— Lecture II —

Keywords:

mosml; sml; value declarations; static binding; basic
types (integers, reals, truth values, characters, strings);
function declarations; overloading; tuples; recursion;
expression evaluation; call-by-value.

References:

¢ [MLWP, Chapter 2]
¢ SML/NJ (http://www.smlnj.org/)

¢ Moscow ML (http://www.dina.dk/~sestof/mosml.html)

Most functional languages are interactive:

- val pi = 3.14159 ; |
> val pi = 3.14159 : real Va}J?S
0090 expressions
_ = % .
val area = pi . .0 types
> val area = 12.56636 : real

A declaration gives something a name, or binds something to
a name. In ML many things can be named: values, types, ...

Running ML

$ mosml
Moscow ML version 2.00 (June 2000)
Enter ‘quit();’ to quit.

% sml
Standard ML of New Jersey v110.57

Static binding

If a name is redeclared then the new meaning is adopted
afterwards, but does not affect existing uses of the name.

val pi = 3.14159 ;

val radius = 2.0 ;

val area = pi * radius * radius ;
val pi = 0.0 ;

area ;

Hpolll

- use"p0O1"; |Read a file into ML

Arithmetic
Integers and Reals

[opening file "p01"] ¢ The type of integers: int.

> val pi = 3.14159 : real Constants: ...,~2, ~1, 0, 1, 2,...

> val radius = 2.0 : real Built-in operators and functions: Try the following in ML

> val area = 12.56636 : real - load"Int"; (* needed in mosml, but not in sml *)
>val pi = 0.0 : real - open Int;

> val it = 12.56636 : real ¢ The type of reals: real.

[closing file "p01"] Constants:

..., 1E6, ~1.41, ~1E~10, 1E-10, 1.41, 1E6,...

The name it always has the value of the last expression
Built-in operators and functions: Try the following in ML

typed at top level.
- load"Real";open Real;

- load"Math";open Math;

Characters and strings

¢ The type of characters: char.
Constants: #"A" , #"a", ..., #"1", ..., #" ", ...,
#"\I'l"

Truth values Built-in operators and functions:

The type of booleans: bool. Try the following in ML - load"Char"; open Char;
Constants: false true ¢ The type of strings: string.
Built-in operators and functions: Constants:

Try the following in ML - 1oad"Bool";open Bool; tt,omt, MAT, 2, M0 el A 021 2

"Bye, bye ... \n"
Built-in operators and functions:
Try the following in ML - load"String"; open String;

Declaring functions :
val pi = 3.14159 ; Overloading

Certain built-in operators are overloaded, having more than
fun area (radius) = pi * square(radius) ; one meaning. For instance, + and * are defined both for

area (0.5) integers and reals.

fun, name, formal The type of an overloaded function must be determined from
parameters, body

area 0.5 ; the context; occasionally types must be stated explicitly.

fun square (x:real) = x * x ; (* overloading *)

val pi = 0.0 ;

- fun int_square (x:int) = x * x ;
"p02" functions are values (fn)

: > val int_square = fn : int -> int
function types

> 1 pi = 3.14159 : 1) . .
vat pi rea NB: SML97 defines a notion of default type. The SML

> val square = fn : real -> real . . S . .
compiler will resolve the overloading in a predefined way;

> val area = fn : real -> real . . .
relying on this is bad programming style.

> val it = 0.7853975 : real

> val pi = 0.0 : real - fun default_square x = x * x ;

> val it = 0.7853975 : real > val default_square = fn : int -> int

Declaring functions
Conditional expressions

To define a function by cases —where the result depends on

the outcome of a test— we employ a conditional expression. ¢ The boolean infix operators andalso and orelse are not

functions, but stand for conditional expressions:
¢ fun sign n

= if n>0 then 1 else if n=0 then 0 else "1 ;
fun absval x ¢ E1 orelse E2 =if E1 then true else E2

¢ E1 andalso E2 = if E1 then E2 else false

= if x >= 0.0 then x else "x ;

||p03||
> val sign = fn : int -> int

> val absval = fn : real -> real

Tuples

A tuple is an ordered, possibly empty, collection of values.

The tuple whose components are vq,...,v, (n > 0) is written

(V], cee ,Vn).

¢ Atuple is constructed by an expression of the form
(E1,...,En).

If E1 has type T7, and ..., En has type T,
then (E1,...,En) hastype ti*- - *T,.

In particular, the unit type is often used with procedural
programming in ML.
A procedure is typically a ‘function’ whose result type is
unit. The procedure is called for its effect; not for its
value, which is always (). For instance,

- use;

> val it = fn : string -> unit

- load; (%% in mosml *%*x)

> val it = fn : string -> unit

type complex = real * real ;

fun Y((x,y):complex)

¢ The empty tuple is given by () which is of unit type:
- O

> val it = () : unit

¢ The components of a non-empty tuple can be selected (or
projected).

¢ With functions, tuples give the effect of multiple arguments
and/or results.

Complex numbers

load"Math" ; (* needed in mosml, but not in sml *)

A type declaration

val origin = (0.0 , 0.0) : complex ;
fun X((x,y):complex) = x ;

y

fun norm v = Math.sqrt(X(v)*X(v) + Y(W)*Y(v)) ;
fun scalevec(r, v) = (r*xX(v) , r*xY(v)) ;

fun normal v = scalevec(1.0/(norm v) , v) ;

Ilp04ll

val

val
val
val

val

V V V V V V V

val

> val

it = () : unit the result of evaluating 1oad

type complex = real * real

origin = (0.0, 0.0) : real * real
X = fn : real * real -> real

Y = fn : real * real -> real
norm = fn : real * real -> real
scalevec

fn : real * (real * real) -> real * real

normal = fn : real * real -> real * real

In ML the keyword op overrides infix status:

op Xor;

fn : bool * bool -> bool

op xor (true , false) ;

val it

val it true : bool

Declaring functions
Infix operators

An infix operator is a function that is written between its two
arguments.

infix xor ; (* exclusive or *)
fun (p xor q)

= (p orelse q) andalso not(p andalso q) ;
true xor false xor true ;

Ilp05ll

> infix 0 xor default precedence 0

> val xor = fn : bool * bool -> bool
> val it = false : bool

Declaring functions

Recursion
Examples
¢ Factorial
fun fact n
= if n = 0 then 1
else n * fact(n-1) ;

> val fact = fn : int -> int

¢ Greatest Common Divisor
fun gcd(m , n)

= if m = 0 then n
else gcd(nmod m , m) ;

> val gcd = fn : int * int -> int

¢ Fibonacci numbers

FO:O) F1:] y Fn:Fn72+an1 (TIZZ)

¢ Power-of-two test

fun nextfib(Fn , Fsuccn) : int * int
fun powoftwo n

= (Fsuccn , Fn+Fsuccn) ; = (n=1) orelse

fun fibpair n ((n mod 2 = 0) andalso powoftwo(n div 2)) ;

= if n = 1 then (0,1)

))) > val powoftwo = fn : int -> bool
else nextfib(fibpair(n-1)) ;

> val nextfib = fn : int * int -> int * int

> val fibpair = fn : int -> int * int

Mutual recursion

Examples
¢ ¢ Parity test
1,11 1 1
i=l-3ts— 7t tagmst fun even n
fun pos k =n = 0 orelse odd(n-1)
= if k < 0 then 0.0 and odd n
else (if k = 0 then 0.0 else neg(k-1)) = n<>0 andalso (n = 1 orelse even(n-1)) ;
+ 1.0/real (4xk+1) > val even = fn : int -> bool
and neg k val odd = fn : int -> bool

= if k < 0 then 0.0
else pos(k) - 1.0/real(4*k+3) ;

> val pos = fn : int -> real

val neg = fn : int -> real

Evaluation of expressions

Execution is the evaluation (or reduction) of an expression to
its value, replacing equals by equals.

Evaluation of conditionals
To compute the value of the conditional expression

if E then E1 else E2, first compute the value of
the expression E. If the value so obtained is true then
return the value of the computation of the expression
E1; otherwise, return the value of the computation of
the expression E2.

Examples
1. fun minORmax b
= (if b then Int.min else Int.max)(1+3,2) ;

minORmax true
~» (if true then Int.min else Int.max) (1+3,2)
if true then Int.min else Int.max

~» Int.min

(1+3,2)
1+3 ~ 4
~ (4,2)

~» Int.min(4,2)

~ 2

The evaluation rule in ML is call-by-value (or strict evaluation).

Call-by-value evaluation

To compute the value of F (E), first compute the value of the ex-
pression F to obtain a function value, say f. Then compute the
value of the expression E, say v, to obtain an actual argument
for f. Finally compute the value of the expression obtained by
substituting the value v for the formal parameter of the function
f into its body.

NB: Most purely functional languages adopt call-by-name (or
lazy evaluation).

The manual evaluation of expressions is helpful when
understanding and/or debugging programs.

2. | fact(1-1)
1 -1~0

if 0 = 0 then 1 else 0 * fact(0-1)

0 = 0~ true

~ 1

For succinctness, the above is typically abbreviated as
follows fact(1-1)

~» fact O
~»1if 0 = 0 then 1 else 0 * fact(0-1)

~ 1

In this vein, thus

fact(3)

~»if 3 = 0 then 1 else 3 * fact(3-1)
~» 3 * fact(3-1)

~ 3 x fact(2)

~> 3
~ 3
~ 3
~ 3

~ 3

*

*

*

*

(if 2 = 0 then 1 else 2 * fact(2-1))

(2 % fact(2-1))

(2 x fact(1))

(2% (1if 1 = 0 then 1 else 1 * fact(1-1)))
(2% (1% fact(1-1)))

¢

(2% (1% fact(0)))

(2% (1% (if 0 =0 then 1 else 0 * fact(0-1))))
(2 (1%x1))

(2x*1)

¢ ¢

¢

NB: Due to call-by-value, one cannot define an ML function
cond such that cond (E,E1,E1) is evaluated like the conditional
expression if E then E1 else E2 for whatever expressions
E, E1, E2.

