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ABSTRACT
Scoped-flooding is a technique for content discovery in a
broad networking context. This paper investigates the ef-
fects of scoped-flooding on various topologies in information-
centric networking. Using the proposed ring model, we show
that flooding can be constrained within a very small neigh-
bourhood to achieve most of the gains which come from
areas where the growth rate is relatively low, i.e., the net-
work edge. We also study two flooding strategies and com-
pare their behaviours. Given that caching schemes favour
more popular items in competition for cache space, popu-
lar items are expected to be stored in diverse parts of the
network compared to the less popular items. We propose
to exploit the resulting divergence in availability along with
the routers’ topological properties to fine tune the flooding
radius. Our results shed light on designing e�cient con-
tent discovery mechanism for future information-centric net-
works.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network com-
munications; C.4 [Performance of Systems]: Modeling
techniques

General Terms
Theory; Design; Performance

Keywords
Information-Centric Networking; Scoped-flooding; Content
Discovery; Optimisation; Graph Theory

1. INTRODUCTION
Content, especially popular content, in an information-

centric network (ICN) [1–4] may reside “anywhere”, there-
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fore the distribution e�ciency heavily relies on the e↵ective-
ness of content discovery mechanisms. Considering the gap
between large content objects and scarce router resources,
designing intelligent content discovery to balance protocol
simplicity, computational complexity and tra�c overhead is
crucial in every ICN architecture.

Content discovery is generally achieved by resolution-based
[2–8] or routing-based [1, 9, 10] solutions. Resolution-based
discovery is a deterministic solution which maps requesters
with providers at rendezvous points. The rendezvous point
can be either statically configured or referred by proper con-
tent addressing [3, 7, 8]. Though resolution-based discovery
has relatively small tra�c footprint, its performance may
degrade quickly in face of large and dynamic content de-
mands. On the other hand, the routing-based discovery usu-
ally provides a probabilistic solution. The chances of finding
the content can be improved by exploring a larger area of
the network, i.e., via collaboration or flooding. In prac-
tice, naive network-wide flooding is rarely used due to its
significant tra�c overhead. A flooding operation is usually
constrained within a well-defined neighbourhood (or scope)
which is often referred to as scoped-flooding. Technically,
such constraint on the neighbourhood size is achieved by
setting a hop limit for each flooding (e.g., TTL limit).

The use of flooding is based on the following consider-
ations. First, flooding can significantly reduce the proto-
col complexity and simplify the design, which is very de-
sirable in an unstable environment [11]. Second, in addi-
tion to the well-known temporal locality, user requests also
possess strong spatial locality [12]. The two localities to-
gether indicate that it is highly likely to discover a popu-
lar content among nearby neighbours. Third, flooding can
reduce the state maintained in the network for a routing-
based discovery [13]. Fourth, the communication between
close neighbours is relatively cheap (regarding delay, trans-
mission cost and etc.) compared to using backhauls in many
cases. Therefore, flooding remains as the default fallback
strategy for content discovery if normal forwarding fails in
CCNx [14], and also used in various routing and caching
designs [10,13,15–17,41].

Despite its wide application (e.g., in ICN [1,41], P2P [18,
19], MANET [20, 21]), a thorough understanding of how
scoped-flooding impacts content discovery is still lacking.
More precisely, the following key questions are awaiting an-
swers: (1) what is the optimal radius of scoped-flooding?
(2) where do most of the gains come from in a network? (3)



how do topological properties of a network impact scoped-
flooding? The answers will shed light on designing more
intelligent strategies by flooding for the proper content at
the right place with the optimal radius.

In this paper, to address the aforementioned problems, we
propose a node-centric, ring-based model to analyse scoped-
flooding. Based on the ring model, we first investigate neigh-
bourhood growth model on general network topologies. The
results show that average growth rate increases at least ex-
ponentially and can be well estimated using the information
within 2-hop neighbourhood. Along with Bayesian tech-
niques, we solve the optimal radius problem and further
compare two flooding strategies (static and dynamic) on spe-
cific network models.

Specifically, our contributions are:

1. We perform a theoretical analysis on the e↵ects of
scoped-flooding using the proposed node-centric ring-
based model.

2. The analytical results along with the evaluations show
optimal flooding radius is very small (no more than 3
hops).

3. Most of the gains of scoped-flooding are from very
small neighbourhoods located at network edges, indi-
cating flooding is more proper at network edge instead
of core.

2. SYSTEM MODEL
We assume an information-centric network whose topol-

ogy is represented with a graph G = (V, ⇢), where V is a
set of nodes characterized with degree distribution ⇢. ⇢k
denotes the probability that a node has exactly degree k.
The distribution can be arbitrary. For a node vi, we orga-
nize its neighbourhood into r concentric rings according to
the lengths of shortest paths between vi and its neighbours.
We denote nr as average number of r-hop neighbours on the
rth ring. We refer to this model as node-centric ring-based
model, or simply a ring model. In reality, nodes may break
down resulting in lost messages. We model the stability with
� 2 (0, 1] which denotes the probability that a router is up
and working properly, i.e., the reliability rate. Equivalently,
(1� �) denotes the failure rate.
Designing a fully-fledged protocol is out of the scope of

this paper. Instead, we briefly describe general flooding be-
haviours in the following. Nodes in a network receive re-
quests from either directly connected clients or neighbours.
We exclude clients from the model and focus only on core
network. Whenever a request arrives, a node first looks
for a match in its local cache. If the node cannot find
the requested content locally, it decides whether to initi-
ate a scoped-flooding before simply forwarding the request
to the next hop along the path to original content providers.
The flooding is constrained within a r-hop neighbourhood
by maintaining a hop counter in packet header. The node
terminates the flooding if the hop counter reaches r. If the
content is discovered, we assume the content can always re-
turn to the initial flooding node in a reverse route similar to
CCNx. To prevent loops, nodes do not re-flood the messages
they have seen before.
For simplicity, we do not consider the case of partially

matched content. A node i either has the exact requested
content or not. The value of response R is described as an
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Figure 1: In a ring model, to estimate whether the utility on
the (r + 1)th ring drops below zero, a node on the rth ring
needs to know three pieces of information (1) which ring it
is; (2) how its neighbourhood grows; (3) content availability.

i.i.d random variable which follows a Bernoulli distribution
R ⇠ Bernoulli(p), with 1 representing a successful discovery
and 0 otherwise. p is often referred to as content availability.
Note that p itself can follow di↵erent distributions to model
content availability (e.g., Zipf or Weibull). By definition,
we let q , 1 � p denote the probability of failing to find
the matched content on a node. Fig. 1 illustrates the ring
model under our investigation. Note that there will be less
symmetry at network edges but the model remains the same.

There are many resource constraints in a network such as
energy, bandwidth and storage. In our model, we use c to
represent the cost induced by receiving and processing flood-
ing requests. Besides, consecutive requests may also impact
content delivery in terms of added queueing and processing
delay which we assume to be roughly proportional to the
number of messages. However, the cost can increase faster
and requests may be dropped in a busy network. To gener-
alise, the cost is modelled as a linear function of number of
nodes involved in a flooding.

3. NEIGHBOURHOOD GROWTH MODEL
The first step to solve optimal radius is to understand how

neighbourhood grows as a function of flooding radius. New-
man derived this functional relation in [22] using a general
graph model G = (V, ⇢). We recap briefly the major steps
of the derivation in Section 3.1, based on which we inves-
tigate two specific types of networks, i.e., random networks
and scale-free networks. Then we examine the accuracy of
estimates on both synthetic and realistic networks.

3.1 Average Number of r-Hop Neighbours
The e↵ective topology due to a flooding can be viewed as a

distribution tree. On non-trivial topologies, such a tree can-
not be easily decomposed into multiple linear models (from
root to leaves). We apply ring model to organize the neigh-
bourhood of node v into r concentric rings according to the
neighbour’s distance to v so that we can study the growth
ring by ring. Calculating n1, namely the average number of
directly connected neighbours, is trivial. Let hki denote the
mean of a given degree variable k. Average number of 1-hop
neighbours equals the node’s average degree as follows:

n1 = hki =
1X

k=0

k⇢k. (1)

However, calculating nr (r � 2) is not as straightforward
as n1 since the degree distribution of a node’s neighbour is



not the same as the general degree distribution of the whole
network [24]. Let vj be one of vi’s next-hop neighbours and
⌧k be the probability of vj having k emerging edges which
lead to k new next-hop neighbours. Note that we exclude the
edge leading back to vi from vj since it does not contribute
to new nodes. The results in [25] show ⌧k is proportional
to both vi’s degree and general degree distribution of the
network. The reason is the edges of a high-degree node have
a higher chance to connect to any given edge in the network.
The probability of vj having k new next-hop neighbours is:

⌧k = Pr[deg(vj) = k|⇢] = (k + 1)⇢k+1P
m m⇢m

.

Therefore, the average number of new nodes from vj is:

1X

k=0

k⌧k =

P1
k=0 k(k + 1)⇢k+1P

m m⇢m
=

P1
k=0 k(k � 1)⇢kP

m m⇢m

=
hk2i � hki

hki .

Because we did not assume vi is on any specific concentric
ring except r � 2, we can use the same ⌧k and the same logic
above to calculate arbitrary r-hop neighbours. Namely, nr

equals the average number of nodes on the (r � 1)th ring
multiplied by their average out-degree to the rth ring.

nr = nr�1

1X

k=0

k⌧k =
hk2i � hki

hki nr�1

=


hk2i � hki

hki

�r�1

· hki (2)

Eq.(2) shows that the number of r-hop neighbours is a func-
tion of the degree variable. Using eq. (2), we can calculate
n2 = hk2i � hki. As we know n1 = hki, by applying the re-
placement recursively, we can rewrite eq. (2) as below, which
eventually leads us to the same function found in [22].

nr =


n2

n1

�r�1

· n1. (3)

Eq.(3) shows that nr can also be expressed as a function
of the ratio between average number of 2-hop and 1-hop
neighbours. The neighbourhood size only converges if there
are fewer 2-hop neighbours than 1-hop ones, i.e., n2

n1
< 1,

which actually implies the network has multiple components
with high probability. We define neighbourhood growth rate
� as

� , n2

n1
, hk2i � hki

hki . (4)

Note that the derivation above applies to any general net-
work of arbitrary degree distributions. The result gives an
interesting implication on the topological inference, which
says a node can approximate � by utilizing the local knowl-
edge within its 2-hop neighbourhood. In the following, we
focus on the growth rate � and study two specific network
models: random network and scale-free network. Both are
prominent in networking research due to their representa-
tiveness of many realistic networks [27–29]. Specifically, em-
pirical evidence shows mobile and opportunistic networks
can be either random [29] or scale-free [30], whereas fixed
and wired networks are mostly scale-free [27,28].

3.2 Case 1: Random Networks
Random networks have a binomial degree distributionB(|V |, ⇢)

which is given by the following formula [23]

⇢k =

 
|V |� 1

k

!
⇢k(1� ⇢)|V |�k�1.

For very big |V | and small ⇢, the binomial distribution above
converges to the Poisson distribution in its limit. Then, the
degree distribution ⇢k becomes:

lim
|V |!1

⇢k =
hkike�hki

k!
.

For calculating � in eq.(4), we need to derive the second
moment of random variable k, i.e., hk2i. Using Touchard
polynomials 1, the rth moment of a variable with Poisson
distribution can be calculated as eq. (5) shows.

�
r
k

 
denotes

Stirling numbers of the second kind [23] which represents
the number of ways to partition a set of r objects into k
non-empty subsets, and is known for calculating hkri.

hkri = e�hki
1X

k=0

hkik · kr

k!
=

rX

k=1

(
r
k

)
hkik (5)

Combining eq. (5) and eq. (2) yields

n2 =

(
2
2

)
hki2 +

(
2
1

)
hki � hki = hki2. (6)

Similarly, by applying the replacement recursively, we get

nr = hkir =) � = hki (7)

Eq. (7) shows that n1, n2, n3 ... form a geometric series.
The growth rate is � = hki. It is worth noting that many
topological properties (e.g., average degree, density etc.) are
homogeneous on random networks. In other words, a ran-
domly chosen sub-network possesses similar characteristics
as the whole network which is also known as self-similarity.

3.3 Case 2: Scale-free Networks
Although random networks give a very neat form of growth

rate, many realistic networks are scale-free and the node de-
gree follows a power-law distribution, i.e., ⇢ / k�↵ with
↵ > 2 [27, 28, 30]. For a power-law distribution, the rth

moment of random variable k equals:

hkri = kr
min · ↵� 1

↵� 1� r
8↵ > r + 1 (8)

Note that a power-law distribution is extremely right-skewed
and has a heavy tail. Only the first b↵� 1c moments exist,
the other moments are infinite. If we plug eq.(8) into eq.(2)
and let kmin = 1, the growth rate equals:

� =
1

↵� 3
8↵ > 3 (9)

Eq. (9) means that though most real-life networks have a
well-defined average node degree, their variance is infinite,
which further indicates the growth rate � is unbounded.
1We can also use moment generating functions for a Poisson

random variable with parameter �, i.e., MX(t) = e�(e
t�1),

and we derive hk2i by calculating M 00
X(t = 0). This gives us:

hk2i = hki2 + hki. hkri can be calculated using higher order
moments similarly.



Table 1: Overestimation of the model at each hop for various network graphs. V : Number of nodes and E: Number of nodes
in the generated instance of the graph, l: average path length. Shaded cells represent the cases where the error is below 0.20.

Id Topology V E hki l Clustering
Overestimation of the model

r = 2 r = 3 r = 4 r = 5 r = 6
1 Random 339 338 1.994 23.07 0 0.327 1.046 2.359 4.692 9.092
2 Random 8030 9761 2.431 12.03 0 0.152 0.371 0.642 0.972 1.399
3 Random 9426 15068 3.197 8.30 0.00040 0.060 0.130 0.212 0.332 0.565
4 Random 9811 20073 4.091 6.75 0.00049 0.023 0.053 0.106 0.259 0.873
5 Random 9928 25060 5.048 5.88 0.00048 0.004 0.017 0.079 0.419 2.79
6 Random 9989 35020 7.011 4.95 0.00066 0.003 0.030 0.229 2.139 54.124
7 Scale-free, ↵ =3.24 7141 9648 2.70 7.88 0.00057 0.093 0.271 0.529 1.069 2.599
8 Scale-free, ↵ =3.35 5869 7347 2.50 8.66 0.00076 -0.115 -0.174 -0.194 -0.16 0.013
9 Scale-free, ↵ =3.50 5960 7357 2.47 8.99 0.00013 -0.356 -0.555 -0.68 -0.757 -0.794

For 3 < ↵ < 4, the growth rate is bounded but the neigh-
bourhood size never converges. It is also interesting to notice
when ↵ > 4, nr converges to zero at its limit r ! 1. The
reason is the existence of super hubs with extremely high
degrees which strengthens the small-world e↵ect and makes
the network diameter extremely short. We refer to [23] for
more thorough and interesting discussions on graph topo-
logical properties. For both random network and scale-free
network, we can see neighbourhood growth is at least expo-
nential which sheds light on the flooding strategy design.

3.4 Accuracy on Estimating �

To assess the model accuracy, we generate random and
scale-free topologies for which we calculate the actual aver-
age neighbourhood at each hop distance, i.e, n̄r. To derive
the nr estimated by the model, we first find the parameter of
a corresponding degree distribution, i.e., Poisson for Erdős-
Rényi random graph and power-law for scale-free graph, by
maximum likelihood estimation.2 After finding the distri-
bution parameter, we calculate nr using eq.(7) or eq.(9) and
compute the deviation from n̄r by (nr � n̄r)/n̄r. For both
topologies, we set the number of nodes to N = 10000. If
a generated network is not connected, we use the largest
component hence V can be smaller than N . The link prob-
ability parameter ⇢ determines the number of edges in an
Erdős-Rényi graph, similar to the exponent ↵ in a scale-free
network.

Table 1 summarizes the network properties along with the
deviation, i.e., overestimation ratio. r = 1 is excluded as it
converges to 0 for all settings. For almost every setting,
the model overestimates the reality only slightly for r = 2
and r = 3. For V = 339, we attribute the deviation to
both the finite size e↵ect as well as the absence of random
graph property, i.e., the network does not exhibit Poisson
degree distribution as the model assumes. Increasing hop
count makes the model deviate significantly from the reality,
especially when r � l, which is expected as a result of finite
size of the networks. For r = 4, the model captures the
reality quite well for large V and moderate hki – the region
where the random graph property exists but the network is
not so densely connected. The deviation is higher for the
settings with higher hki due to higher clustering and smaller
network diameter.

2For scale-free networks, we use the method described in
[31].

For scale-free networks, eq.(9) may either underestimate
or overestimate depending on the power-law exponent ↵.
For ↵ ⇡ 3, the expected growth rate is very large result-
ing in overestimation in neighbourhood (e.g., topology-7 in
Table 1). For ↵ > 3, the estimated growth is more sta-
ble which leads to underestimation of the real growth, e.g,
topology-8 and topology-9. We attribute this dispersion to
the diversity of the degree distribution in a scale-free net-
work and limitations of our model to represent this diversity
accurately.

The ISP networks are smaller, ranging from a couple of
hundreds to thousands of nodes [27], which results in a
slower growth after certain hops. To understand this ef-
fect, we derive the growth rate at rth hop as �r =

nr+1

nr
and

plot them in Fig.2 for eight ISP networks. Recall that in
the analysis we have a single � value for the whole networks
withN ! 1. As the figure shows, the growth rate decreases
with increasing hop due to the finite size of the network. Al-
though the growth rate is a decreasing function of r, we can
observe in Fig. 2 that the neighbourhood keeps growing for
several hops, e.g., r ⇡ 5. �r takes values below 1 for r
greater than average path length that varies between 3.36
hops to 5.51 hops. In general, the neighbourhood growth
model performs very well within a moderate scope on both
synthetic and realistic networks.
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Figure 2: Change in neighbourhood in real ISP networks.
We can see that the neighbourhood growth is constrained
by the finite size of real networks. The growth rate slows
down when it is beyond 4 hops.



4. OPTIMAL FLOODING RADIUS
Based on the previous growth model, we continue our

study on calculating the optimal flooding radius in two cases:
with and without prior knowledge on content availability.

4.1 Effective Nodes
Since nodes may be up or down, we let � denote the proba-

bility that a node is up, namely a node’s reliability rate. We
define the e↵ective nodes n̂r as the nodes that are working
and also reachable on the rth ring. Since only the e↵ective
nodes contribute to flooding messages, i.e., improving con-
tent discovery, it is crucial to know the growth of e↵ective
nodes for a specific � in order to derive the optimal radius.

Given a node has n1 1-hop neighbours, its e↵ective 1-
hop neighbours equals n̂1 = �n1 by assuming a node’s state
(up or down) is independent of each other. Given growth
rate �, the e↵ective 2-hop neighbours equals n̂2 = ��2n1.
Similarly, we can calculate n̂3 using n̂2. Applying iteratively,
we calculate the e↵ective nodes on the rth ring as follows:

n̂r = (��)r�1�n1 = �rnr. (10)

It is easy to see the similarity between eq.(3) and eq.(10).
In fact, n̂1 = �n1 is the e↵ective 1-hop neighbours and ��
can be viewed as e↵ective growth rate given nodes may fail
with certain probability (1 � �). For low reliability rates,
the gap between the number of e↵ective nodes and the r-
hop neighbourhood will quickly increase with an increasing
r.

4.2 Content Availability as A Priori
The purpose of flooding is to increase the chance of dis-

covery by visiting enough nodes. Given n visited nodes,
the probability of finding the content of availability p equals
(1� qn) which we use to represent the gain from a flooding.
On the other hand, a bigger n also introduces larger cost
which limits the utility U as eq.(11) shows:

U = (1� qn)� n · c. (11)

�U in eq.(11) is apparently convex as an exponential func-
tion is convex and the linear combination of convex functions
preserves convexity. To maximise U , the optimal number of
nodes n⇤ we need to visit can be calculated as below:

U 0(n) = 0 =) �qn · ln q � c = 0 =) n⇤ =
ln c� ln ln q�1

ln q
.

n⇤ represents the optimal total number of nodes. Using
eq.(10), we can calculate the optimal radius by summing up
the e↵ective nodes from ring 1 to r then solving the equation
below.

X

r

n̂r =
X

r

(��)r�1�n1 = n⇤

4.3 Inferring the Content Availability
We previously assumed that the content availability p is

known a priori. Technically, we can set up monitoring nodes
to sample request streams. However, monitoring can be
expensive and sometimes may not even be feasible. Nev-
ertheless, the probability of finding a specific content in a
neighbourhood is a good indicator for its actual availability,
since the more popular a content is, the more probable it is
to find it among nearby neighbours. We use the Bayesian
technique proposed in [32] to estimate content availability.

Eq.(12) is the probability density function of p conditioned
on previous i negative (i.e., unsuccessful) queries.

f(p|i) = Pr(i|p) · f(p)
R 1

0
Pr(i|p) · f(p)dp

(12)

Because Pr(i|p) = qi, if we use the Bernoulli distribution
and let f(p) = 1, then we have

f(p|i) = qi
R 1

0
qidp

= (i+ 1)qi.

After getting the posterior of p, we can calculate the ex-
pected p after i negative queries as below

hpi=
Z 1

0

p(i+1)qidp =

Z 1

0

(i+1)(1�q)qidq =
1

i+ 2
. (13)

Note that neither p nor q appears in eq.(13). The deriva-
tion above gives a very clean estimation of content availabil-
ity especially when monitoring is not possible or the content
has never been observed before.

4.4 Content Availability as Posteriori
Without prior knowledge on content availability, we can-

not apply the conventional optimization as that in Section
4.2. Even with the Bayesian inference introduced in Sec-
tion 4.3, deciding the optimal radius can be di�cult, es-
pecially when the request comes from directly connected
clients or does not carry any information about the num-
ber of nodes it has traversed. To get around this challenge,
we let a node flood its 1-hop neighbours by default to boot-
strap the inference on p. Then we consider the utility of
each ring separately and adaptively adjust the estimate of p
on every ring. The general mechanism can be summarized
as follows:

1. If a request does not contain useful information for
estimating the availability (e.g., number of nodes queried), a
node initiates a flooding to its directly connected neighbours.
A flood message carries 3 pieces of information: the node’s
local growth rate � = n2

n1
; number of 1-hop neighbours n1;

a counter r to record the number of hops it has travelled.3

2. When a node receives a flood message, it first estimates
the availability p using �, n1 and r embedded in the message
by assuming the requested content cannot be found so far
(within r-hop neighbours). More particularly, as follows:

hpi= 1
�r�1�r · n1

Using this estimated p, the node then estimates the potential
utility of the next ring. Based on the estimated utility, the
node decides whether to continue the flooding or terminate.

More specifically, the overall utility of scoped-flooding is
decomposed according to our ring model. Given that Rr

and Cr represent the aggregated gain and the aggregated
cost on the rth ring respectively, the net utility of a flooding

3Note that �, n1, and n2 here refer to the local properties of
a specific node instead of the global average. We avoid new
notations because the following derivation on optimal radius
applies to both local and global cases which is independent
on the parameters plugged in. As we will show in Section
5, Dynamic flooding uses local parameters while Static uses
global ones.



is as follows:

U =
X

r

Ur =
X

r

(Rr � Cr).

According to eq.(10), the average cost on the rth ring is:

E(Cr) = n̂rc = �rnrc

and the average value of gross gain Rr is:

E(Rr) = 1 · (1� q�
rnr ) + 0 · q�

rnr = 1� q�
rnr .

The net utility value from the rth ring therefore can be ex-
pressed as the di↵erence between E(Rr) and E(Cr), namely

Ur = E(Rr)� E(Cr) = (1� q�
rnr )� �rnrc. (14)

An intermediate node forwards the flooding message to
its next-hop neighbours only if the next ring can bring pos-
itive net utility, which can be easily tested with eq.(14).
The flooding radius should stop increasing whenever the ex-
pected utility of next ring falls below zero. Technically, this
is solved by calculating the root of eq.(14) which is the max-
imum number of e↵ective nodes on the rth ring. Note that

Ur � 0 indicates c  1�q�
rnr

�rnr
which provides a clear decision

boundary on whether to continue a flooding operation.
Given � = 1, which indicates a stable network of no fail-

ures, the root of eq.(14) above reduces to:

1� qnr = nrc.

The mixture of exponential and polynomial functions can
be solved with the Lambert W function, which gives:

n⇤
r = � 1

ln q
Wk(

ln q
c

e
ln q
c ) + c�1. (15)

n⇤
r represents the maximum number of nodes that the rth

ring can have in order to keep the cost smaller than the
gain. By plugging eq.(15) into eq.(2), we can easily derive
the optimal flooding radius r⇤ as a function of cost, content
availability and neighbourhood growth rate.

nr = �r�1n1 = n⇤
r =) (r � 1) ln� + lnhki = lnn⇤

r (16)

=) r⇤ =
lnn⇤

r + ln� � lnhki
ln�

(17)

Given 0 < � < 1, we have the same derivation except n̂r

replaces nr in eq.(16). After some manipulations, we have

n̂r = �r�r�1n1 = n⇤
r =) r⇤ =

lnn⇤
r + ln� � lnhki
ln � + ln�

. (18)

Obviously, � = 1 indicates ln � = 0, then eq.(18) reduces
to eq.(17) as expected. Since ln � is a monotonically increas-
ing function and only appears in the denominator of eq.(18),
r⇤ is hence a decreasing function of �. In practice, eq.(18)
means the flooding radius tends to be bigger in an unstable
network to achieve the same gain. On the other hand, for a
given reliability rate �, the optimal radius r⇤ is a decreasing
function of the growth rate �.

5. TWO FLOODING STRATEGIES
We first discuss the design rationale behind a scoped-

flooding, then introduce two strategies for the later com-
parison.

5.1 Design Guidelines
A good flooding strategy requires that: (1) a node is aware

of its neighbourhood with an accurate topological inference;
(2) a node is aware of content availability with an accu-
rate statistical inference on user request streams. These two
awareness (solved in Section 3 and 4 respectively) together
enable a node to decide its optimal flooding radius based on
the estimated utility. In addition, the flooding radius should
be adjusted adaptively in di↵erent areas according to local
topological properties because the network structure may
not be homogeneous, i.e., some parts are denser and some
parts are sparser (regarding degree distribution). Hence a
predetermined radius may lead to suboptimal performance.

5.2 Static Flooding
Static flooding uses a predetermined and fixed flooding ra-

dius for all the nodes. The flooding radius is optimized over
the whole network topology by e.g., the network operator for
each availability value. The average growth rate is calculated
using the average number of 1-hop neighbours and 2-hop
neighbours of the whole network then plugged into either
eq.(17) or eq.(18) to derive the optimal radius. Therefore
static flooding ignores the heterogeneity of the topological
properties in di↵erent areas of the network. Static flooding
is simple and popular but it is only suitable for random net-
works wherein the network structure is homogeneous and
nodes have similar growth rates. We include static flooding
in our evaluation as a baseline for comparison.

5.3 Dynamic Flooding
Compared to static flooding, dynamic flooding is more at-

tendant to the di↵erences among the nodes and it assigns a
specific radius for each node individually. Considering that
the degree distribution in a scale-free network is not homoge-
neous, dynamic flooding lets each node use its own 1-hop and
2-hop neighbours to calculate the local growth rate. Then
each node optimises locally within its neighbourhood, hence
each has its own optimal flooding radius. Such local opti-
misation strategy takes a node’s position in a network into
account. Nodes in denser areas tend to have smaller radius
while nodes in sparser areas tend to have bigger radius.

For less available content, a node may prefer routing to-
wards the original content provider rather than initiating
flooding. By letting r = 1, eq.(14) calculates the availability
threshold of whether initiating a flooding as below

U1 > 0 =) q�n1 < 1� �n1c =) p > 1� �n1
p

1� �n1c.

If the availability falls far below the threshold, a node will
not flood the request. If content availability is unknown,
dynamic strategy floods its 1-hop neighbours by default to
bootstrap the inference as described in Section 4.4. As we
can expect, without content availability information, dy-
namic flooding is supposed to introduce more overhead due
to its aggressive 1-hop flooding. However, the evaluation in
Section 6 shows that such overhead is almost negligible.

6. EVALUATION
We evaluate the two flooding strategies on various topolo-

gies to gain a comprehensive understanding of their pros and
cons. Our evaluations focus on two network models: ran-
dom networks and scale-free networks. Both models have
a network of 10,000 nodes and 60,000 edges but their de-
gree distributions are di↵erent, namely one is Poisson and
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Figure 3: Ring model behaviours with di↵erent p and c.

the other is power-law. We experimented with a large num-
ber of network parameters and various availability and cost
values to guarantee the robustness and consistency of our
claims.

6.1 Impact of Availability and Cost
Fig. 3 depicts the model behaviours with di↵erent cost

and availability parameters. In Fig. 3a and 3b, the curves
are the decision boundaries below which a node will initiate
a flooding for given cost and availability values. The lower
cost for higher nr shows that a node with a large neighbour-
hood is more parsimonious in flooding compared to a node
with a smaller neighbourhood, and only initiates flooding
for lower costs. Fig. 3b is a condensed version of Fig. 3a
due to setting � = 0.5, indicating that an unstable network
cannot tolerate high cost values. For both figures, the steep
increase in the interval [0, 0.4] indicates the strong prefer-
ence on high available content in scoped-flooding. Fig. 3c
shows when the cost slightly increases from its minimum
(i.e., zero), the optimal number of neighbours drops drasti-
cally regardless of content availability. After a certain point,
e.g., 5 or 6 nodes, the figure shows a slower decrease for con-
tent with high availability. Fig. 3c indicates that for higher
availability content, it is worth flooding to more neighbours
since the content will be discovered with high probability
therefore the gain is guaranteed. Whereas for low availabil-
ity content, even with relatively low cost, the flooding is
rather conservative.

6.2 Flooding Radius Distribution
Fig. 4a shows the CDF of nodes’ optimal radii using dif-

ferent p on both random (upper figure) and scale-fee (lower
figure) networks. By increasing p from 0.1 to 0.9, the CDF
curves shift towards right indicating high available content
is worth large radius. In random network, the shapes of the
curves are mostly identical, whereas in scale-free network,
the curves are more stretched for higher p values, which in-
dicates more heterogeneity in scale-free networks. Fig. 4b
and 4c specifically plot the radius distributions for p = 0.8.
The scale-free network has smaller flooding radii than the
random network in both dynamic and static flooding. The
two red vertical lines in Fig. 4c represent the optimal radii of
static flooding, i.e., 2.320 for scale-free and 2.783 for random
network. For dynamic flooding, the mean and variance of
the radii are 2.447 and 0.094 on the scale-free (red area), and
2.805 and 0.014 on the random (blue area). Static flooding
ignores the di↵erence of topological characteristics between
two nodes. Fig. 4b shows that over 60% of the nodes in
scale-free network have a radius less than 2.5 whereas al-
most all the nodes’ radii in random network are bigger than
2.5. In both Fig. 4b and 4c, the left tail of scale-free network

is heavier than that of random network due to the existence
of high-degree nodes. The radius distribution of random
network is more condensed in a smaller range (reflected as a
small variance 0.014) because of its homogeneous structure.

There is a relatively strong negative correlation between
optimal radius and node’s degree as well as optimal radius
and node’s betweenness centrality. We report the results for
betweenness centrality in Fig. 4d. Fig. 4d plots the between-
ness centrality as a function of radius for the scale-free net-
work. Note the logarithmic scale in the axis. We attribute
the negative correlation to the nodes with high betweenness
centrality that are located in the the well-connected parts
of the network wherein the link density is very high and
therefore the radius is small due to the high growth rate.

6.3 Utility and Its Improvement Distribution
Inspired by [42], fig.5a and 5b plot betweenness central-

ity as a function of a node’s utility. Fig.5b is log-log plot.
We observe a strong negative correlation between the two
variables. The corresponding Pearson correlation can reach
�0.93 and �0.80 for random and scale-free network, respec-
tively. The reason for the negative correlation is that, in the
dense area where a node has a high betweenness centrality
value, its neighbourhood size is usually big. Although the
radius is also small, the node may still include more neigh-
bours than necessary (the optimum) which renders a higher
cost and drags down the net utility. Sometimes, even 1-hop
neighbours include too many nodes. On the other hand, the
growth rate in the sparser area is much lower, so nodes have
a better control over the neighbourhood size by fine-tuning
their radius leading to smaller cost and better net utility.

To compare dynamic flooding against static one, we let
Udy denote the optimal utility achieved by dynamic flooding
and Ust by static flooding. Then, we calculate the utility

improvement as:
Udy�Ust

Ust
. Fig. 5c plots the CDF of the

utility improvement. We notice that dynamic flooding is
less e↵ective on random networks, only 10% of the nodes
actually improve their performance and over half have less
than 10% improvement. Such lower e↵ectiveness of dynamic
flooding is due to the homogeneous structure of the random
network. As we showed in the previous section, the static
optimal radius deviates from the dynamic optimal radius
only slightly for a random network. Hence, the improvement
in utility is marginal. On the other hand, nodes in scale-free
network have much more significant utility improvement,
namely about 30% of the nodes are improved, among which
over 60% have larger than 10% improvement.

Specifically, we take a closer look at those nodes with im-
proved utility, i.e., the 10% in random and 30% in scale-free
network. Fig. 5d and 5e plot local growth rate � as a func-
tion of improvement. Note the di↵erence in both X-range
and Y-range of the two figures. As for X-range, the utility
shows a wider range of improvement in scale-free networks
due to the diverse growth rate of the nodes shown on the
Y-axis. Scale-free network has a larger � due to hub nodes
compared to the random network with more homogeneous
node characteristics. Fig.5d shows that the correlation be-
tween � and the utility improvement on random network is
close to zero, more precisely �0.0031, indicating that the
significance of improvement is irrelevant of a node’s growth
rate and its position in the network. Meanwhile, such cor-
relation on scale-free network is much stronger, with Pear-
son correlation being �0.5273. The results indicate that
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Table 2: Results for each metric are in the format of
network-wide|static|dynamic flooding. The cost is mea-
sured by the # of flood messages and normalized with the
maximum value.

AS Byte hit rate Cost Avg. hops
nw st dy nw st dy nw st dy

1239 0.44 0.40 0.43 1.0 0.27 0.28 1.90 1.60 1.62
2914 0.49 0.42 0.47 1.0 0.31 0.32 1.75 1.55 1.58
3356 0.42 0.39 0.42 1.0 0.25 0.27 2.02 1.69 1.74
7018 0.47 0.41 0.45 1.0 0.26 0.28 1.87 1.54 1.63
Guifi 0.51 0.44 0.49 1.0 0.22 0.23 1.71 1.32 1.38

nodes with high growth rate � are less likely to have signif-
icant improvement by using dynamic flooding. The reason
is that the optimal radii of the nodes with high � values
in both static and dynamic flooding are small and close to
each other. However, dynamic flooding usually significantly
increases the radius of the nodes with low �.

6.4 Flooding in the Wild
To confirm our analysis on realistic networks, we choose

four realistic ISPs along with one community network (i.e.,
Guifi Catalunya region) [27, 28] to compare network-wide,
static, and dynamic flooding. Note that dynamic flooding is
not aware of content availability but use the inference tech-
nique in the evaluations. In case there are multiple compo-
nents in a network, we use the biggest one. The smallest
network (AS 3356) has 3,107 nodes and 6,097 edges while
the biggest one (AS 7018) has 9,732 nodes and 10,047 edges.
Each node is equipped with a 4 GB cache using LRU for
cache replacement, and assigned a pair of geographical co-

ordinates according to the topology traces. The content set
is based on the Youtube Entertainment Category trace [33]
which contains 1,687,506 objects (average size is 8.0 MB and
aggregated size is 12.87 TB). The trace contains video id,
length, views, rating and etc. All the nodes of degree 1
are considered as content requesters while 10 to 20 content
providers (proportional to the network size) are randomly
selected among the nodes in the network. A node cannot be
a requester and a provider at the same time. To take into
account both temporal and spatial locality, we use Hawkes
process-based algorithm [34] with di↵erent spatial locality
factors [0, 1) to generate user request streams. Locality fac-
tor 0 indicates the request pattern reduces to Independent
Reference Model, 1 indicates high spatial localisation. The
“warm-up” period for pre-filling the caches is excluded from
an evaluation and the result is averaged over at least 50 runs.

Table 2 reports the results with spatial locality factor 0.5.
Although network-wide flooding always achieves the best
byte hit rate, the improvement is rather marginal over dy-
namic flooding (less than 5%). On the other hand, such a
small gain in cache hits is at the price of 2 ⇠ 3 times in-
crease in the number of control messages as the second col-
umn shows. Intuitively, without prior knowledge on content
availability, the performance of dynamic flooding is mostly
a↵ected by network topology and should be worse than static
flooding which can exploit such knowledge. The results how-
ever show that dynamic flooding consistently outperforms
static one, which further attests the e↵ectiveness of Bayesian
inference and justifies the design of dynamic flooding. Com-
pared to static one, dynamic flooding has slightly higher cost
because it tends to explore more nodes (recall the default
flooding to 1-hop neighbours in dynamic flooding), which



also explains its gain in byte hit rate. The third column
shows the average hops between a requester and the first
discovered content. Network-wide flooding has the worst
values and static flooding is slightly higher than dynamic
one. In all cases, most content are discovered within 2 hops.

We investigate the e↵ects of spatial locality by varying
the factor between 0 and 1. For network-wide flooding, spa-
tial locality does not appear to have any noticeable impacts
on the byte hit rate and the cost except that high factor
values lead to shorter average hops. On the other hand,
higher spatial locality factor improves byte hit rate and av-
erage hop count in both static and dynamic flooding. For
dynamic flooding, by increasing the locality factor from 0.1
to 0.9, the byte hit rate improves 9% ⇠ 22% and essentially
reaches the performance of network-wide flooding. The av-
erage hops metric has 7% ⇠ 19% improvement. In terms
of byte hit rate, the di↵erence of all three strategies be-
comes smaller as the locality factor increases but dynamic
flooding consistently outperforms static one by at least 7.5%.
Meanwhile, the cost of all three strategies almost remain un-
changed. The reason is that content availability and local
topological property are the determinant factors of the cost
(due to being a function of p and r) in static and dynamic
flooding respectively, neither will be a↵ected by changing
the locality factor.

6.5 Summary and Discussion
Our results indicate that dynamic flooding is more e↵ec-

tive on the networks of heterogeneous topological structure,
and most of the gains come from sparse areas wherein local
growth rate is low, namely at network edges. The optimal
flooding radius in a dense area is small and nodes su↵er
from high flooding cost. On realistic networks for which the
evaluations further take the spatial locality of content into
account, dynamic flooding is consistently superior to static
one even without prior knowledge on content availability,
and quickly approaches the byte hit rate of network-wide
flooding but with much smaller cost in control messages.

7. RELATED WORK
We can categorize the literature into two as resolution-

based discovery and routing-based discovery.
Resolution-based discovery [2–8] provide deterministic so-

lutions, i.e., at least one copy will be found as long as the
content is stored within the network. Therefore, such solu-
tions either require complete knowledge on content distribu-
tion and network topology [2,4,5] or utilize hash-based con-
tent addressing [3, 6–8]. Essentially, demands and supplies
meet at rendezvous points (the actual name di↵ers depend-
ing on specific architecture). The rendezvous point either
returns a locator or copy of the requested content [2, 3], or
redirects the request to one content provider [5, 7], or con-
structs a distribution topology [4] depending on an actual
design. Resolution-based solutions can reach high success
rate but have to maintain the states of content distribution
in a network hence are confronted with scalability issue when
dealing with large and highly dynamic content demands.

Routing-based discovery [1,9,10,32] usually only provides
opportunistic solutions, i.e., content will be found with cer-
tain probability. The chances of discovery can be improved
by either collaborating with nearby nodes [10, 35] or ex-
ploring a network via flooding [9, 15, 16, 32, 36]. Both in-
troduce extra tra�c overhead. [35] propose using Bloomfil-

ters to exchange information on content availability to im-
prove caching performance. [15, 16, 37] empirically showed
that opportunistic flooding can improve content discovery
and delivery, also reduce the states maintained in a net-
work. [9, 36, 38, 41] showed that flooding is especially pre-
ferred in an unreliable environment to compensate for poten-
tial message loss. Empirically or analytically, all [9,16,32,38]
attested that naive flooding is hardly viable in practice, the
scope needs to be regulated carefully to reduce the cost.

Scoped-flooding also relates to Gossip Protocol and Ex-
panding Ring Search (ERS). Gossip protocol has been shown
as a simple, robust, and scalable solution on large distributed
systems [11]. ERS is supported in reactive routing proto-
cols in MANET such as DSR [39] and AODV [40]. Since
nodes cache routes information like content caching in ICN,
ERS is rather similar to scoped-flooding. Prior work [19–21]
showed that the radius is very small in practice. Regard-
ing the neighbourhood growth model, besides [22, 24, 25],
another important line of research is expander graph [26].
In general, the advances in graph theory has improved our
understanding on network graphs and laid the foundation
of this work. Nonetheless, as far as we can tell, none care-
fully analysed the scoped-flooding for content discovery from
network topology perspective, not to mention examining the
distribution of gains and improvements within a network.

8. CONCLUSION
This paper aims to comprehend scoped-flooding for con-

tent discovery in ICN. Using the proposed ring model, we
studied the functional relation between the neighbourhood
growth and flooding radius, based on which we derived the
optimal search radius. Both our theoretical analysis and
empirical evaluations suggest that due to the exponential
growth of neighbourhood size, the optimal flooding radius is
usually very small (i.e., a couple of hops). Most of the gains
of flooding come from the sparse area at the network edge
where the neighbourhood growth rate is low. To certain ex-
tent, our results justify the rationale of deploying caches at
network edge from content discovery perspective. Dynamic
flooding is consistently superior to static one, especially on
scale-free networks. With strong spatial locality, the per-
formance of dynamic flooding quickly converges to network-
wide flooding but with much smaller cost. However, we
acknowledge that the following aspects need further investi-
gation in future: (1) current neighbourhood growth model
does not take clustering coe�cient into account which leads
to overestimation in small networks. (2) Our utility model
assumes sub-linear gain and linear cost which requires fur-
ther reality checks. (3) Other in-network caching algorithms
can be more e↵ective than simple LRU and a thorough com-
parison is definitely needed to gain a deeper understanding.
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