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The argument, ‘that you remember exactly the same proposal
being rejected in 1867,’ is a very strong one in itself, but its

defect is that it appeals only to those who also remember the
year 1867 with affectionate interest, and, moreover, are

unaware that any change has occurred since then.
— F.M. Cornford,

“Microcosmographia Academica”, 1908.

Abstract
Since their heyday the 1980s, distributed operating
systems—spanning multiple autonomous machines, yet
appearing to the user as a single machine—have seen
only moderate academic interest. This is a little surpris-
ing, since modern data centers might present an appeal-
ing environment for their deployment. In this position
paper, we discuss what has changed since the community
lost interest in them, and why, nonetheless, distributed
OSes have yet to be considered for data centers. Finally,
we argue that the distributed OS concept is worth a re-
visit, and outline the benefits to be had from it in the
context of the modern data center.

1 Introduction
Distributed programming abstractions are as old as the
ability to connect computers together [42, 43]. Nonethe-
less, historically the size and cost of owning a single
computer for a long time restricted the dominant model
to dumb terminals connecting to a single central, time-
shared machine. In the 1980s, however, cheap personal
computers with fast and standardized networking tech-
nology for LANs became widely available, and trig-

gered a wave of research into distributed operating sys-
tems. While the differentiation between distributed sys-
tems and distributed operating systems was fuzzy at the
time, later literature typically defines a distributed OS as
(i) spanning multiple independent, autonomous and com-
municating CPUs, and (ii) appearing towards the user as
a single machine [40]. Many such systems were devel-
oped [12, 22, 23, 25, 30, 32, 34, 38], and by the late
1980s, it was widely expected that distributed operating
systems would soon be ubiquitous [40].

Nothing could have been further from the truth. The
1990s became the decade of desktop computing, domi-
nated by traditional single machine OSes with their roots
in time-shared mainframe systems (UNIX, BSDs, Linux)
and systems based on newly developed home microcom-
puter OSes (such as DOS or MacOS). Distributed op-
eration happened at the application level, based on a
client-server model, and with the machine boundary be-
ing impenetrable to the OS and its abstractions. Upon the
client-server model, the rise of internet-based services
proliferated a hosted application model that has culmi-
nated in the “cloud” paradigm of recent years.

To support the server side of such applications, large-
scale data centers are both prevalent and indispensable
nowadays. Due to economies of scale, these are typ-
ically built as clusters of many computers from com-
modity parts [5, 18]. Nevertheless, the demands of the
large-scale applications running within them necessitate
the use of many machines for a single application, and
the desire for simplicity in programming and managment
models yields the common abstraction of the data cen-
ter as a single “warehouse-scale computer” (WSC) [18].
This setup, curiously, constitutes exactly the environ-
ment that distributed OS designers had in mind: a set of
independent computers that appears as a single system
to its users.

One might be tempted to expect this development to
have rekindled interest in distributed OS research. Yet
this has not happened. In this position paper, we first dis-



cuss why we believe the distributed OS concept did not
originally succeed (§2) and what has changed since (§3).
Despite those changes, distributed OS research remains
a niche interest, and in §4 we speculate why. Arguing
that, nonetheless, the time is right for a comeback, we
explain what benefits are to be had from thinking about
distributed OSes in the context of modern WSC data cen-
ters (§5). We finish by highlighting useful concepts for a
distributed WSC OS and debate the resulting challenges
(§6), before concluding (§7).

2 An idea ahead of the times
In the early 1980s, much enthusiasm erupted for design-
ing fundamentally distributed computing systems [24].
A common concept in these research systems was the
idea of sharing resources on a LAN of workstations, giv-
ing users the additional flexibility to use remote compute
power when necessary, and transparently offering net-
worked services for data storage, printing and commu-
nication. This flexibility, however, came at a cost.

The cost of transparency. The philosophical differ-
ence between the same services implemented atop tra-
ditional time-shared OSes and a distributed OS lies in
the fact that the latter performs distribution transparently
to the user [40], who is completely ignorant of where
processes and data are. This very advantage turned out
to be a key nail in the coffin of distributed OSes’ com-
moditization, however: as desktop applications evolved
rapidly, transparent distributed OS abstractions such as
distributed shared virtual memory (DSVM) [17] and pro-
cess migration [32] turned out to be a hindrance to deter-
ministic performance. This was problematic for interac-
tive desktop applications, as their resource and respon-
siveness needs exceeded the guarantees available from
the networking technology and software fault-tolerance
of the time. For an application running atop a distributed
OS with DSVM, any of its pages could be resident on
any machine, and its execution threads might be migrated
as the OS sees fit. At a multi-millisecond cost [17, 23]
for each remote page acquire and write operation (which
may occur non-deterministically at any time!), it is not
surprising that programmers and users preferred the safe
performance determinism of traditional OSes.

Compute/communication speed dichotomy. One
reason why the cost of remote operations was felt so
dearly is that microprocessor clock speeds and bottom
line performance increased rapidly in the 1980s and
1990s—far more so than communication speeds. While
LAN bandwidths of 10 MBit/s were available by the
mid-1980s, CPU clock rates of 10-20 MHz on RISC
architectures meant that compute speed far exceeded
communication speed. The 1990s only accelerated
this trend: as clock rates raced upwards and eventually
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Figure 1: LAN communication bandwidth and Compar-
ative Compute Speed (CCS; clock speed in MHz × reg-
ister width in bits) over time (N.B.: log-scale y-axes).

peaked around 3.5 GHz for thermal reasons in the
early 2000s, LAN bandwidth scaling largely lagged
behind serial per-CPU compute performance. Figure 1
illustrates this trend: it shows the Comparative Compute
Speed (CCS) of a range of Intel CPUs and the maximum
standard Ethernet bitrates over the period from 1982
to 2015.1 At the same time, communication latency
only improved by very little [33, 39], widening the gap
between computation and communication speed. While
bandwidth has now started to outscale compute speed
(cf. Figure 1), unmasked latency still has a high cost.
However, as we explain in §3, many modern WSC
applications fundamentally must be distributed (unlike
the earlier desktop applications!), and thus already have
to deal with the latency issue.

Conflation of micro-kernels and distributed systems.
Many distributed OS research projects chose a micro-
kernel as a central design component, aiming to run as
little code as possible in privileged mode. This made
sense: as micro-kernels provide communication primi-
tives for IPC, it appeared logical to simply extend such
mechanisms to support network communication (e.g. via
RPCs). Moreover, micro-kernels enforce a disaggrega-
tion of the OS into independent components—a view
highly compatible with the distributed OS vision, en-
abling components to run in different places. The choice
of micro-kernels as a basis, however, put distributed op-
erating systems at a further disadvantage in the compet-
itive arena of 1990s desktop computing, as they also in-
herited many perceived drawbacks of the micro-kernel
approach [16].

1CCS is clock speed in MHz × register width in bits, for fairer com-
parison to Ethernet bitrates.



3 How the world has changed
The historical evidence clearly shows the failure of the
distributed OS concept. Instead, orchestration of dis-
tributed operation is now firmly the business of appli-
cations. So, can we declare the case closed? Not quite,
as some key conditions have recently changed, or are in
the process of changing.

I/O is faster than computation. While CPU clock
rates have plateaued in recent years, network communi-
cation bandwidth keeps increasing:2 A typical CPU core
nowadays runs at 2-3 GHz and increases in serial CPU
speed have stagnated, while data center LANs are adopt-
ing 10 GBit/s Ethernet, with 40 GBit/s and 100 GBit/s
Ethernet on the horizon. Indeed, long-standing OS ab-
stractions designed on the premise that network I/O is
far slower than local operations—such as the BSD sock-
ets interface—do not scale to ever-faster networks [15].
Of course, the aggregate compute capacity is still in-
creasing as the number of cores per processor keeps
growing. The need to exploit this parallelism, how-
ever, brings even single-machine abstractions closer to
distributed systems [6]. Due to this reversal of relative
speed, the performance advantage of spatial locality is
lost at least for some applications. Indeed, it has been
observed that accessing remote memory and disks has
no substantial overhead any more [3, 31]. As a second-
order consequence, moving computation and state (e.g.
towards a faster processor or a GPGPU/FPGA accelera-
tor, or away from contention) is increasingly viable, as
migration overheads diminish.

Data center applications necessitate distribution.
Large-scale WSCs in data centers were not conceiv-
able in the 1980s, although notions of much smaller-
scale shared “processor banks” [27] and “processor
pools” [25] existed. Modern WSC applications are suffi-
ciently demanding that a single machine alone often can-
not satisfy their needs. They require distribution for scale
and fault-tolerance, rather than merely benefiting from
the flexibility granted. Thus, existing data centre appli-
cation stacks implement many of the features originally
supported in distributed operating systems as user-space
“middleware” libraries (e.g. name services, distributed
locking, caching and scheduling). The role of the tra-
ditional OS, with its myopic view of the local machine,
on the other hand, is marginalized.

Micro-architectures meet distributed systems. Mod-
ern multi-socket many-core machines have complex in-
ternal interconnects as well as deep cache hierarchies.
Hence, even the within-chassis environment is increas-
ingly reminiscent of a networked distributed system, and
operating systems must adapt to this new reality [8]. In-

2Latency, however, does not improve similarly, as we discuss in §6.

deed, some predict that cache-coherent shared memory
is doomed as the number of CPU cores increases, and
will give way to message-based network-on-chip com-
munication [4]. As shared memory and message passing
are dual in expressivity [21], a distributed OS can ideally
map a single system view on top of such a messaging
layer with little extra cost over that which is already in-
curred due increasingly distributed hardware.

Transparency is in demand. Distributed program-
ming for the analysis of large data sets and the
deployment of complex distributed services has become
a mainstream activity in WSCs. For this purpose, the
most popular systems are those frameworks that raise the
level of abstraction and liberate the programmer from
knowing the details of distributed coordination, syn-
chronization and fault-tolerance implementations. The
emergence of MapReduce [14] and many similar com-
puting frameworks [19, 26, 44], alongside infrastructure
systems for distributed storage [11, 29], are testimony
to this trend. Since these frameworks already provide
transparent distribution and tolerate the overheads of
coarse-grained parallelism by design, they are a better fit
for a distributed OS than the earlier desktop applications.

In summary, the environment has changed dramati-
cally since the 1990s; a revisit of distributed OS ideas
seems overdue against the backdrop of WSCs. Yet, it
has not happened—in the following, we discuss why.

4 Why distributed OSes have not been re-
visited yet

WSCs are a particular, specialized distributed environ-
ment of unprecedented scale: a data center with 20,000
servers of 48 cores each (i.e., a million cores) is now a
plausible setup [36]. But size is not the only distinguish-
ing factor: WSCs, unlike traditional data centers, are
operated by (and for) a single organization and “much
of the application, middleware, and system software is
built in-house” [5, 18]. At the OS level, WSCs today
run many instances of a commodity microcomputer OS
linked together by user-space “middleware” [41]. Why,
given the apparent similarity to the target environment
of distributed OSes, has nobody considered designing a
distributed OS for a WSC? We believe there are four key
reasons.

1. Legacy code support. The success of open source
software has produced a giant corpus of legacy code
written on top of the UNIX/POSIX paradigms—from
device drivers to libraries and applications. Ignoring
this legacy, or breaking compatibility with it, seems
like an unwise decision. Much distributed systems
software has been written atop the sockets abstraction
and thus internet protocols have become a lowest-



common denominator communication mechanism in
WSCs, despite not always being optimal choices.
This is especially true in the case of TCP, which is
designed for much more pessimal network conditions
than those typically found in WSCs [2].

2. Migration inertia. Current data center execution en-
vironments are identical to those we use on personal
machines. This yields immediate developer familiar-
ity as an advantage, but also creates a strong iner-
tia to stick to known principles and software pack-
ages. While a new high-level framework API for dis-
tributed data processing may be easy for a program-
mer to pick up, the potential learning curve for a dif-
ferent OS is much steeper.

3. Rapid evolution. WSCs evolved and became preva-
lent in response to the business needs of rapidly
growing internet companies. The main challenge for
a long time was to scale up as fast as possible, caus-
ing rapid evolution of software platforms and frame-
works alike. This pace of innovation is well beyond
even the most optimistic OS development timescales:
traditional user-space software development and de-
bugging is easier, cheaper and more readily utilizes
existing tools than in-kernel development or working
at the OS level.

4. Focus on multi-core and virtualization. The OS
research community, on the other hand, while unen-
cumbered by immediate business imperatives, has fo-
cused elsewhere. In particular, much research atten-
tion has been dedicated to virtualization and support
for heterogeneous multi-core machines [6, 28]. Vir-
tualization injects a layer of abstraction below the tra-
ditional machine boundary, but expressly does not of-
fer transparency or a single-system view across mul-
tiple VMs to applications. Heterogeneous multi-core
research does try to offer such a view, but is focused
on bridging architectural and instruction set gaps,
rather than extending the scope of the OS across ma-
chines. As a consequence, researchers have not spent
as much time considering how the OS in a WSC can
be specialized or redesigned, or how OS primitives
can be extended across machine boundaries.

5 Why the time is right
We do not believe that any of the reasons presented in
the previous section are fundamental. Multi-core hard-
ware featuring vastly increased parallelism and increas-
ingly asymmetric performance characteristics is already
forcing code to be re-engineered [10]. Furthermore it
is often the case that WSC operators extensively modify
the OS: in 2009, Google were already maintaining 1,280
proprietary patches adding ~300,000 lines to the Linux

kernel [41] for their WSC operations. In this light, we
believe that the time has come to reconsider distributed
OS research, and in the following outline the benefits of
doing so.

Automated decisions. The complexity of WSC-scale
operations and applications is such that key operating
decisions are best made by integrated software stacks.
At the same time, simplicity in programming and con-
figuration abstractions is of key importance. Distributed
OSes have the potential to provide both: the OS can de-
cide where, when and what to execute, while permitting
the user to provide, and reason about, high-level inten-
tions instead of minute details of mechanism. Why must
this take place in the OS, rather than continuing in user-
space “middleware”? While we are aware that there is
a delicate balance between feature expansion and attack
surface expansion [20], we believe pushing distributed
systems functionality into shared OS components can be
beneficial. As with all operating systems, common oper-
ations be implemented once and shared between all ap-
plications in the WSC, and applications can assume them
to be present and trustworthy. Furthermore, additional
efficiency and security enhancements are only possible
when the per-node kernel is fully aware of its role as a
component in a massively distributed system.

Information flow control and provenance. Control-
ling and managing the provenance of user data is a key
challenge in WSC environments. Forcing applications to
access data and communicate using the abstractions of
a distributed OS provides a convenient mechanism for
tracking information flow. Thus, a distributed WSC OS
can provide assurances about data management policy
conformance (and detect violation attempts). This is no-
toriously difficult in the user-space of a traditional OS,
where it is possible to bypass such mechanisms trivially.
Given the opportunity to re-architect the OS to match its
operating environment, this functionality need not come
with severe performance penalties.

Distributed tracing and debugging. The same inter-
ception mechanisms described above can also be lever-
aged for purposes of debugging and tracing WSC ap-
plication software—a well known and challenging prob-
lem with traditional WSC setups [9] due to the additional
complexity introduced by the mismatch between OS and
distributed systems abstractions.

Opportunities for new abstractions. Traditional OS
abstractions for I/O, resource allocation and isolation
were not designed for the highly loaded, densly shared
environment of a WSC. Reconsidering OS design for the
WSC presents opportunities for better tuned abstractions.
For example, recursive abstractions may permit applica-
tions to be ignorant of whether they are operating on a
slice of a machine, the cluster, or indeed a sub-slice of an



existing slice. Distributed OSes can excel at providing
such a view, since they permit interposition of operations
for distribution. Furthermore, increased networking and
disk I/O performance have highlighted limitations in tra-
ditional interfaces (such as sockets). Workarounds for
these exist [37], but often have drawbacks—such as lack
of protection due to bypassing the kernel or limitations
on concurrent access. The highly transparent design of
a distributed OS allows a different approach: the OS can
take care of the precise I/O mechanism, while the appli-
cation sees only a high level API.

6 Concepts and challenges
In the following, we briefly discuss key concepts and
challenges for distributed WSC OS, and point to exist-
ing work that might help addressing them.

Unified naming. Workflows in WSCs require data to
be uniquely identified, so that applications can transpar-
ently check their existence and retrieve them from any-
where. Traditional page-level distributed shared memory
may be too fine-grained for this purpose. Approaches
akin to DOMAIN’s “object storage system” [23], which
provides unique IDs to all objects from memory regions
to hardware devices, might be worth investigating.

Data-flow abstractions. Distributed data-flow is a
popular choice for WSC application programming as it is
amenable to exposing a transparent high-level API [19,
26]. While traditional distributed OSes tend to stick
closely to the familiar model of files and processes, a fu-
ture WSC OS may benefit from being built around data-
flow abstractions. This is particularly pertinent given
that data-flow maps well onto capability-based security
mechanisms, and has attractive properties (e.g. explicit
dependencies) for information flow tracking.

Network latency. While network bandwidth has
outscaled serial CPU performance in recent years, net-
work latency has not reduced by nearly as much [33, 39].
Indeed, there is some evidence that it is only getting
worse [5, 13]. This has a direct impact on the perfor-
mance of a distributed WSC OS. As we have argued,
WSC applications may tolerate this, since they are al-
ready subject to network latencies by virtue of being dis-
tributed, but improvements are still desirable. Good en-
gineering can help, but the answer may lie in old con-
cepts such as ordered broadcast [40]: increased band-
width makes time-division multiplexing of a fraction of
the link capacity a viable optimization for low latency.

Backwards compatibility. It would seem that despite
all the benefits, a distributed WSC OS would still suf-
fer the Achilles heel of breaking legacy code compat-
ibility by changing OS APIs and semantics. Tradi-
tional distributed OSes handle this through emulation li-
braries [1, 38] or syscall interposition [25, 40]. On a

WSC, we can run both a traditional OS and a new dis-
tributed OS side-by-side (at least for incremental migra-
tion). Recent work on OS extensibility and library OSes
shows how legacy OSes can be run on top of adaptation
layers at low overhead [7, 35], and applications already
ported to the distributed WSC OS can run on machines
with the legacy OS via a shim library implementing the
distributed OS API in user-space.

Distributed consistency. Most traditional distributed
OSes use single ownership models for distributed con-
sistency. Since the 1980s, however, weaker consistency
models for higher availability have received much atten-
tion. As these are particularly popular in data center ap-
plications, it seems apt to consider whether a distributed
WSC OS could depart from the traditional, strongly-
consistent state in state in distributed OSes. Having OS-
level support for for relaxed consistency operations—
both for application I/O and for OS state—may help
masking inevitable communication latency and increase
overall scalability.

Security considerations. The 1980s distributed oper-
ating systems had—by today’s standards—fairly naı̈ve
security and authentication models, and much work in
distributed systems security has followed since. Due
to the sensitive nature of data processed on WSCs, it
is paramount that a distributed WSC OS is able to pre-
vent accidental data disclosure, security compromises
and denial-of-service attacks to the furthest possible ex-
tent. Hence, a revisit of distributed OSes for the data
center will likely have to dedicate significant attention to
ways of ensuring integrity and security are maintained.
Capability-based models might be an especially good
candidate to investigate here, as they fit naturally with
the data-flow nature of data center software.

7 Discussion and conclusion
A quarter century down the line, distributed operating
systems are due for a revisit. This time, providing a
special-purpose OS well suited to WSCs should be the
goal—not flexible desktop computing. Indeed, we be-
lieve that any special-purpose data center OS will neces-
sarily have to acknowledge and build upon the breadth
work done on distributed OSes in the past. As such, we
have put our money where our mouth is, and are develop-
ing on DIOS, a new distributed operating system design
for WSCs. A prototype implementation is in the works.
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