and
Metalevel Architectures; 1993.

[Bracha and Cook 1990] Bracha, G., Cook, W.: “Mixin-based inheritance”;
ECOOP/OOPSLA ’90 Proceedings; 303–311; 1990.

[Briand et al. 1996] Briand, L., Morasca, S., Basili, V.: “Property-based software en-
gineering measurement”; IEEE Transactions on Software Engineering; 22 (1996),
68–86.

[Callahan 1993] Callahan, J.: Software packaging; Ph.D. thesis; University of Maryland
(1993).

[Callahan and Purtilo 1991] Callahan, J., Purtilo, J.: “A packaging system for hetero-
geneous execution environments”; IEEE Transactions on Software Engineering; 17
(1991), 626–635.

[Canal 2004] Canal, C.: “On the dynamic adaptation of component behaviour”; First
International Workshop on Coordination and Adaptation Techniques for Software
Entities (WCAT ’04); 2004.

[Carriero and Gelernter 1989] Carriero, N., Gelernter, D.: “Linda in context”; Com-
munications of the ACM; 32 (1989), 444–458.

[Chakravarty et al. 2002] Chakravarty, M., Finne, S., Henderson, F., Kowalczyk, M.,
Leijen, D., Marlow, S., Meijer, E., Panne, S.: “The Haskell 98 foreign function in-
terface 1.0: an addendum to the Haskell 98 report”; (2002).

[Channabasavaiah et al. 2003] Channabasavaiah, K., Holley, K., Tuggle, E.: “Migrat-
ing to a service-oriented architecture”; IBM DeveloperWorks; (2003); available at
http://www.ibm.com/developerworks/library/ws-migratesoa/, retrieved 2008-08-26.

[Chiba 2000] Chiba, S.: “Load-time structural reflection in java”; ECOOP 2000 Pro-
ceedings; 2000.

[Chidamber and Kemerer 1994] Chidamber, S., Kemerer, C.: “A metrics suite for ob-
ject oriented design”; IEEE Transactions on Software Engineering; 20 (1994), 476–
493.

[Cohen et al. 1998] Cohen, G., Chase, J., Kaminsky, D.: “Automatic program trans-
formation with JOIE”; Proceedings of the USENIX Annual Technical Conference;
14; 1998.

[Councill and Heineman 2001] Councill, B., Heineman, G.: “Definition of a software
component and its elements”; Component-based software engineering: putting the
pieces together; 5–19; Addison Wesley, 2001.

[DeLine 2001] DeLine, R.: “Avoiding packaging mismatch with flexible packaging”;
IEEE Transactions on Software Engineering; 27 (2001), 124–143.

[DeRemer and Kron 1975] DeRemer, F., Kron, H.: “Programming-in-the large versus
programming-in-the-small”; Proceedings of the International Conference on Reliable
Software; 114–121; 1975.

[Devine et al. 2002] Devine, S., Bugnion, E., Rosenblum, M.: “Virtualization system
including a virtual machine monitor for a computer with a segmented architecture”;
United States Patent 6397242 (2002).

[Diakov and Arbab 2004] Diakov, N., Arbab, F.: “Compositional construction of web
services using Reo”; Technical Report SEN-R0406; CWI; Amsterdam (2004).

[Eisenbach et al. 2007] Eisenbach, S., Sadler, C., Wong, D.: “Component adaptation
in contemporary execution environments”; Proceedings of 7th IFIP International
Conference on Distributed Applications and Interoperable Systems; Springer-Verlag,
2007.

[Eterovic et al. 2004] Eterovic, Y., Murillo, J., Palma, K.: “Managing components
adaptation using aspect oriented techniques”; First International Workshop on Co-
ordination and Adaptation Techniques for Software Entities (WCAT ’04); 2004.

[Fenton and Melton 1990] Fenton, N., Melton, A.: “Deriving structurally based soft-
ware measures”; Journal of Systems and Software; 12 (1990), 177–187.

[Fielding 2000] Fielding, R. T.: Architectural styles and the design of network-based
software architectures; Ph.D. thesis; University of California, Irvine (2000).

[Filman and Friedman 2000] Filman, R., Friedman, D.: “Aspect-oriented program-
ming is quantification and obliviousness”; OOPSLA Workshop on Advanced Sep-
aration of Concerns; 2000.

[Fowler 2004] Fowler, M.: “Inversion of control containers and the dependency injec-
tion pattern”; Web document (2004); available at http://martinfowler.com/articles/
injection.html, retrieved 2008-08-26.

[Gamma et al. 1995] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns:
elements of reusable object-oriented software; Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 1995.

[Garlan et al. 1995] Garlan, D., Allen, R., Ockerbloom, J.: “Architectural mismatch
or why it’s hard to build systems out of existing parts”; Proceedings of the 17th
International Conference on Software Engineering; 179–185; 1995.

[Garlan and Shaw 1994] Garlan, D., Shaw, M.: “An introduction to software archi-
tecture”; Technical Report CMU-CS-94-166; School of Computer Science, Carnegie
Mellon University (1994).

[Gelernter and Carriero 1992] Gelernter, D., Carriero, N.: “Coordination languages
and their significance”; Communications of the ACM; 35 (1992), 97–107.

[Gorlatch 2004] Gorlatch, S.: “Send-receive considered harmful: Myths and realities
of message passing”; ACM Transactions on Programming Languages and Systems
(TOPLAS); 26 (2004), 47–56.

[Haack et al. 2002] Haack, C., Howard, B., Stoughton, A., Wells, J.: “Fully automatic
adaptation of software components based on semantic specifications”; Proc. 9th Int’l
Conf. Algebraic Methodology & Softw. Tech.; 2002.

[Harrison et al. 1998] Harrison, R., Counsell, S., Nithi, R.: “Coupling metrics for
object-oriented design”; Proceedings of Fifth International Software Metrics Sym-
posium; 150–157; 1998.

[Harrison and Ossher 1993] Harrison, W., Ossher, H.: “Subject-oriented programming:
a critique of pure objects”; ACM SIGPLAN Notices; 28 (1993), 411–428.

[He 2003] He, H.: “What is service-oriented architecture”; (2003); available at http:
//webservices.xml.com/pub/a/ws/2003/09/30/soa.html, retrieved 2008-08-26.

[Henning 2006] Henning, M.: “The rise and fall of CORBA”; ACM Queue; 4 (2006),
28–34.

[Järvi et al. 2007] Järvi, J., Marcus, M., Smith, J.: “Library composition and adap-
tation using C++ concepts”; Proceedings of the 6th International Conference on
Generative Programming and Component Engineering; 73–82; 2007.

[Keller and Holzle 1998] Keller, R., Holzle, U.: “Binary component adaptation”;
ECOOP ’98; 307–329; 1998.

[Kepser 2004] Kepser, S.: “A simple proof for the Turing-completeness of XSLT and
XQuery”; Proceedings of Extreme Markup Languages 2004; 2004.

[Kiczales et al. 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W.: “An overview of AspectJ”; ECOOP 2001; Springer-Verlag, 2001.

[Kiczales et al. 1997] Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.-M., Irwin, J.: “Aspect-oriented programming”; ECOOP 1997; Springer-
Verlag, 1997.

[Kniesel et al. 2001] Kniesel, G., Costanza, P., Austermann, M.: “JMangler: a frame-
work for load-time transformation of Java classfiles”; Proceedings of the First IEEE
International Workshop on Source Code Analysis and Manipulation; 98–108; 2001.

[Kouici et al. 2005] Kouici, N., Conan, D., Bernard, G.: “An experience in adaptation
in the context of mobile computing”; Second International Workshop on Coordina-
tion and Adaptation Techniques for Software Entities (WCAT ’05); 2005.

[Lanza and Ducasse 2002] Lanza, M., Ducasse, S.: “Beyond language independent
object-oriented metrics: Model independent metrics”; Proceedings of 6th Interna-
tional Workshop on Quantitative Approaches in Object-Oriented Software Engi-
neering; 2002.

[LeVasseur et al. 2004] LeVasseur, J., Uhlig, V., Stoess, J., Götz, S.: “Unmodified de-
vice driver reuse and improved system dependability via virtual machines”; Pro-
ceedings of the 6th Symposium on Operating Systems Design & Implementation;
USENIX Association, San Francisco, CA, 2004.

[Liang 1999] Liang, S.: The Java Native Interface: Programmer’s Guide and Specifica-
tion; Addison-Wesley Professional, 1999.

[Magee et al. 1995] Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: “Specifying dis-
tributed software architectures”; Proceedings of the 5th European Software Engi-
neering Conference; 137–153; 1995.

[McDirmid et al. 2001] McDirmid, S., Flatt, M., Hsieh, W.: “Jiazzi: new-age compo-
nents for old-fasioned Java”; Proceedings OOPSLA 2001; 211–222; 2001.

[McIlroy 1969] McIlroy, M.: “Mass-produced software components”; Proceedings of
NATO Conference on Software Engineering; 88–98; 1969.

[McQuillan and Power 2006] McQuillan, J., Power, J.: “Towards re-usable metric def-
initions at the meta-level”; PhD Workshop of ECOOP 2006; 2006.

[Mehta et al. 2000] Mehta, N., Medvidovic, N., Phadke, S.: “Towards a taxonomy of
software connectors”; Proceedings of the 22nd International Conference on Software
Engineering; 178–187; 2000.

[Meijer 2002] Meijer, E.: “Technical overview of the common language runtime”; lan-
guage; 29 (2002), 7.

[Millen 1999] Millen, J.: “20 years of covert channel modeling and analysis”; Proceed-
ings of the 1999 IEEE Symposium on Security and Privacy; 113–114; 1999.

[Misra and Cook 2006] Misra, J., Cook, W.: “Computation orchestration: A basis for
wide-area computing”; Journal of Software and Systems Modeling; 6 (2006), 83–110.

[Nierstrasz and Achermann 2000] Nierstrasz, O., Achermann, F.: “Separation of con-
cerns through unification of concepts”; ECOOP 2000 Workshop on Aspects & Di-
mensions of Concerns; 2000.

[Ossher et al. 1995] Ossher, H., Kaplan, M., Harrison, W., Katz, A., Kruskal, V.:
“Subject-oriented composition rules”; Proceedings of OOPSLA 1995; 235–250; 1995.

[Ousterhout 1998] Ousterhout, J.: “Scripting: higher level programming for the 21st
century”; Computer; 31 (1998), 23–30.

[Owens 2007] Owens, S.: Compile time information in software components; Ph.D.
thesis; University of Utah (2007).

[Padioleau et al. 2008] Padioleau, Y., Lawall, J., Hansen, R. R., Muller, G.: “Docu-
menting and automating collateral evolutions in Linux device drivers”; Proceedings
of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008;
247–260; ACM, 2008.

[Papadopoulos and Arbab 1998] Papadopoulos, G., Arbab, F.: “Coordination models
and languages”; Technical Report SEN-R9834; CWI; Amsterdam (1998).

[Papazoglou 2003] Papazoglou, M.: “Service-oriented computing: concepts, character-
istics and directions”; Proceedings of the Fourth International Conference on Web
Information Systems Engineering (WISE 2003); 3–12; 2003.

[Parnas 1972] Parnas, D.: “On the criteria to be used in decomposing systems into
modules”; Communications of the ACM; 15 (1972), 1053–1058.

[Passerone et al. 2002] Passerone, R., de Alfaro, L., Henzinger, T., Sangiovanni-
Vincentelli, A.: “Convertibility verification and converter synthesis: Two faces of
the same coin”; Proceedings of the International Conference on Computer-Aided
Design 2002; 2002.

[Peltz 2003] Peltz, C.: “Web services orchestration and choreography”; Computer; 36
(2003), 46–52.

[Pilhofer 1999] Pilhofer, F.: Design and Implementation of the Portable Object
Adapter; Sulimma, Frankfurt, 1999.

[Pisello 2006] Pisello, T.: “Is there real business value behind the hype of SOA?”; IDG
Computerworld; (2006).

[Purtilo and Atlee 1991] Purtilo, J., Atlee, J.: “Module reuse by interface adaptation”;
Software - Practice and Experience; 21 (1991), 539–556.

[Reid et al. 2000] Reid, A., Flatt, M., Stoller, L., Lepreau, J., Eide, E.: “Knit: Compo-
nent composition for systems software”; Proc. of the 4th Operating Systems Design
and Implementation (OSDI); 347–360; 2000.

[Reussner 2003] Reussner, R.: “Automatic component protocol adaptation with the
CoConut/J tool suite”; Future Generation Computer Systems; 19 (2003), 627–639.

[Rine et al. 1999] Rine, D., Nada, N., Jaber, K.: “Using adapters to reduce interaction
complexity in reusable component-based software development”; Proceedings of the
1999 Symposium on Software Reusability; 37–43; 1999.

[Seeley 1990] Seeley, D.: “Shared libraries as objects”; USENIX 1990 Summer Confer-
ence Proceedings; 25–37; 1990.

[Serra et al. 2000] Serra, A., Navarro, N., Cortes, T.: “DITools: application-level sup-
port for dynamic extension and flexible composition”; ATEC ’00: Proceedings of the
USENIX Annual Technical Conference; 19–19; USENIX Association, Berkeley, CA,
USA, 2000.

[Shannon and Weaver 1949] Shannon, C., Weaver, W.: A Mathematical Theory of
Communication; University of Illinois Press, 1949.

[Shaw 1994] Shaw, M.: “Procedure calls are the assembly language of software inter-
connection: Connectors deserve first-class status”; Technical Report CMU/SEI-94-
TR-002; Carnegie Mellon University (1994).

[Shaw 1995] Shaw, M.: “Architectural issues in software reuse: It’s not just the func-
tionality, it’s the packaging”; Proc. IEEE Symposium on Software Reusability; 1995.

[Shaw et al. 1995] Shaw, M., DeLine, R., Klein, D., Ross, T., Young, D., Zelesnik, G.:
“Abstractions for software architecture and tools to support them”; IEEE Transac-
tions on Software Engineering; 21 (1995), 314–335.

[Stevens et al. 1974] Stevens, W., Myers, G., Constantine, L.: “Structured design”;
IBM Journal of Research and Development; 13 (1974), 115.

[Sutter and Plum 2003] Sutter, H., Plum, T.: “Why we can’t afford export”; ISO C++
committee paper (2003).

[Szyperski 1998] Szyperski, C.: Component Oriented Programming; Springer, 1998.
[Ts’o 1997] Ts’o, T.: “Microsoft “embraces and extends” Kerberos v5”; Usenix ;login:;

Windows NT Special Issue (1997).
[Waldo and Clemsford 1998] Waldo, J., Clemsford, M.: “Remote procedure calls and

Java Remote Method Invocation”; IEEE Concurrency; 6 (1998), 5–7.
[Wegner 1996] Wegner, P.: “Coordination as constrained interaction (extended ab-

stract)”; Proceedings of the First International Conference on Coordination Lan-
guages and Models; 28–33; 1996.

[Wegner 1997] Wegner, P.: “Why interaction is more powerful than algorithms”; Com-
munications of the ACM; 40 (1997), 80–91.

[Whitaker et al. 2004] Whitaker, A., Cox, R. S., Shaw, M., Grible, S. D.: “Construct-
ing services with interposable virtual hardware”; Proceedings of the Symposium on
Networked Systems Design and Implementation; 13–13; USENIX Association, San
Francisco, California, 2004.

[Yellin and Strom 1997] Yellin, D., Strom, R.: “Protocol specifications and component
adaptors”; ACM Transactions on Programming Languages and Systems; 19 (1997),
292–333.

[Zelesnik 2000] Zelesnik, G.: “Adding support for connector abstractions in the UniCon
compiler”; Web document (2000); available at http://www.cs.cmu.edu/%7eUniCon/
adding-connectors/expert-creation.html, retrieved 2008-08-26.

[Zelnick 1998] Zelnick, N.: “Nifty technology and nonconformance: the web in crisis”;
Computer; 31 (1998), 115–116.

