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Motivation 

Caching and object allocation problems are ubiquitous

CDNs

Edge/Wireless
IoTCloud Computing Content-Centric

Networking

[Rosenweig et al. INFOCOM 2013]

[Jacobson et al. CONEXT 2009]
[Yeh et al. ICN 2013]

[Martina et al. INFOCOM 2014]

[Leconte et al. SIGMETRICS 2012]
[Leconte et al. ITC 2015]

[Traverso et al. CCR 2013]

[Leconte et al. SIGMETRICS 2012]
[Leconte et al. ITC 2015]

[Deghan et al. INFOCOM 2015][Cara et al. INFOCOM 2019]
[Arteaga et al. FAST 2016] [Tyson et al. ICCCN 2012]

[Wang  et al. ICNP 2013]



A Cache Network

Designated servers in the network store content items (e.g., files, file chunks).

serverserver

server



A Cache Network

Nodes generate requests for content items
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A Cache Network

Requests routed towards a designated server
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A Cache Network

Responses routed over reverse path



A Cache Network

Nodes have caches with finite capacities
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A Cache Network

Requests terminate early upon a cache hit
User

server

?



Cache Network Problems

❑ Optimize caching decisions
❑ …plus:

❑ Minimize delays or transfer costs, 
maximize throughput or utility, 
incorporate fairness, study stability …

❑ Distributed, adaptive algorithms

❑ Routing
❑ Scheduling/service allocation
❑ Admission control
❑ … Much, much harder, 

because caching is 
combinatorial!!!

❑ Cache Networks: nodes can store content.



Our Research Contributions
❑ Distributed, adaptive, algorithms optimizing caching decisions 

❑ Stochastic requests
❑ Adversarial requests/no-regret setting

❑ Joint optimization of caching and routing

❑ Queuing Models
❑ Kelly cache networks
❑ Cache networks with counting queues 
❑ Stability/admission control

❑ Fair caching networks

[I. and Yeh, SIGMETRICS 2016/ToN 2018]

[I. and Yeh, ICN 2017/JSAC 2018]

[Mahdian, Moharrer, I., and Yeh, INFOCOM 2019/ToN 2020]

[Li, Si Salem, Neglia, and I., SIGMETRICS 2022]

[Li and I., INFOCOM 2020/ToN 2021]

[Kamran, Moharrer, I., and Yeh, INFOCOM 2021]

[Li, Si Salem, Neglia, and I., SIGMETRICS 2022]

[Liu, Li, I., and Yeh, Performance  2020]
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❑ Introducing queues
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Model: Network

Network represented as a directed, bi-directional graph  

[I. and Yeh, SIGMETRICS 2016/ToN 2018]



Model: Network

Each edge                    has a cost/weight 

[I. and Yeh, SIGMETRICS 2016/ToN 2018]
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Edge costs: 



Model: Network

Node               has  a cache with capacity   

[I. and Yeh, SIGMETRICS 2016/ToN 2018]

Edge costs: 

Node capacities: 



Model: Network [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Edge costs: 

Node capacities: 

Items stored and requested form the item catalog 



Model: Network [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Edge costs: 

Node capacities: 

if     stores  

o.w.
For           and          ,  let

Then, for all           ,  



Model: Designated/Permanent Servers [I. and Yeh, SIGMETRICS 2016/ToN 2018]
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(the designated servers  of   ) that permanently store    .   

I.e.,  if              then 

, for all 

Edge costs: 

Node capacities: 



Model: Designated/Permanent Servers [I. and Yeh, SIGMETRICS 2016/ToN 2018]

For each and           ,  there exists a set of  nodes              
(the designated servers  of   ) that permanently store    .   

I.e.,  if              then 

, for all 

Edge costs: 

Node capacities: 



Model: Demand [I. and Yeh, SIGMETRICS 2016/ToN 2018]

A request is a pair          such that:  

❑     is an item in

❑                                 is a simple path in       such that                 .  

Requests are always satisfied!

?

, for all 

Edge costs: 

Node capacities: 



Model: Demand [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Demand     : set of all requests

?

Request arrival process is Poisson with rate

Request rates:
: demand

, for all 

Edge costs: 

Node capacities: 



Model: Goal

Design content allocation so that expected transfer costs are minimized.

?

?

?
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Node capacities: 



Model: Goal

Challenge: Caching algorithm should be 
❑  adaptive, and
❑  distributed.
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Request rates:

, for all 

Edge costs: 

Node capacities: 



A Simple Algorithm: Path Replication + LRU

❑ Cache item on every  node in the reverse path
❑ Evict using a simple policy, e.g., LRU, LFU, FIFO etc.

✔ Distributed
✔ Adaptive
✔ Extremely Popular

[Cohen and Shenker  2002]

❑ Many variants: Move-Copy-Down (MCD), Leave-Copy-Down (LCD)…

[Jacobson et al. 2009]
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A Simple Algorithm: Path Replication + LRU

❑ Cache item on every  node in the reverse path
❑ Evict using a simple policy, e.g., LRU, LFU, FIFO etc.

✔ Distributed
✔ Adaptive
✔ Extremely Popular

[Cohen and Shenker  2002]

❑ Many variants: Move-Copy-Down (MCD), Leave-Copy-Down (LCD)…

[Jacobson et al. 2009]

server
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But…

Path Replication + LRU is arbitrarily suboptimal.



Path Replication + LRU is Arbitrarily Suboptimal

…

? ?

Cost of PR+LRU: 

Cost when caching      :

❑ When M is large, PR+LRU is arbitrarily suboptimal!

❑ True for any strategy (LRU,LFU,FIFO,RR+LCD,MCD) 
     that ignores upstream costs!!

requests per sec

[I. and Yeh, SIGMETRICS 2016/ToN 2018]



Model: Routing Costs & Caching Gain [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Request rates:

, for all 

Edge costs: 

Node capacities: 
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Model: Routing Costs & Caching Gain [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Request rates:

, for all 

Edge costs: 

Node capacities: 

Worst case routing cost:                            18

Cost due to intermediate caching:              8

?

: demand

5
3 4

6

?Request

Caching Gain:                                       18-8 = 10



Objective: Maximizing Caching Gain [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Request rates:

, for all 

Edge costs: 

Node capacities: 

: demand

Maximize:

Subject to: ,             for all 
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Objective: Maximizing Caching Gain [I. and Yeh, SIGMETRICS 2016/ToN 2018]

Request rates:

, for all 
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Node capacities: 
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Maximize:
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❑ NP-hard but…

❑ .. Submodular maximization under matroid constraints

❑ 1-1/e polytime approximation algorithm 



Distributed, Adaptive Algorithm

0.5

0.9

0.6

❑ Each cache maintains state
❑ State = probability of caching 

item

[I. and Yeh, SIGMETRICS 2016/ToN 2018]



Distributed, Adaptive Algorithm ❑ Each cache maintains state
❑ State = probability of caching 

item
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❑ Upon request, control message 
collects information about upstream 
costs

?

= gradient of concave relaxation of 
objective (in expectation)

❑ During slot of length T, average 
upstream costs

  
❑ At end of slot, adapt state  and 

refresh contents by randomly 
sampling from distribution/state, 
independently across nodes. 

Theorem: The proposed algorithm leads to an allocation       such that

where        an optimal solution to the (NP-hard) offline problem. 

❑ “value” of item         is

? upstream cost upon    miss

[I. and Yeh, SIGMETRICS 2016/ToN 2018]



No-Regret Algorithms [Li, Si Salem, Neglia, and I., SIGMETRICS 2022]

❑ Theorem assumes:
� Stationary, stochastic request arrivals
� Negligible costs for updates 



No-Regret Algorithms [Li, Si Salem, Neglia, and I., SIGMETRICS 2022]

❑ Arbitrary, adversarial request arrivals per time-slot
❑ Account for update costs

optimal offline static policy caching gain of online policy penalty for update costs

Theorem: A distributed, online algorithm that attains regret



Overview

❑ Cache network optimization

❑ Jointly optimizing caching and routing

❑ Introducing queues



Joint Optimization

User

?

❑ Both caching and routing decisions are part of optimization

Caching decisions

Routing decisions

server

[I. and Yeh, ICN 2017/JSAC 2018]



Is Joint Optimization Really Necessary?

?

❑ Why not just use shortest weight path routing towards nearest designated server?

User

server

Shortest Weight Path

[I. and Yeh, ICN 2017/JSAC 2018]



Shortest Path Routing is Arbitrarily Suboptimal

… …

? ?
requests per sec

Shortest path for 
both

[I. and Yeh, ICN 2017/JSAC 2018]



Shortest Path Routing is Arbitrarily Suboptimal

? ? requests per sec

Irrespective of caching algorithm used, cost 
under shortest path routing is 

… …

?
?

[I. and Yeh, ICN 2017/JSAC 2018]



Shortest Path Routing is Arbitrarily Suboptimal

…

…

? ?
requests per sec

Irrespective of caching algorithm used, cost 
under shortest path routing is 

??

Cost under “split” routing strategy is          .  

Shortest path routing to nearest server is 
arbitrarily suboptimal.

[I. and Yeh, ICN 2017/JSAC 2018]



Key Intuition

Increasing path diversity creates 
more caching opportunities.

?

Caching decisions

Routing decisions



Algorithms with Guarantees

Joint optimization of caching and routing

?

Caching decisions

Routing 
decisions

[I. and Yeh, ICN 2017/JSAC 2018]❑ Stochastic requests

� Distributed, adaptive algorithm within 
1-1/e from the optimal

❑ Adversarial requests

� Distributed, online algorithm with              
regret w.r.t. 1-1/e from the optimal offline solution

[Li, Si Salem, Neglia, and I., SIGMETRICS 2022]



Experiments

Graph Topologies Routing Algorithms

❑ Shortest Path Routing
❑ Uniform
❑ Dynamic routing: PGA on L for 

routes alone

❑ LRU
❑ LFU
❑ FIFO
❑ RR
❑ PGA on L

Caching Algorithms

[I. and Yeh, ICN 2017/JSAC 2018]



Performance Comparison

Ratio of expected routing cost to routing cost under our algorithm

shortest path uniform dynamic routing

[I. and Yeh, ICN 2017/JSAC 2018]



Performance Comparison

Path diversity

Ratio of expected routing cost to routing cost under our algorithm

[I. and Yeh, ICN 2017/JSAC 2018]



Performance Comparison

Optimizing Routing

Ratio of expected routing cost to routing cost under our algorithm

[I. and Yeh, ICN 2017/JSAC 2018]



Performance Comparison

Jointly Optimizing Caching & Routing

[I. and Yeh, ICN 2017/JSAC 2018]



Performance Comparison [I. and Yeh, ICN 2017/JSAC 2018]
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Introducing Queues [Mahdian, Moharrer, I., and Yeh, INFOCOM 2019/ToN 2020]
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Introducing Queues

❑ Downward edges are associated with M/M/1 
queues

❑ Determine cache contents so that steady state 
queuing costs are minimized

?

?

?

Theorem: Maximizing caching gain is a submodular 
maximization problem subject to matroid constraints. 

❑ Size of queue at edge     :  

❑ Cost: where                                   is non-decreasing

� Queue size, its moments, queuing delay, occupancy probability...

❑ Aggregate expected cost:

❑ Caching gain:

[Mahdian, Moharrer, I., and Yeh, INFOCOM 2019/ToN 2020]

caching allocation under 
which system is stable



Stability

?

?

?

❑ How does one find this?

❑ Caching gain:

caching allocation under 
which system is stable

[Kamran, Moharrer, I., and Yeh, INFOCOM 2021]❑ Optimize caching strategy (   )  and jointly do admission control (   )     
subject to stability constraints.

� Much weaker optimality 
guarantees.



A More Elegant Solution: Counting Queues

M/M/1 queue

[Li and I., INFOCOM 2020/ToN 2021]

?

?

?

Catalog                    is finite!



A More Elegant Solution: Counting Queues

M/M/1 queue M/M/1c queue

Identical responses merge 
when collocated

[Li and I., INFOCOM 2020/ToN 2021]



A More Elegant Solution: Counting Queues [Li and I., INFOCOM 2020/ToN 2021]

❑ Network with counting queues

❑ Not reversible, steady-state queue 
distribution has no closed form 

❑ Well-approximated  by M/M/∞ queues 

❑ Theorem: Under this approximation, 
there exists an algorithm jointly 
optimizing of caching and service rate 
allocations within 1-1/e of the optimal.



Open Directions

❑  No-regret algorithms

❑  Merging requests/queries, not responses

❑ Joint optimization tasks
❑ Caching
❑ Routing
❑ Service assignment
❑ Admission control
❑ …

� Departure from submodularity
� Distributed algorithms



Thank You!
Adaptive Caching Networks with Optimality Guarantees
  S. Ioannidis and E. Yeh, SIGMETRICS 2016/ToN 2018.

Jointly Optimal Routing and Caching  for Arbitrary Network Topologies
 S. Ioannidis and E. Yeh, ICN 2017/JSAC 2018.

Kelly Cache Networks
 M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, INFOCOM 2019/ToN 2020.

Cache Networks with Counting Queues, 
 Y. Li and S. Ioannidis, INFOCOM 2020/ToN 2021.

Online Caching Networks with Adversarial Guarantees
 Y. Li, T. Si Salem, G. Neglia, and S. Ioannidis, SIGMETRICS/PERFORMANCE 2022.
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