C and CH++
8. The Standard Template Library

Alastair R. Beresford

University of Cambridge

Lent Term 2008

Additional references

> Musser et al (2001). STL Tutorial and Reference Guide
(Second Edition). Addison-Wesley.

» http://gcc.gnu.org/onlinedocs/libstdc++/documentation.html

The STL

Alexander Stepanov, designer of the Standard Template Library says:

“STL was designed with four fundamental ideas in mind:

» Abstractness
» Efficiency
» Von Neumann computational model

» Value semantics”

It's an example of generic programming; in other words reusable or “widely
adaptable, but still efficient” code

N
N
=1

Advantages of generic programming

» Traditional container libraries place algorithms as member functions
of classes

» Consider, for example, "test".substring(1,2); in Java

» So if you have m container types and n algorithms, that's nm pieces
of code to write, test and document

» Also, a programmer may have to copy values between container types
to execute an algorithm

» The STL does not make algorithms member functions of classes, but
uses meta programming to allow programmers to link containers and
algorithms in a more flexible way

» This means the library writer only has to produce n+ m pieces of code

» The STL, unsurprisingly, uses templates to do this

http://gcc.gnu.org/onlinedocs/libstdc++/documentation.html

Plugging together storage and algorithms A simple example

o 1 #include <iostream>
Basic idea: > #include <vector> //vector<T> template
3 #include <numeric> //required for accumulate

. . 4
» define useful data storage components, called containers, to store a

set of objects

5 int main() {
6 int i[] = {1,2,3,4,5};

» define a generic set of access methods, called iterators, to manipulate 7 std::vector<int> vi(&i[0],&i[8]);
8
9

the values stored in containers of any type
. . . . std: :vector<int>::iterator viter;
» define a set of algorithms which use containers for storage, but only o

access data held in them through iterators 1 for(viter=vi.begin(); viter < vi.end(); ++viter)
12 std::cout << *viter << std::endl;

. ope . 13
The time and space complexity of containers and algorithms is specified in 1+ std::cout << accumulate(vi.begin(),vi.end(),0) << std::endl;

the STL standard 5}
5

Containers Containers

» The STL uses containers to store collections of objects » Container examples for storing sequences:

» Each container allows the programmer to store multiple objects of the > vector<T>
same type » deque<T>
» Containers differ in a variety of ways: > list<T>
» memory efficiency » Container examples for storing associations:
> access time to arbitrary elements > set<Key>
» arbitrary insertion cost » multiset<Key>
» append and prepend cost » map<Key,T>
» deletion cost » multimap<Key, T>
>

Using containers

1 #include <string>
2 #include <map>

3 #include <iostream>

4

5 int main() {

6
7 std: :map<std::string,std::pair<int,int> > born_award;
8
9 born_award["Perlis"] = std::pair<int,int>(1922,1966);
10 born_award["Wilkes"] = std::pair<int,int>(1913,1967);
11 born_award["Hamming"] = std::pair<int,int>(1915,1968);
12 //Turing Award winners (from Wikipedia)
13
14 std::cout << born_award["Wilkes"].first << std::endl;
15
16 return O;
17 }
9/20

Iterators

» Containers support iterators, which allow access to values stored in a

container
» |terators have similar semantics to pointers
» A compiler may represent an iterator as a pointer at run-time

» There are a number of different types of iterator

» Each container supports a subset of possible iterator operations

» Containers have a concept of a beginning and end

11/20

std:

string

Built-in arrays and the std::string hold elements and can be
considered as containers in most cases

You can't call “.begin()" on an array however!

» Strings are designed to interact well with C char arrays

String assignments, like containers, have value semantics:

1 #include <iostream>

2 #include <string>

3

int main() {
char s[] = "A string ";
std::string strl = s, str2 = stri;

str1[0]=’a’, str2[0]="B’;
std::cout << s << strl << str2 << std::endl;
10 return O;

1 F

4
5
6
7
8
9

10/20

Iterator types

Iterator type | Supported operators
Input | == != ++ *(read only)
Output | == 1= ++ *(write only)
Forward | == != ++ x
Bidirectional | == != ++ * —-
Random Access | == I= ++ % —— + - += -= < > <= >=

» Notice that, with the exception of input and output iterators, the

relationship is hierarchical

» Whilst iterators are organised logically in a hierarchy, they do not do

so formally through inheritence!

» There are also const iterators which prohibit writing to ref'd objects

12/20

Adaptors

» An adaptor modifies the interface of another component
» For example the reverse_iterator modifies the behaviour of an

iterator

1 #include <vector>
2 #include <iostream>
3

4 int main() {

s int i[]1 = {1,3,2,2,3,5};

6 std::vector<int> v(&i[0],&i[6]);

7

g for (std::vector<int>::reverse_iterator i = v.rbegin()
9 i = v.rend(); ++i)

10 std::cout << *i << std::endl;

11
12 return O;

13 F

Algorithm example

>

13/20

» Algorithms usually take a start and finish iterator and assume the

valid range is start to finish-1; if this isn't true the result is
undefined

Here is an example routine search to find the first element of a storage
container which contains the value element:

1 //search: similar to std::find

> template<class I,class T> I search(I start, I finish, T element) {
3 while (*start != element && start !'= finish)

4 ++start;

5 return start;

6

15/20

Generic algorithms

» Generic algorithms make use of iterators to access data in a container

» This means an algorithm need only be written once, yet it can

function on containers of many different types

When implementing an algorithm, the library writer tries to use the
most restrictive form of iterator, where practical

Some algorithms (e.g. sort) cannot be written efficiently using
anything other than random access iterators

Other algorithms (e.g. £ind) can be written efficiently using only
input iterators

Lesson: use common sense when deciding what types of iterator to
support

Lesson: if a container type doesn’t support the algorithm you want,
you are probably using the wrong container type!

14 /20

Algorithm example

1 #include "example23.hh"

© o N o o &~ W N

e e e <
® ~N o 0 A W N R~ O

J
©
(-

#include "example23a.cc"

int main() {

char s[] = "The quick brown fox jumps over the lazy dog";
std::cout << search(&s[0],&s[strlen(s)],’d’) << std::endl;

int i[] = {1,2,3,4,5%};

std::vector<int> v(&i[0],&i[5]);

std::cout << search(v.begin(),v.end(),3)-v.begin()
<< std::endl;

std::list<int> 1(&i[0],&i[5]);
std::cout << (search(l.begin(),l.end(),4)!=1.end())
<< std::endl;

return O;

16/20

Heterogeneity of iterators

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16 F

#include "example24.hh"

int main() {

char one[] = {1,2,3,4,5};

int twol] = {0,2,4,6,8};
std::list<int> 1 (&twol[O],&two[5]);
std: :deque<long> d(10);

std: :merge (&one [0] ,&one[5],1.begin(),1.end(),d.begin());
for(std: :deque<long>: :iterator i=d.begin(); i'!=d.end(); ++i)
std::cout << *i << " ",

std::cout << std::endl;

return O;

17/20

Higher-order functions in C+-+

» In ML we can write: foldl (fn (y,x) => 2*x+y) 0 [1,1,0];
» Or in Python: reduce(lambda x,y: 2%x+y, [1,1,0])

» Orin C++:

#include<iostream>

#include<numeric>

#include<vector>

#include "example27a.cc"

int main() { //equivalent to foldl
bool binary[] = {true,true,false};
std::cout<< std::accumulate(&binary[0],&binary[3],0,binaccum())

<< std::endl; //output: 6

return O;

}

19/20

Function objects

» C++ allows the function call “()" to be overloaded
» This is useful if we want to pass functions as parameters in the STL

» More flexible than function pointers, since we can store per-instance

object state inside the function

» Example:
1 struct binaccum {
2 int operator() (int x, int y) const {return 2*x + y;}
3}
18/20

Higher-order functions in C+-+

» By using reverse iterators, we can also get foldr:
#include<iostream>

#include<numeric>

#include<vector>

#include "example27a.cc"

int main() { //equivalent to foldr

bool binary[] = {true,true,false};
std: :vector<bool> v(&binary[0],&binary[3]);

std::cout << std::accumulate(v.rbegin(),v.rend(),0,binaccum());
std::cout << std::endl; //output: 3

return O;

20/20

