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Abstract

The paper considers a network with many apparently-independent periodic processes and
discusses one method by which these processes can inadvertently become synchronized. In
particular, we study the synchronization of periodic routing messages, and offer guidelines
on how to avoid inadvertent synchronization. Using simulations and analysis, we study the
process of synchronization and show that the transition from unsynchronized to synchronized
traffic is not one of gradual degradation but is instead a very abrupt ‘phase transition’: in
general, the addition of a single router will convert a completely unsynchronized traffic stream
into a completely synchronized one. We show that synchronization can be avoided by the
addition of randomization to the traffic sources and quantify how much randomization is
necessary. In addition, we argue that the inadvertent synchronization of periodic processes is
likely to become an increasing problem in computer netwérks.

1 Introduction

A substantial, and increasing, fraction of the traffic in today’s computer networks comes from
periodic traffic sources; examples include the periodic exchange of routing messages between
gateways or the distribution of real-time audio or video. Network architects usually assume that
since the sources of this periodic traffic are independent, the resulting traffic will be independent
and uncorrelated. E.g., even though each routing process might generate a packet at fixed, 30
second intervals, the total routing traffic observed at any point in the network should be smooth
and uniform since the processes are on separate nodes and started with a random relative phase.
However, many network traffic studies [Pa93a, SaAgGuJa92, Ja92, BrChCIP093] show that the
total traffic is not uniform but instead is highly synchronized.

This paper argues that the architect’s intuition that independent sources give rise to uncorrelated
aggregate traffic is simply wrong and should be replaced by expectations more in line with observed
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reality. There is a huge body of research on the tendency of dynamic systems to synchronize in
the presence of weak coupling [BI88]. As far back as the mid-seventeenth century, Huygens
noticed that two unsynchronized pendulum clocks would keep in time if hung on the same wall,
synchronized by the barely-perceptible vibrations each induced in the wall. As reported in [BI88],
synchronization has been studied in electronic circuits, a wide range of mechanical objects, and
biological systems such as cell populations and communities of fireflies. Most of these systems
exhibit a tendency towards synchronization that is independent of the physical constants and initial
conditions of the system [En92]. This research suggests that a complex coupled system like a
modern computer network evolves to a state of order and synchronization if left to itself. Where
synchronization does harm, as in the case of highly correlated, bursty routing traffic, it is up to
network and protocol designers to engineer out the order that nature tries to put in.

This paper investigates one means by which independent sources of periodic traffic can be-
come synchronized. An analytic model is developed that shares many of the features observed in
simulations and in real traffic measurements. There are two main results from this model:

e The transition from unsynchronized to synchronized behavior is very abrupt. The traffic does
not gradually ‘clump up’ and become more synchronized as network parameters change.
Instead, for each set of protocol parameters and implementation interaction strengths there
exists a clearly defined transition threshold. If the number of sources is below the transition
threshold, the traffic will almost certainly be unsynchronized and, even if synchronized by
some external forcdt will unsynchronize over time. Conversely, if the number of sources
is above the threshold, the traffic will almost certainly be synchronized and, even if placed
in an unsynchronized state by some external force, will evolve to synchronization over time.

e The amount of randomness that must be injected to prevent synchronization is surprisingly
large. For example, in the Xerox PARC internal network, measurements [De93] show their
cisco routers require roughly 300 ms. to process a routing message (1 ms. per route times
300 routes per update). From the results in Section 5, the routers would have to add at least
a second of randomness to their update intervals to prevent synchronization.

There are many examples of unanticipated synchronized behavior in networks:

e TCP window increase/decrease cycle# well-known example of unintended synchroniza-
tion is the synchronization of the window increase/decrease cycles of separate TCP connections
sharing a common bottleneck gateway [ZhCI90]. This example illustrates that unlesgiwedy
engineer to avoid synchronization, such as by injecting randomness into the network, synchroniza-
tion is likely to be the equilibrium state. As an example of injecting randomness, the synchroniza-
tion of window increase/decrease cycles can be avoided by adding randomization to the gateway’s
algorithm for choosing packets to drop during periods of congestion[FJ92]. (This randomization
has the advantage of avoiding other unintended phase effects as well.)

e Synchronization to an external clock. Two processes can become synchronized with each
other simply by both being synchronized to an external clock. For example, [Pa93a] shows DECnet
traffic peaks on the hour and half-hour intervals; [Pa93b] shows peaks in ftp traffic as several users
fetch the most recent weather map from Colorado every hour on the hour.

¢ Client-server models. Multiple clients can become synchronized as they wait for service
from a busy or recovering server. For example, in the Sprite operating system clients check

2E.g., by restarting all the routers at the same time because of a power failure.



with the file server every 30 seconds; in an early version of the system, when the file server
recovered after a failure, or after a busy period, a number of clients would become synchronized in
their recovery procedures. Because the recovery procedures involved synchronized timeouts, this
synchronization resulted in a substantial delay in the recovery procedure [Ba92].

¢ Periodic routing messagesUnlike the client/server model or the external clock model, the
synchronization of periodic routing messages involves seemingly-independent periodic processes.
There are many routing protocols where each router transmits a routing message at periodic inter-
vals. Assuming that the routers on a network are initially unsynchronized, at first glance it might
seem that the periodic messages from the different routers would remain unsynchronized. This
paper explores how initially-unsynchronized routing messages can become synchronized.

We examine the details of router synchronization to give a concrete example of inadvertent
synchronization, to underline the necessity of actively designing to avoid synchronization, and
to emphasize the utility of injecting randomization as a method of breaking up synchronization.
When a particular instance of synchronization is observed, it is usually easy to suggest protocol
changesthat could preventit. This misses the point. Synchronization is not a small problem caused
by minor oversights in protocol design. The tendency of weakly-coupled systems to synchronize
is quite strong and changing a deterministic protocol to correct one instance of synchronization is
likely to make another appear.

Various forms of periodic traffic are becoming an increasingly-large component of Internet traf-
fic. This periodic traffic includes not only routing updates and traffic resulting from the increasing
use of periodic background scripts by individual users [Pa93a], but realtime traffic (such as video
traffic) that has a periodic structure. Although the periodic structure of video traffic is generally
not affected by feedback from the network, there are still possibilities for synchronization. For
example, individual variable-bit-rate video connections sharing a bottleneck gateway and trans-
mitting the same number of frames per second could contribute to a larger periodic traffic pattern
in the network. As periodic traffic increases in the Internet, it becomes increasingly important for
network researchers to consider questions of network synchronization.

We use both simulation and analysis to explore the synchronization of periodic routing mes-
sages. The first goal of the analysis is to examine the role that random fluctuations in timing
play in the synchronization of routing messages. These random fluctuations contribute to both the
formation of synchronization and to the breaking up of synchronization after it occurs.

One way to break up synchronization is for each router to add a (sufficiently large) random
component to the period between routing messages. A second goal of our analysis is to investigate
this explicit addition of a random component to the routing timer, and to specify the magnitude of
the random component necessary to prevent synchronization.

Section 2 gives examples of periodic traffic patterns in the Internet; Section 3 describes our
model of periodic routing messages on a network. Section 4 explains the results of our simula-
tions. Section 5 describes a Markov chain used to analyze some aspects of the Periodic Messages
model. Section 7 presents conclusions and discusses alternatives for preventing routing message
synchronization.



2 Periodic traffic patterns in the Internet

This section gives an example of synchronized routing messages, and several examples of periodic
traffic patterns in the Internet (some of which are caused by periodic routing messages). While
we do not have direct evidence of operational problems in the Internet related to synchronized
routing messages, we show indirect evidence that such problems could exist. In general, there are
significant patterns of periodic packet drops and delays in the Internet.

We began this investigation in 1988 after observing synchronized routing messages from DEC-
net's DNA Phase IV (the DIGITAL Network Architecture) [VMS88] on a local Ethernet at LBL
(Lawrence Berkeley Laboratory). Each DECnet router transmitted a routing message at 120-
second intervals. Within hours after bringing up the routers on the network after a failure, the
routing messages from the various routers were completely synchronized.

In May 1992, in the course of investigating packet loss rates in the Internet, we conducted
experiments sending runs of a thousand pings each, at roughly one-second intervals, from Berkeley
and other sites to destinations across the Internet. For all of the runs to destinations at Harvard or
MIT, at least three percent of the ping packets were dropped, regardless of the time of day. Figure 1
shows a particular run of a thousand pings from Berkeley to MIT; the x-axis shows the ping number
and the y-axis shows the roundtrip time. Dropped packets are represented by a negative roundtrip
time. Figure 2 shows the autocorrelation function for the roundtrip times in Figure 1, where the
dropped packets are assigned a roundtrip time of two seconds (higher than the largest roundtrip
time in the experiment). The pattern of periodic packet drops at 90-second intervals is illustrated
in both figures. Further experiments determined that these packet drops were occurring at the
NEARnNet (New England Academic and Research Network) core routers. Earlier investigation of
Internet behavior had also reported a degradation in service with a 90-second periodicity on paths
to MIT [SaAgGuJa92].

These packet drops were determined to be caused by IGRP (the Inter-Gateway Routing Protocol
[He91]) routing updates at the NEARnNet routers [Sc92]. The routers were unable to forward other
packets while large routing updates were being processed. The particular problem of periodic
packet losses on NEARnNet has since been resolved; the router software has been changed so that
normal packet routing can be carried out while the routers are dealing with routing update messages.
Although it has been speculated that these packet drops were also connected with synchronization,
it is unclear, and there is no direct evidence [Sc92, L093].

Periodic packet drops have been demonstrated associated with RIP (the Routing Information
Protocol [He88]) as well as with IGRP. Figure 3 shows audio packet losses during an atddiocast
of the December 1992 Packet Video workshop [Ja92]. The x-axis shows the time in seconds; the
y-axis shows the duration of each audio outage in seconds. The little blips more-or-less randomly
spread along the time axis represent single packet losses. The larger loss spikes are strongly
periodic; they occur every 30 seconds and last for several seconds at a time. During these events
the packet loss rate ranges from 50 to 85% and there are frequent single outages of 100-500 ms.
These periodic losses are almost certainly due to the source-routed (tunneled) multicast packets
competing with routing updates and losing. Because 30 seconds is the default update time for
RIP, these long intervals of packet losses are conjectured to result from RIP routing updates; it is
not known if this problem involves synchronization. In other instances periodic 30-second audio

3For a report on the first such audiocast, see [Ca92].
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Figure 1: Periodic packet losses from IGRP routing messages.
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Figure 2: The autocorrelation of roundtrip times.
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Figure 3: Periodic packet losses at 30-second intervals.

packet losses have been conclusively traced to RIP routing updates [De93], and there is some
indirect evidence of synchronization.

In our “ping” experiments of the Internet in May 1992 we found many examples of periodic
packet drops for which we have no explanation. For example, we found paths with packet drops



every 318 seconds, paths with packet drops every 15 seconds, and paths with large delays every
45 seconds. We found different periodic patterns on the local path from LBL to the UC Berkeley
campus at different times of the day. From our “ping” experiments, we conjecture that a significant
number of packet drops in the Internet are associated with periodic processes of one type or another.

3 The Periodic Messages model

This section describes a general model of periodic routing messages on a network; we call this the
Periodic Messages model. This model was initially patterned after DECnet’'s DNA Phase 1V, but
other routing protocols that can conform to this model include EGP (Exterior Gateway Protocol)
[M84], Hello [Mi83], IGRP, and RIP. In these routing protocols, each router on a network transmits
arouting message at periodic intervals. This ensures that routing tables are kept up-to-date even if
routing update messages are occasionally lost.

The Periodic Messages model behaves as follows:

1. The router prepares and sends a routing message. In the absence of incoming routing
messages, the router resets its tifieseconds after step 1 begins. Other routers receive the first
packet of this router’s routing messafjeseconds after step 1 begins.

2. If the router receives an incoming routing message (or the first packet of an incoming routing
message) while preparing its own outgoing routing message, the router also processes the incoming
routing message. The router takBs seconds to process an incoming routing message.

3. After completing steps 1 and 2, the router sets its timer. The time until the timer next
expires is uniformly drawn from the intervel )| — T, T, + T,] seconds, wherg&, is the average
period and7, represents a random component; this could be a (small) random fluctuation due
to unavoidable variations in operating system overhead or a (larger) fluctuation due to a random
component intentionally added to the system. When the timer expires, the router goes to step 1.

4. If the router receives an incoming routing message after the timer has been set, the incoming
routing message is processed immediately. If the incoming routing message is a “triggered update”
caused by a major change in the network such as the failure of a link, then the router goes to step
1, withoutwaiting for the timer to expire.

Because the router resets its timer only after processing its own outgoing routing message and
any incoming routing messages, the timing of one router’s routing messages can be affected by the
routing messages from other nodes. This gives the weak coupling between routers, allowing the
synchronization of routing messages from several routers.

The Periodic Messages model ignores properties of physical networks such as the possibility
of collisions and retransmissions on an Ethernet. The Periodic Messages model is not intended to
replicate the exact behavior of periodic routing messages, but to capture some significant charac-
teristics of that behavior.

RIP and IGRP are intradomain routing protocols that use periodic routing messages. In RIP
each router transmits periodic routing messages every 30 seconds. In IGRP, routers send routing
messages at 90-second intervals.

EGP (Exterior Gateway Protocol) is used in some places between the NSFNET backbone and
its attached regional networks; EGP routers send update messages every three*mimuies.

4with BGP (Border Gateway Protocol), which runs on top of TCP, incremental update messages are sent as the
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1988 LBL network, DECnet routers implementing DNA Phase IV sent routing messages every
two minutes. IGRP, RIP, and DECnet’'s DNA Phase IV all incorporate triggered updates, where
routing messages are sent immediately in response to a network change such as the removal of a
route. The first triggered update results in a wave of triggered updates from neighboring routers.

Not all implementations of these routing protocols correspond to the Periodic Messages model
in this paper. The RFC for RIP [He88] mentions that when there are many gateways on a single
network, there is a tendency for the periodic routing messages to synchronize. The RFC specifies
that in order to avoid this synchronization, either the routing messages must be triggered by a clock
that is not affected by the time required to service the previous message, or a small random time
must be added to the 30-second routing timer each time, though the magnitude of the random time
is not specified. As an example of implementations that don’t conform to the Periodic Messages
model, in some implementations of IGRP and RIP routers reset their routing timers before the
outgoing routing message is prepared, and routers don’t reset their routing timers after triggered
updates [Li93].

Thus the Periodic Messages model illustrates only one possible mechanism by which routing
messages can become synchronized. Wherever there are interactions between routers, or between
a router and the network, there could exist mechanisms that lead to synchronization.

4 Simulations

This section describes simulations of the Periodic Messages model. These simulations show the
behavior of a network with N routing nodes on a single broadcast networky fer 20. In the

first set of simulations the periodic routing messages for the N nodes are initially unsynchronized;
in the second set the periodic messages are initially clustered. The simulations show that the
behavior of the Periodic Messages system is determined by the random overhead added to each
node’s periodic timer. As the level of randomization increases, the system’s ability to break up
clusters of synchronized routing messages also increases.

Definitions: Tp, T;, T¢, Teo, and Ty. The timeT, is the constant component of the periodic
timer andr, is the magnitude of the random component. Eachrouter’srouting timer is drawn ateach
round from the uniform distribution or¥], - T, T, + T,] seconds. Each router requirésseconds
of computation time to process an outgoing routing messagel,.aseéconds of computation time
to process an incoming routing message; each routing message could consist of multiple packets.
In this paper we assume th&t, and7, are the samel,; seconds after a router’s routing timer
expires, other routers receive the first packet of the routing message.

For the simulations in this sectioff, is 121 secondd; is 0.11 seconds, arif; is set to zero;
for the initial simulations in this sectioh, is set to 0.1 seconds. The average timer-value of 121
seconds was chosen to give a minimum timer-value comparable to the 120-second timer used by
the DECnet routers on our local network. The value of 0.11 seconds feas chosen somewhat
arbitrarily to model an estimated computation time of 0.1 seconds and transmission time of 0.01
seconds for a router to compute and transmit packets for an outgoing routing message after a
timer expiration; these values are not based on any measurements of actual networks. Section 5.3
discusses how the results scale with different values for the various parameters.

routing table changes.
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Figure 4: A simulation showing synchronized routing messages
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Figure 5: An enlargement of the simulation above.

When a node’s routing timer expires, the node takeseconds to prepare and transmit its
routing message. We call this time thasy period For each routing message received while a
node is in its busy period, that node’s busy period is extended by the T, seconds required to
process an incoming routing message.

For simplicity, in the simulations in this sectidi is set to zero; that is, when node A's timer
expires the other nodes immediately receive the first packet of node A's routing message. Thus
in the simulations, when node A's timer expires node A immediately sp&nsisconds preparing
and transmitting its routing message, and at the same time the other routing nodes each spend
T., = T, seconds receiving and processing the routing message from node A. This assumption
most plausibly reflects a network with low propagation delay, where a router’s routing message
consists of several packets transmitted ové&f-aecond period. Section 5.4 shows the results of
simulations withZ; > 0.

The first set of simulations investigates the process by which initially-unsynchronized routing
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Figure 6: The cluster graph, showing the largest cluster for each round.

messages become synchronized. The routing messages fritbees are initially unsynchro-

nized; for each node the time at which the first routing message is sent is chosen from the uniform
distribution on [0,7,] seconds. For the simulation in FigureZ,is setto 0.1 seconds. Each jittery

line in Figure 4 is composed of hundreds of points, and each point represents one routing message
sent by a routing node. The x-axis shows the time in seconds at which the routing message was
sent, and the y-axis shows thme-offseti.e., the time moduld’, for T' = T,, 4+ T.. seconds. This
time-offset gives the time that each routing message was sent relative to the start afugath

The simulation in Figure 4 begins with unsynchronized routing messages and ends with the
N=20 routers transmitting their routing messages at essentially the same time each round. At the
left-hand side of the figure the twenty jittery lines represent the time-offsets of the transmit times
for the twenty nodes. In the absence of synchronization each router’s timer expires, on the average,
T, + T. seconds after that router’s previous timer expiration. These successive timer expirations
give a jittery but generally horizontal line for the timer expirations for a single router. However,
as we explain below, when routers become synchronized this increases the time interval between
successive routing messages from a single router. Atthe end of the simulation the routing messages
are fully synchronized, and all of the nodes set their timers at the same time each round. In this
case each router has a busy period of ZDseconds rather than @f seconds, increasing the time
interval between successive routing messages.

Figure 5 is an enlargement of a small section of Figure 4. This figure illustrates the synchro-
nization of routing messages from two routers; each “x” marks a timer expiration, and @ach “
marks the timer being reset. In the first five rounds of Figure 5 the two nodes are independent, and
each node sets its timer exacily seconds after its previous timer expires. However, in the sixth
round, node A's timer expires, say, at timeand node A begins preparing its routing message.
Before node A finishes preparing and sending its routing message, node B’s timer expires; node A
has to finish sending its own routing messagel to process node B’s routing message before it
can reset its own timer. These two tasks tédke- 7., = 27, seconds, so node A resets its timer at
timet + 27T..

In our model node B begins processing node A’s routing message at tinig, and in the
simulation in Figure 7, is set to zero. While node B is receiving and processing node A's routing
message, node B’s own timer expires; node B has to prepare and send its own outgoing routing
messagandfinish processing node A's routing message before resetting its timer. These tasks take
T.+T., = 2T, seconds, so fof; = 0 node B also resets its timer at time- 7, + 27, = t + 27T..

At this point node A and node B are synchronized and we say that they foluster, node A and



node B set their timers at the same time. The two nodes remain synchronized, setting their timers
at roughly the same time, as long as the timers expire withir T; seconds of each other each
round. The cluster breaks up again when, because of the random component, node A and node B’s
timers expire more thah. — 7, seconds apatrt.

More generally, acluster of size: refers to a set of routing messages that have become
synchronized. Each of thenodes in a cluster is busy processing incoming routing messages
and preparing its own outgoing routing message forseconds after the first timer in the cluster
expires. Fofly = 0, the: nodes in a cluster reset their timers at exactly the same time.

One way to think of the simulation in Figure 4 is as a system of N particles, each with some
random movement in a one-dimensional space. For a particléaneacluster(a cluster of size
one), each timer-offset differs from the previous round’s timer-offset by an amount drawn from
the uniform distribution on [F,, +7,] seconds. In Figure 4 the successive timer-offsets for an
unsynchronized routing node (the movement of a single particle) are represented by a jittery but
generally horizontal line.

For particles (or routing nodes) in a cluster of siz&. + (1 — ¢)T., = 7. seconds are spent
processing routing messages after the first timer of the cluster expires; then the nodes in the cluster
all reset their timers. A cluster @fparticles moves ahead a “distance” of rougfily- 1)7;. seconds
in each round. In Figure 4 the movement of a cluster is represented by an irregular line with
positive slope; the larger the cluster, the steeper the slope. When two clusters meet, the nodes in
the two clusters all reset their timers at the same time; the two clusters merge, for the moment, into
a larger cluster.

As Figure 4 shows, a cluster ofparticles can sometimes break up into two smaller clusters.
Even though the nodes set their routing timers at the same time, it is possible for one node’s
routing timer to expire more thah. — 7; seconds before any of the other nodes in the cluster,
because of the random component in the timer interval for each node. When this happens, the first
nodebreaks oubf the cluster, as discussed further in Section 5.1. The break-up of a cluster can
be seen in Figure 5 where a cluster of size two forms and then breaks up again.

The first part of the simulation in Figure 4 shows small clusters occasionally forming and
breaking up. Towards the end of the simulation a sufficiently-large cluster is formed, moving
rapidly across the space and incorporating all of the unclustered nodes that it encounters along its
path. As the cluster size increases, the average period of the cluster also increases; the larger the
cluster, the more quickly it “bumps into” and incorporates the smaller clusters.

A simulation at any point in time can be partially characterized by the size of the largest cluster
of routing messages. Figure 6 shows a cluster-graph of the simulation in Figure 4. The x-axis
shows time and the y-axis shows the size of the largest cluster in the current round of N routing
messages.

Figure 7 shows a simulation identical to that in Figure 4, except that the simulation was started
with a different random seed. Unlike the simulation in Figure 4, the simulation in Figure 7 ends
with unsynchronized routing messages. For the simulation in Figure 7, a cluster as large as five
occasionally forms but each time the cluster breaks up again.

Figure 9 shows the cluster graphs from several simulations that start with unsynchronized
routing messages. The parameters are the same as the previous simulations, except that the random
componentl, ranges from BT, to 1.47,. Note that the time scale is different from the cluster
graphs on previous pages; in Figure 9 the simulations run fosd€onds (115 days) instead of10
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Figure 8: The cluster graph, showing the largest cluster for each round.

seconds (just over 1 day). As the random component increases, the simulations take longer and
longer to synchronize.

These simulations do not specifically include triggered updates, triggered by a change in the
network. We can instead begin our simulations with synchronized routing messages, which can
resultfrom triggered updates. These simulations are shown in Figure 10; the random coniponent
ranges from BT, to 287.. As the random component increases, the simulations return more
quickly to the unsynchronized state.

Our simulation results are consistent with simulations of the same model in [Tr92]. In addition
to simulations, preliminary results from experiments by Treese have shown synchronization of
systems on an Ethernet [Tr94]. The experiments use an algorithm similar to the Periodic Messages
model. The results suggest that the Periodic Messages model captures a realistic possible behavior
of real computer systems.
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5 The Markov chain model

This section uses a Markov chain model to further explore the behavior of the Periodic Messages
system. The Markov chain explores the behavior of a system of N routers that each implement the
Periodic Messages model described in the previous section. The Markov chain model assumes that
each router receives a periodic routing message from every other router; this would be the case,
for example, for N routers on a broadcast network. Section 5.6 discusses the issues in extending
these results to N routers connected in an arbitrary topology, Section 5.4 discusses the effects
of a nonzero transmission and propagation delay between routers, and Section 6 discusses other
analytical approaches to synchronization.

The Markov chain model is used to compute the expected time for the system to move from
an unsynchronized state to a synchronized state, and vice versa. This Markov chain model uses
several simplifying assumptions, and therefore only approximates the behavior of the Periodic
Messages model. Nevertheless, the Markov chain model illustrates some significant properties of
the simulations of the Periodic Messages model.

The Markov chain has N states; when the largest cluster from a round of N routing messages
is of sizez, the Markov chain is defined to be in stateFigure 11 shows the Markov chain, along
with the transition probabilities. The transition probability; is the probability that a Markov
chain in state moves to statg in the next round.

The Markov chain model is based on several simplifying assumptions:

e The first simplifying assumption of the Markov chain model is that the future behavior of
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Figure 11: The Markov chain.

the system depends only on the current state and is independent of past states. This assumption is
clearly not true for the Periodic Messages model, where the future behavior of the system depends
not only on the size of the largest cluster but on the transmit times of the other routing messages.

e The second simplifying assumption is that the size of the largest cluster changes by at most
one from one round to the next. Again, this assumption is not strictly accurate, particularly for
large values ofV or T,. For example, in the Periodic Messages model it is possible for two clusters
of sizes: and 2 respectively to merge and form a cluster of siz€2 in the next round.

¢ The analysis of the Markov chain model assumes that except for the largest cluster:pf size
all other clusters are lone clusters of size one; again, this conservative assumption is not strictly
accurate. Given a cluster of sizethefollowing cluster is defined as the cluster that follows the
cluster of size in time. At each round, we assume that the “distance” between the largest cluster
of size: and the following lone cluster is given by an exponential random variable with expectation
T,/(N —+1). This distance is defined as the wait between the time when the nodes in the cluster
of size: settheir timer and the time when the timexpiresfor the node in the following lone
cluster. This expected value is based on the average distance betweent 1 clusters.

As in the Periodic Messages model, we assume that each node’s timer expires after a time
drawn from the uniform distribution on], - T7,, T, + T,] seconds. For a node in a cluster of
size:, the node take$. + (¢ — 1)T., = 7. seconds to process the incoming and outgoing routing
messages in the cluster, and other nodes receive the first packet of the routing rigseagads
after the timer expires. In this section we assume That 27, + Ty; if not, then a cluster never
breaks up into smaller clusters.

The next two sections define the transition probabilities for the Markov chain. Given these
transition probabilities, we compute the average time for the Markov chain to move from state 1
to state N, and the average time for the Markov chain to move from state N back down to state 1.
This analysis shows that whéh is sufficiently large, the Markov chain moves quickly from a
synchronized state to an unsynchronized state.

5.1 Cluster breakup and growth

This section estimates ;_1, the probability that the Markov chain moves from statte state: — 1

in one round. The second half of this section estimates;. In the Markov chain, a cluster of
size: can break up to form a cluster of size- 1 either by breaking up into a cluster of size one
followed by a cluster of sizé— 1, or vice versa. Because the first of the two cases is more fikely,
for simplicity we only consider this case. We say that the first no@aks awayrom the head of
the cluster.

5The second of the two cases occurs only if the last node transmits its routing message after it has had time to
process routing messages frath previous nodes in the cluster.
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Thusp, ,_1 is the probability that the node whose timer expires first, node A, resets its timer
before it receives any routing messages from any of the oethdrnodes in the cluster. Fonodes
in a cluster, the timers are all set withirf;; seconds of each other; in this analysis we estimate
that the: timers are all set at the same time and the timers expir¢iies uniformly distributed
in a time interval of length Z,.. Let L be the time from the expiration of the first timer until the
expiration of the second of thetimers. In the absence of incoming messages, node A resets its
timerT, seconds after its timer expires, and receives notification of a routing message from another
node in the clustef + T,; seconds after its timer expires. Because we assumé&thatT, + Ty,
there is always a nonzero probability that a cluster of sizeeaks up into smaller clusters.

From [Fe66, p.22],

ﬂ‘%y 1)

piic1 = Prob.(T. < L+1Ty) = <1 - 57

for: > 1.

Now we estimate; ,;1, the probability that the system moves from state state: + 1 in
one round. We leave,, as a variablep; , depends largely off;., the random change in the
timer-offsets from one round to the next. For simplicity, this analysis assumeg.thaf ...

The probability that a cluster of size two or more incorporates additional routing nodes, forming
a larger cluster, depends largely on the fact that larger clusters have larger average periods than
smaller clusters. After some time the larger cluster “collides” with a smaller cluster, and the two
clusters merge.

For a cluster of size, each node in the cluster sets its tinigr- (: — 1), = T, seconds after
the first timer in the cluster expires (or after it receives the first packet from that node’s routing
message). Fof; = 0, each of the timer expirations is uniformly distributed in the interval
[T, — 1., T, + T,]. Given: events uniformly distributed on the interval [0, 1], the expected value
of the smallest event is/1i + 1) [Fe66, p.24]. Thus the first of thetimers expires, on average,
T,-T.,4+21,./(:+1) =T,—T,(: —1)/(: + 1) seconds after the timers are set. The average total
period for a node in a cluster of sizés thereforel,, — T,(: — 1)/(: + 1) + ¢T.. seconds.

In one round the timer-offset for a cluster of sizeoves an average distance(of- 1)T; —
T.(: —1)/(« + 1) seconds relative to the timer-offset for a cluster of size one. For simplicity, in
estimating, ;1 we assume that the timer-offset for a cluster of siaeves in each rounexactly
(: —1)T. — T,(: —1)/(¢ + 1) seconds relative to the timer-offset for a cluster of size one. (This
assumption ignores the somewhat remote possibility that a cluster of sméd “jump over” a
smaller cluster.) What is the probability that, after one round, the timer-offset for a cluster of size
moves to withinZ,. seconds of the timer-offset for a cluster of size one?

The Markov chain model assumes that the distance between a cluster:aistzéne following
small cluster is an exponential random variable with expectdiipV —:+1). Thus for a Markov
chain in state, p;,1 is the probability that an exponential random variable with expectation
T,/ (N —i+1)islesstharti — 1)T. — T,(¢ — 1)/ (¢ + 1). For2< i < N — 1, this gives

Piipn=1— o~ ((N=i+1)/Tp) (=D Te=Tr (i=1)/(i+1)) (2)

Foralli, p;; = 1 — pii—1— pii1-
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5.2 Average time to cluster, and to break up a cluster

This section investigates the average time for the Markov chain to move from state 1 to state N,
and vice versa.

Definitions: t;; and f(i). Let¢,; be the expected number of rounds until the Markov chain
moves from state to statej, given that it moves from statedirectly to statej. Let f(:) be the
expected number of rounds until the Markov chain first enters stgieen that the Markov chain
starts in state 1. We leay&2) as a variabled

We give a recursive definition fof(¢) for : > 2. The expected number of rounds to first reach
state: equals the expected number of rounds to first reach statk, plus the additional expected
number of rounds, after first entering statel, to enter staté After state: — 1 is first reached, the
next state change is either to state2, with probability(p; _1,-2)/(pi—1.—2 + pi—1.:), Or to state,
with probability (p;_1,)/(pi—1,i-2 + pi—1,:). The expected number of rounds to reach siatdter
first entering state— 2, is f () — f(¢ — 2). This leads to the following recursive equation f¢ ):

Fliy=fli—1)+ —LEN2 ot f(i) — fli — 2))

Pi—1i—2 t Pi—1,
Pi—1, tie.
Pi—1i—2+ Pi—1,
Thus fore(z) = t;_1; + (pi—1,i—2/pi—1,i ) ti—1i—2,
. Pi—1i—2 t Pic1i ,,. Pi-15-2 ,,. .
f(i) — L f(@—l)*‘ﬁf(@—z):c(@)- )

From Appendix A, equation 3 has the solufion
7 m—lpl -
jo-se o0 3 (1722
m=3 \ j=2 Prj+1

i m m—1
+ZZ&®HQE) (4)
m=3k=3 j=k Pri+1
Considett; ;;1, the expected number of rounds to move from sjaie state; + 1, given that
the Markov chain in fact moves from stateo state; + 1. Let P;, be the probability that the
Markov chain in state first moves to statg¢ + 1 on roundz, given that the Markov chain moves
from statey to state; + 1. The equation fot; ;.1 is as follows [R085, p.37]:

O
tijvr = v Pia
=1

[oe)

r— Pji+1
o " (pjjm1 + Dijr1)’

Similarly, the equation fot; ;_; is as follows:

Djj-1

¢ .
Pji-1+ Pjjr1)?

3i=1= (

5This solution could also be verified by the reader by substituting the right-hand side of Equation (4) into Equation

@3).
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Next we investigate the average time for the Markov chain to move from state N to state 1.

Definitions: g(i). Let ¢(:) be the expected number of rounds for the Markov chain to first
enter state, given that the Markov chain starts in state N.

Thusg(N)=0and

Dit1i+2
Pitli+2 + Pit1s

g(i) = g(i+ 1) + (tiyrivz +9(2) —g(i + 2))

Ditli
Dit1li+2 + Piv1,
Ford(z) = t,'_|_17,' + (p,'_|_17,'_|_2/p,'_|_17,')t,'_|_17,'_|_2, this gives the recursive equation

tit1-

gli) - PRI (i 4 1)  BEEE (1 2) = (i) (5)
Pi+1, Pi+1,

Equation 5 has the solution below:
N-1N-1 k Pt
gli)=>_ >, (d<k> I1 —) (6)

The derivation of this equation is similar to thatft ). Note that this equation does not depend
on the values of, » or of f(2).

o
N
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Time (in seconds) to reach given cluster size, from size 1
(Solid line from analysis, dotted lines from simulations)

Figure 12: The expected time to reach cluster gjz&tarting from cluster size 1, fdf, = 0.1
seconds.

The solid line in Figure 12 shows(:), computed from Equation 4, fav¥ = 20,7, = 121
seconds], = 0.11 seconds], = 0.1 seconds],; = 0 seconds, anfl(2) = 19 rounds. (This value
for f£(2) is based both on simulations and on an approximate analysis that is not giveh iaee.
x-axis shows the time in seconds, computetas- 7..) f (). The y-axis shows the cluster size

"The dynamics for moving from a cluster of size two or more to a larger cluster is based largely on the fact that
larger clusters have larger average periods. In contrast, the dynamics for moving from a cluster of size one to a cluster
of size two depends on how frequently two clusters of size one ‘collide’, where all clusters of size one have the same
average period; this requires a different analysis.

16



20

15

********
i i T

Cluster size
10

o o e . e e e

0 50000 100000 150000 200000 250000 300000
Time (in seconds) to reach given cluster size, from size 20
(Solid line from analysis, dotted line from simulations)

Figure 13: The expected time to reach cluster gjzgtarting from cluster size N, fdf, = 0.3
seconds.

mark is placed at cluster sizevhen the system first reaches that cluster size. The results of twenty
simulations are shown by light dashed lines. Each simulation was started with unsynchronized
routing messages, with the values fvt 7,,, T.., T, andZ, described above; these simulations
differ only in the random seed. The heavy dashed line shows the results averaged from twenty
simulations.

The solid line in Figure 13 showg: ), computed from Equation 6, for the same parameters for
N, T,, T,;, andT, as in Figure 12, and fdf, = 0.30 seconds; for the value @f in Figure 12, the
system takes a long time to unsynchronize, making simulations unrealistic. The heavy dotted line
averages the results from twenty simulations.

Figures 12 and 13 show that the average times predicted by the Markov chain are two or three
times the average times from the simulations. This discrepancy is not surprising, because the
Markov chain is only a rough approximation of the behavior of the Periodic Messages system.
Aside from the difference in magnitude, however, the functions predicted from the Markov chain
and computed from the simulations are reasonably similar. Thus the Markov chain model does in
fact capture some essential properties of the Periodic Messages system.

5.3 Results from the Markov chain model

This section explores the general behavior of the Markov chain model. We compute the expected
time for the Markov chain to synchronize and to unsynchronize, for a range of valuég ff

andT,, and compare these analytical results to the results of simulations. This comparison shows
that the Markov chain model isxplanatoryrather tharpredictive the Markov chain model and

the simulations exhibit the same qualitative behavior, and the Markov chain model can be used
to explainthe behavior of the simulations, but the Markov model is not sufficiently accurate to
predictthe exact results of the simulations.

The analysis in this section, along with the simulations, shows that for a wide range of parame-
ters, choosing, as a small multiple of . ensures that the system is almost always unsynchronized.
The analysis further shows that for fixed valuesfoandT,., the transition to synchronization is an
abrupt function of the number of nod@& Finally, in this section we consider a system of routers
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in an arbitrary topology, where each router only receives periodic messages from its immediate
neighbors. We suggest that the model of synchronized routing messages in this paper is likely to
hold in arbitrary topologies only for connected subsets of nodes with similar degree.

Figure 14 considers the expected time for the Markov chain to synchronize or to unsynchronize,
as a function of the parametéf. Figure 14 givesf(N), from Equation 4, andy(1), from
Equation 6, fofT, ranging from zero to 47, givenN = 20,7, = 121 seconds]. = 0.11 seconds,
andT,; = 0 seconds. The solid line on the right shows the expected time for the Markov chain
to move from state N to state 1; the solid line on the left shows the expected time for the Markov
chain to move from state 1 to state N. The dotted line on the left was computed using values for
f(2) based on an approximate analysis that is not given here; the solid line on the lefi Bses
set to zero. Foff, < 0.5(T. — Ty), clusters never break up once they have formed, and the time
to synchronize depends largely on the time to first form a cluster of size two; this time increases
asT, approaches B.Note that the y-axis is on a log scale, and ranges from less thiasetOnds
(roughly 16 minutes) up to ¥dseconds (over 32 thousand years).

low 3 moderate \ 3 high

Average time
1 1 1 1 1
e3 ed4 e5 eb6 e/ e8 e9 el0

1

1

Random Noise Tr (as a multiple of Tc)
Tc,Tc2=0.110 seconds, Td=0 seconds, N=20.

Figure 14: Expected time to go from cluster size 1 to cluster size N, and vice versa, as a function
of T,.

Figure 14 can be used as a general guide in choosing a sufficiently large valygoken the
values for the other parameters in a system, so that the system moves easily from state N to state 1
and rarely moves from state 1 back to state N. The figure shows the regions of low, moderate, and
high randomization. In the region of low randomization the system moves easily from state 1 to
state N; in the region of high randomization the system moves easily from state N to state 1. In
the region of moderate randomization the system takes a significant period of time to move either
from state 1 to state N, or from state N back to state 1. In the low and moderate r¢giénghe
expected time for the Markov chain to move from state 1 to state N, grows exponentially,with
The “X” marks on Figure 14 show simulations that start with unsynchronized routing messages
and the “+” marks show simulations that start with synchronized routing messages.

Figure 15 shows the same analytical results as in Figure 14 for the number of nodes N ranging
from 10 to 30, and for a range of values ffir These simulations were performed to check how

8As Figure 14 shows, for extremely small valuesi®fthere is little randomness in the system, and it can take
some time for two nodes to first form a cluster.
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Figure 15: Expected time to go from cluster size 1 to cluster size N, and vice versa, as a function
of N and of7,.

accurately the analytical results predict the simulation results for a range of parameters. Note
that for larger values of, and of V, the analytical results significantly overestimate the time
required by the simulations to go from state N to state 1. The analytical results use the simplifying
assumption that the size of the largest cluster changes by at most one from one round to the next.
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As the parameterg. and NV increase, this assumption becomes less applicable.

The figures show that for a wide range of parameters, chodsiagleast ten times greater than
T. ensures that clusters of routing messages will be quickly broken up. For any range of parameters,
choosingT, asT,/2 should eliminate any synchronization of routing messages. This would be
equivalent to setting the routing timer each time to an amount from the uniform distribution on the
interval [0.57},,1.5T,] seconds. This introduces a high degree of randomization into the system,
yet ensures that the interval between routing messages is never too small or too large.

5.4 Incorporating delays between routers

The analysis and simulations in the paper so far have assumefd,;tka0; that is, that when a
node’s timer expires, other routers are immediately notified of the timer expiration. While small
values forTy accurately reflect a model of routing nodes where propagation delay is low and each
routing message consists of a number of packets, it is physically impossildlg tobe zero. In
this section we explore simulations with small nonzero valuegjor

Recall that, in the absence of incoming routing messages, router A resets itg tisgmonds
after its timer expires, and router B is notified of router A’'s incoming routing mesageconds
after router A's timer expires. I¥; > T. (for example, because router A resets its timer before
it transmits the first packet of the routing timer), then there is little coupling between adjacent
routers. In this case, if two routers’ timers expire at the roughly same time, then each router resets
its timer before receiving a routing message from the other router, and clusters break up quickly.
In this section we explore simulations with<0T; < T.. This reflects a model where each routing
message consists of multiple packets, and neighboring routers receive the first packet of a routing
message before the source router resets its timer.

1

1 1
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Random Noise Tr (as a multiple of Tc)
Tc,Tc2=0.110 seconds, Td=0.02 seconds, N=20.

Figure 16: Time to go from a cluster of size 1 to a cluster of size N, and vice versg; 010.02
seconds.

Figure 16 shows the results of simulations with= 0.02 seconds. The lines show the same
analytical results given in Figure 14, but computeddpr= 0.02 seconds. From the analysis in
Section 5p;;_1, the probability that a cluster of sizebreaks into a cluster of size— 1 in one
round, can be estimated by

n—ny

T (7)

Dii-1= <1 —
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Figure 17: Time to go from a cluster of size 1 to a cluster of size N, and vice versg, f010.04
seconds.

for: > 1 andT, — T, < 2T,. As this equation describes, the main effect of increaging to
increase; ;1.

In general, five simulations were run for each valud,gfand each simulation was terminated
after 1¢ seconds. The “X” marks show simulations that start with unsynchronized routing mes-
sages and the “+” marks show simulations that start with synchronized routing messages. Note
that with T; set to 0.02 seconds rather than to zero, the simulations take longer to synchronize
and less long to unsynchronize. Nevertheless, the basic behavior of synchronization is preserved.
As Figure 17 shows, increasirigy from 0.02 seconds to 0.04 seconds further increases the time
required for synchronization.

The simulations and analysis show that the time to synchronize increaes d% increases.
After a node’s timer expires, this is the time between when other nodes are notified of the timer
expiration, and when the node resets its own timer (in the absence of incoming routing messages).
This interval can be affected by a number of factors, such as the propagation delay, the number of
packets in the routing message and the timing between the transmission of these packets, and the
promptness with which nodes reset their routing timers.

5.5 Steady state behavior

One quantity of interest is the fraction of time that the Markov chain spends with low cluster
sizes. We were only able to estimate the equilibrium distribution for the Markov chain by further
approximating the transition probabilities. However, one simple way to estimate the fraction of
time that the Markov chain spends in synchronized states is to comuié /(N )+¢(1)). Recall
that f (V) is the expected number of rounds for the system to move from state 1 to state N; for
most of this time the system is largely unsynchronized. Similg(ly) is the expected number of
rounds for the system to move from state N to state 1; for most of this time the system is largely
synchronized.

In Figure 18 the x-axis shows,; the other parameters ané = 20,7, = 121 secondsl; = 0,
andZ. = 0.11 seconds. The y-axisgsl)/(f(N) + ¢(1)), the estimated fraction of time for which
the system is synchronized. As Figure 18 showsT,ais increased, the system makes a sharp
transition from predominately-synchronized to predominately-unsynchronized. The simulations
and analysis in Figure 15 show that for a wide range of values\fand .., the transition from
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Figure 18: The fraction of time synchronized vs. the random compdhent
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Figure 19: The fraction of time synchronized vs. the number of noded, fer0.11 seconds.
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Figure 20: The fraction of time synchronized vs. the number of nodeq; fer0.30 seconds.

predominately-synchronized to predominately-unsynchronized occufg farsmall multiple of
T..

Figures 19 and 20 show the estimated fraction of time that the Markov chain spends synchro-
nized as a function of the numbar of nodes in the network. The parameters for these figures are
T, =121 secondd,; =0, andl’ = 0.11 seconds, is 0.11 seconds in Figure 19 and 0.3 seconds in
Figure 20. For each figure, as the number of nodes is increased the system makes a sharp transition
from predominately-unsynchronized to predominately-synchronized. This corresponds in practice
to a network that moves from an unsynchronized to a fully synchronized state when one additional
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router is added to the system.

Figures 19 and 20 show that the number of nodes where the transition to synchronization takes
place is a function of the other parameters of the system; in Figure 19 the transition occurs for
N =9, and for Figure 20 the transition occurs fir= 22. Recall that because of the simplifying
assumptions, the analysis is explanatory rather than predictive; the analysis explains why the
transition to synchronization is an abrupt function of the number of nodes, but the analysis does
not necessarily accurately predict the exact number of nodes at which this transition takes place.

5.6 Topologies with point-to-point links

The analysis in this paper applies to a network of N routers where each router receives a periodic
routing message from each other router. Consider instead N routers in an arbitrary topology,
where the routers are connected by point-to-point links and each router only receives periodic
messages from its immediate neighbors. Itis still possible for all N routers in an arbitrary topology
to become synchronized, using the mechanisms described in this paper, but the synchronization
dynamics depend strongly on the particular network topology.

A
B D
C
Figure 21: A ring topology of routers.
E
B A D
C

Figure 22: A star topology of routers.

For example, for the topology of routers in Figure 21 each router receives a routing message
from two neighboring routers. Thus each router has to prepare its own outgoing routing message
and to process two incoming routing messages. If all four routers become synchronized, then each
router’s timer expires on the averadg + 7. + 27, = T, + 31. seconds after its busy period
begins, and each router’s busy period begins when either its timer or one of its neighbors’ timers
expires. The process of synchronization in a network where each routing node has constant degree
is similar to the process described in Section 5.2, and for small valldessoth a network is likely
to remain synchronized once synchronization occurs.

For the star topology of routers in Figure 22, however, given the Periodic Messages model
discussed in this paper, the synchronization of routing messages is less likely to occur. In Figure 22
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Router A has to process four incoming routing messages, while each of the other routers processes
only one incoming routing message. Assume that all five routers transmit a routing message at
the same time. Then router A's timer expires on the avefgge 57.. seconds later, while each of
the other routers’ timers expires on the averdpe- 27, seconds later. This difference in period
should break up synchronization fairly rapidly.

Thus for routers in an arbitrary topology the tendency towards synchronization can depend
heavily on the details of the topology. Current internet topologies where most routers have a
similar and low degree should lend themselves to synchronization.

6 Other approaches to synchronization

The Markov chain model in Section 5 was designed to capture some key properties of the routing
messages model such as the role of randomization in producing an initial cluster of size two, the
role of changes in period in enabling the formation of larger clusters, and the role of randomization
in breaking up clusters once they have formed. In addition, this Markov model seems (to us)
fairly simple and straightforward. However, there are many possible approaches to the analysis
of synchronization; in this section we discuss briefly coupled nonlinear oscillators and coupling
methods for Markov processes.

The approach to synchronization in [BI88] concerns coupled nonlinear oscillators and uses the
tools from nonlinear dynamic systems. The book shows that the tendency of synchronization is
characteristic of a broad class of dynamic systems. Because [BI88] does not treat the question of
synchronization in the presence of randomization, the results are not immediately applicable to the
synchronization of routing messages.

Mathematical models have recently been developed to analyze “pulse-coupled” oscillator sys-
tems [SS93] such as communities of Thai fireflies, where the periodic pattern of one firefly’s
flashing is affected by the others nearby. At dusk male fireflies gather in trees by the edge of the
river and flash on and off in an unsynchronized fashion but, as the night progresses, whole trees
of fireflies will flash in synchronization for hours. These “pulse-coupled” oscillator systems are
similar to our model of routing messages where the timing of one router’s routing messages can
be affected by the arrival of routing messages from a neighboring router.

A different approach to synchronization comes from the literature on coupling methods for
Markov processes [G78]. In the classical coupling [G78, p.13], two independent copies of a
Markov process evolve until they reach a common state then, from that point, the two Markov
processes use the same transition mechanism and follow the same path. It might be possible to
express our model for the synchronization of routing messages as an example of coupled stochastic
processes, with each routing node a separate Markov process, but the analysis that we use does not
come from the literature of coupled Markov processes.

7 Conclusions and open questions
In this section we give some specific conclusions about the synchronization of routing messages,

then discuss conclusions and open questions about the more general problem of unanticipated
structure in the Internet.
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As the simulations and analysis in this paper demonstrate, periodic routing messages from a
system of routers in a network can easily become synchronized. The simulations and analysis
both show that this synchronization is an emergent property at a particular scale with an abrupt
transition from unsynchronized to synchronized behavior. Thus the behavior of the system with a
small number of routers can not necessarily be extrapolated to explain the behavior of the system
with a large number.

Synchronization can be avoided with appropriate implementation of the routing protocols. One
possible method is the addition of a random component to the routing timer intervals. Our analysis
provides general guidelines on determining the magnitude of the random component necessary
to avoid synchronization. In particular, setting the timer each round to a time from the uniform
distribution on the interval [T}, 1.57,] seconds is a simple way to avoid synchronized routing
message$. Adding a random component to the routing timers changes the strict periodicity of
the routing messages but does not affect the convergence properties of the underlying routing
protocols.

A second method for avoiding synchronization is to implement a routing timer that is indepen-
dent of external events (as mentioned in the specifications for RIP) [He88, p.23]. If each router
resets its timer immediately after the timer expires (regardless of its activities when the timer
expires) and if routers don't reset their timers after triggered updates, then the process of timer
synchronization described in this paper might be avoided. There are, however, drawbacks to this
approach: if routers are initially synchronized (either by chance, or because they were restarted
at the same time) then they will remain synchronized since there is no mechanism to break up
synchronization if it does occur.

It is also possible to reduce the negative impact of synchronized routing updates by modifying
routers to give acceptable performance in the presence of large or synchronized routing updates.
While it is often more efficient to exploit traffic structure rather than to engineer it out, this does not
seem to be the case for synchronized routing messages. Even with tuned router implementations,
synchronized routing messages place an unnecessary burden on the network, and a preferable
solution is to avoid synchronization in the first place.

Periodic routing messages are not the only example of unintended structure in the Internet. Our
“ping” experiments suggest that many periodic processes are at work. From these experiments we
conjecture that a significant number of the packet drops in the Internet are associated with some
form of periodic process, but the causes of structure in current Internet traffic are only beginning
to be explored.

One model of large-scale structure comes from the kinetic theory of automobile traffic [PH71].
Individual drivers, each seeking to optimize their own goals, can produce collective traffic patterns
akin to the coordinated motion of flocks of birds or schools of fish. Individual strategies of reducing
speed during congestion result in a collective decrease in traffic flow as the vehicle concentration
increases past a certain density. [KK93] shows that given an initially homogeneous traffic flow,
regions of high density and low average velocity (clusters of cars) can spontaneously appear.
These high-density regions can move either with or against the flow of traffic, and two clusters
with different velocities, widths, and amplitudes merge when they meet, resulting in a single cluster.
We believe there are analogous interactions between packet streams and we intend to explore these
mechanisms for the emergence of large-scale structure in packet-switched networks.

®Pseudo-random numbers can be efficiently generated by a random number generator [Ca90].
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As the Internet expands to new types of traffic (e.g., voice and video), new routing patterns
(multicast distribution), and new gateway scheduling disciplines (Quality-of-Service for realtime
traffic), it is important to anticipate the large-scale structure that might be introduced by these
changes. But, as our analysis of routing shows, large scale structure is often an emergent property
that cannot be observed or inferred from small scale simulations or measurements. Although
they do not currently exist, we feel that large scale simulators are a necessary tool for exploring
guestions of large scale structure. Large scale simulations can help us build intuition about the
behavior of large-scale networks, better understand behavior of current Internet traffic, and predict
how this behavior might change as Internet traffic types, routing patterns, and gateway scheduling
disciplines evolve.
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A Solution to Recursive Formula

This section gives the solution for the following recursive equatioryfoy:

. Pi-1:— 2—|_pz 1 1:-2
7 - 1 — 2
fli) - Pt o gy Pt ) — ),

wherec(:) = t;_1,; + (pi—1i-2/pi—1.)ti—1.—2. We express this, using operator notation, as

(B~

Pi—14-2 +—Z%—1¢Z;_+ pi_1¢_2)j2_2 = (1)
Pioti Pi-1,

& (E- p;‘l”"z)(E — 1) fi_z = c(i).
i—1,2

For an explanation of operator notation in solving recursive equations, see [Gr82, p.19] or [Mi87,

p.15]. Let

zi=(E—=1)fio.
This gives the first order difference equation
(ZE—— Pi—1¢—2)2i:: c(i)
Pi-1
Pi-1,-2
Pi-1

= Zig1 = Z + C(Z)

Therefore

s = b(i)zio +e(i — 1) forb(i) = P22
Pi-2i-1

with the initial conditionz; = f> — f1, and for f; = 0. This has the solution [Gr82, p.18]

Zz223gb(j)+§(0(k—1) ﬁ b(j))-

j=k+1

Now solving for

(E-1)fia=f2 fi by zz: ( (k—1) II b(j )

j=4 J=k+1
we have that

fica=fi2 +—j§:f1 by %—zz: ( (k—1) II by )
=4

7=k+1
with the initial conditionf,. This has the solution

m+1 i m+1l m+1
fz-l-Z(szb )+ZZ( (k—1) II G )
m=3 k=4 7=k+1
Substituting forb(; ), we get

= b+2@ﬂ#ﬁﬂ+ii&wﬁﬁ¢)

7=2 Pjj+1



