
C and C++
6. Operators — Inheritance — Virtual

Alastair R. Beresford

University of Cambridge

Lent Term 2008

1 / 19

Operators

I C++ allows the programmer to overload the built-in operators

I For example, a new test for equality:

1 bool operator==(Complex a, Complex b) {
2 return a.real()==b.real()
3 && a.imag()==b.imag();
4 }

I An operator can be defined or declared within the body of a class,
and in this case one fewer argument is required; for example:

1 bool Complex::operator==(Complex b) {
2 return re==b.real() && im==b.imag();
3 }

I Almost all operators can be overloaded

2 / 19

Streams
I Overloaded operators also work with built-in types
I Overloading is used to define a C++ “printf”; for example:

1 #include <iostream>
2

3 int main() {
4 const char* s = "char array";
5

6 std::cout << s << std::endl;
7

8 //Unexpected output; prints &s[0]
9 std::cout.operator<<(s).operator<<(std::endl);

10

11 //Expected output; prints s
12 std::operator<<(std::cout,s);
13 std::cout.operator<<(std::endl);
14 return 0;
15 }

3 / 19

The ‘this’ pointer

I If an operator is defined in the body of a class, it may need to return
a reference to the current object

I The keyword this can be used

I For example:

1 Complex& Complex::operator+=(Complex b) {
2 re += b.real();
3 this->im += b.imag();
4 return *this;
5 }

4 / 19

Class instances as member variables

I A class can have an instance of another class as a member variable

I How can we pass arguments to the class constructor?

I New notation for a constructor:

1 class X {
2 Complex c;
3 Complex d;
4 X(double a, double b): c(a,b), d(b) {
5 ...
6 }
7 };

I This notation must be used to initialise const and reference members

I It can also be more efficient

5 / 19

Temporary objects

I Temporary objects are often created during execution

I A temporary which is not bound to a reference or named object exists
only during evaluation of a full expression

I Example: the string class has a function c_str() which returns a
pointer to a C representation of a string:

1 string a("A "), b("string");
2 const char *s = (a+b).c_str(); //Wrong
3 ...
4 //s still in scope here, but the temporary holding
5 //"a+b" has been deallocated
6 ...

6 / 19

Friends

I A (non-member) friend function can access the private members of
a class instance it befriends

I This can be done by placing the function declaration inside the class
definition and prefixing it with the keyword friend; for example:

1 class Matrix {
2 ...
3 friend Vector operator*(const Matrix&, \
4 const Vector&);
5 ...
6 };
7 }

7 / 19

Inheritance

I C++ allows a class to inherit features of another:

1 class vehicle {
2 int wheels;
3 public:
4 vehicle(int w=4):wheels(w) {}
5 };
6

7 class bicycle : public vehicle {
8 bool panniers;
9 public:

10 bicycle(bool p):vehicle(2),panniers(p) {}
11 };
12

13 int main() {
14 bicycle(false);
15 }

8 / 19

Derived member function call

I Default derived member function call semantics differ from Java:

1 class vehicle {
2 int wheels;
3 public:
4 vehicle(int w=4):wheels(w) {}
5 int maxSpeed() {return 60;}
6 };
7

8 class bicycle : public vehicle {
9 int panniers;

10 public:
11 bicycle(bool p=true):vehicle(2),panniers(p) {}
12 int maxSpeed() {return panniers ? 12 : 15;}
13 };

9 / 19

Example

1 #include <iostream>
2 #include "example13.hh"
3

4 void print_speed(vehicle &v, bicycle &b) {
5 std::cout << v.maxSpeed() << " ";
6 std::cout << b.maxSpeed() << std::endl;
7 }
8

9 int main() {
10 bicycle b = bicycle(true);
11 print_speed(b,b); //prints "60 12"
12 }

10 / 19

Virtual functions

I Non-virtual member functions are called depending on the static type
of the variable, pointer or reference

I Since a derived class can be cast to a base class, this prevents a
derived class from overloading a function

I To get polymorphic behaviour, declare the function virtual in the
superclass:

1 class vehicle {
2 int wheels;
3 public:
4 vehicle(int w=4):wheels(w) {}
5 virtual int maxSpeed() {return 60;}
6 };

11 / 19

Virtual functions

I In general, for a virtual function, selecting the right function has to be
run-time decision; for example:

1 bicycle b;
2 vehicle v;
3 vehicle* pv;
4

5 user_input() ? pv = &b : pv = &v;
6

7 std::cout << pv->maxSpeed() << std::endl;
8 }

12 / 19

Enabling virtual functions

I To enable virtual functions, the compiler generates a virtual function
table or vtable

I A vtable contains a pointer to the correct function for each object
instance

I The vtable is an example of indirection

I The vtable introduces run-time overhead

13 / 19

Abstract classes

I Sometimes a base class is an un-implementable concept

I In this case we can create an abstract class:

1 class shape {
2 public:
3 virtual void draw() = 0;
4 }

I It is not possible to instantiate an abstract class:
shape s; //Wrong

I A derived class can provide an implementation for some (or all) the
abstract functions

I A derived class with no abstract functions can be instantiated

14 / 19

Example

1 class shape {
2 public:
3 virtual void draw() = 0;
4 };
5

6 class circle : public shape {
7 public:
8 //...
9 void draw() { /* impl */ }

10 };

15 / 19

Multiple inheritance

I It is possible to inherit from multiple base classes; for example:

1 class ShapelyVehicle: public vehicle, public shape {
2 ...
3 }

I Members from both base classes exist in the derived class

I If there is a name clash, explicit naming is required

I This is done by specifying the class name; for example:
ShapelyVehicle sv;

sv.vehicle::maxSpeed();

16 / 19

Multiple instances of a base class

I With multiple inheritance, we can build:

1 class A {};
2 class B : public A {};
3 class C : public A {};
4 class D : public B, C {};

I This means we have two instances of A even though we only have a
single instance of D

I This is legal C++, but means all references to A must be stated
explicitly:

1 D d;
2 d.B::A::var=3;
3 d.C::A::var=4;

17 / 19

Virtual base classes

I Alternatively, we can have a single instance of the base class

I Such a “virtual” base class is shared amongst all those deriving from it

1 class Vehicle {int VIN;};
2 class Boat : public virtual Vehicle { ... };
3 class Car : public virtual Vehicle { ... };
4 class JamesBondCar : public Boat, public Car { ... };

18 / 19

Exercises

1. If a function f has a static instance of a class as a local variable,
when might the class constructor be called?

2. Write a class Matrix which allows a programmer to define two
dimensional matrices. Overload the common operators (e.g. +, -, *,
and /)

3. Write a class Vector which allows a programmer to define a vector of
length two. Modify your Matrix and Vector classes so that they
interoperate correctly (e.g. v2 = m*v1 should work as expected)

4. Why should destructors in an abstract class almost always be declared
virtual?

19 / 19

