— Lecture VIII —

Keywords:

tree-based data structures; binary search trees; red/black
trees; flexible functional arrays; heaps; priority queues.

References:

¢ [MLWP, Chapters 4 and 7]

¢ [PFDS, Chapters 2(§2), 3(§3), and 5(§2)]

Applications:

1.

Binary search trees offer a simple way to represent sets;
in which case, to eliminate repetitions, it is natural to
impose the extra condition that elements of left subtrees
are strictly smaller than their respective roots.

When balanced, they admit O(nlogn) runtime for all basic
operations.

Binary search trees can also be easily extended to act as
dictionaries, mapping keys to values.

Binary search trees

A binary search tree is a binary tree with nodes where data
items are stored with the property that,

for every node in the tree, the elements of the left
subtree are smaller than or equal to that of the node
which in turn is smaller than the elements of the right
subtree.

Thus,

the inorder listing of a binary search tree is a sorted
list.

We can test membership in a binary search tree using lookup:

fun lookup x empty = false
| lookup x (node(v,l,r))
=(x=v)
orelse
(if x < v then (lookup x 1)
else (lookup x r)) ;

val lookup = fn : int -> int tree -> bool

To insert a new value, we just need to find its proper place:

fun insert x empty = node(x , empty , empty)
| insert x (node(v,l,r))
= if x <= v then node(v , insert x1 , r)

else node(v , 1 , insert xr) ;

val insert = fn : int -> int tree -> int tree
We could thus sort a list by the following procedure:

val sort

= inorder o (foldl (fn(x,t) => insert x t) empty) ;

val sort = fn : int list -> int list

We insist that every red/black tree satisfies the following two

balance invariants:

1. No red node has a red child.

2. Every path from the root to an empty node contains the

same number of black nodes.

Together, these invariants ensure that the longest possible
path, one with alternating black and red nodes, is no more
than twice as long as the shortest possible path, one with
black nodes only.

Red/Black trees

Binary search trees are simple and perform well on random or
unordered data, but they perform poorly on ordered data,
degrading to O(n) performance for common operations.
Red/black trees are a popular family of balanced binary
search trees.

Every node in a red/black tree is colored either red or black.

datatype
’a RBtree
=0
| R of ’a * ’a RBtree * ’a RBtree
| B of ’a * ’a RBtree * ’a RBtree ;

NB: Empty nodes are considered to be black.

Red/Black tree insert

fun RBinsert x t
= let fun ins(0) =R(x , 0, 0)
| ins(RCy , 1, r))
=if x <=y then R(y , ins 1 , r)
else RCy , 1, ins r)
| ins(BCy , 1, 1))
= 1if x <=y
then BALANCE(B(y , ins 1 , r))
else BALANCE(B(y , 1 , ins r))
in case ins t of
R(x’,1,r) => B(x’,1,r)
| t72 => t°

b

end ;

(x1%)

(x3%)
(*3%)

(x2%)

This function extends the insert function for unbalanced
search trees in three significant ways.

1. When we create a new node, we initially color it red.

2. We force the final root to be black, regardless of the color
returned by ins.

3. We include calls to a BALANCE function, that massages its
arguments as indicated in the figure on the following page
to enforce the balance invariants.

NB: We allow a single red-red violation at a time, and
percolate this violation up the search path towards the root
during rebalancing.

fun BALANCE
B(z,R(y,R(Cx, tl,t2),t3) , td)
Bz ,R(x, tl,R(y, t2,t3)), td)
B(x,tl,R(y,t2,R(z, t3, td)))
B(x,tl,R(z,R(y, t2,t3) , td))
) =R(y ,B(x,tl,t2),B(z, t3, td))
| BALANCE t

=1t ;

—_— =

val BALANCE = fn : ’a RBtree -> ’a RBtree

Functional arrays
A functional array provides a mapping from an initial segment

of natural numbers to elements, together with 1ookup and
update operations.
A flexible array augments the above operations to insert or

delete elements from either end of the array.
signature UpperFlexARRAY =

sig type ’a t
exception Subscript
val empty: ’a t
val null: ’a t -> bool
val length: ’a t -> int
val lookup: ’a t * int -> ’a
val update: ’a t * int * ’a -> ’a t

val shrink: ’a t -> ’a t end ;

We will provide an implementation based on the following
tree-based data structure.

structure TreeArrayMod =

fun update(0 , k , v)
= if k = 1 then (V(v,0,0) , 1)
else raise Subscript
update(V(x,tl,tr) , k , v)
= if k = 1 then (V(v,tl,tr) , 0)
else if kmod 2 =0
then let
val (t,1)
= update(tl,k div 2,v)
in (V(x,t,tr) , 1) end
else let
val (t,i)
= update(tr,k div 2,v)
in (V(x,tl,t) , i) end ;

struct |
abstype ’a t =0 | Vof ’a * ’at x ’a t with
exception Subscript ;
val empty = 0 ;
fun lookup(V(v,tl,tr) , k)
= 1if k = 1 then v
else if k mod 2 = 0
then lookup(tl , k div 2)
else lookup(tr , k div 2)
| lookup(0 , _)
= raise Subscript ;

An implementation of upper flexible functional arrays follows.

fun delete(0 , n) NB: The implementation can be extended to also provide
= raise Subscript downwards flexibility in logarithmic time. Consider this as
| delete(V(v,tl,tr) , n) an exercise, or consult [MLWP, 4.15].

= if n =1 then O
else if n mod 2 = 0
then V(v , delete(tl,n div 2) , tr)
else V(v , tl , delete(tr,n div 2)) ;

structure TreeArray : UpperFlexARRAY =
struct
abstype ’a t = A of int * ’a TreeArrayMod.t with
exception Subscript ;
end ; val empty = AC 0 , TreeArrayMod.empty) ;
fun null(AC1,.)) =1 =20 ;

fun length(A(1,.)) =1 ;

end ;

fun

fun

Priority queues using heaps

A priority queue is an ordered collection of items. Items may
be inserted in any order, but only the highest priority
item (typically taken to be that with lower numerical value) may

lookup(A(1,t) , k)

if 1 = 0 orelse (k < 1 andalso k > 1

then raise Subscript

else TreeArrayMod.lookup(t,k) ;

update(A(l,t) , k , v)

if 1
then

else

<= k andalso k <= 1+1

let

val (u,i) = TreeArrayMod.update(t , k , v)

in

AC1+i , u)

end

raise Subscript ;

be seen or deleted.

signature PRIORITY_QUEUE =

sig

exception Size

typ
typ
val

val
val
val
val

e item
et
empty: t

null: t -> bool
insert: item -> t

min: t -> item

delmin: t

-> t

>t

end ;

fun shrink(A(1,t))
= 1if 1 = O then empty
else A(1-1 , TreeArrayMod.delete(t,1l)) ;
end ;

end ;

A heap is a binary tree in which the labels are arranged so
that every label is less than or equal to all labels below it in the
tree. This heap condition puts the labels in no strict order, but
does put the least label at the root.

The following functional priority queues are based on flexible
arrays that are heaps.

structure Heap: PRIORITY_QUEUE =
struct
exception Size ;
type item = real ;
abstype ’a tree
=0 | Vof ’a * ’a tree * ’a tree with

type t = item tree ;

val empty = 0 ;

fun null O
| null

fun insert
=V(w

| insert

true

false ;

I

(w:item) O
, 0, 0)
w(Vviv, 1, 1))

if w <= v then V(w , insert vr , 1)

else V(v , insert wr , 1) ;

fun min(V(v,_,_)) = v

| min 0 = raise Size ;

fun

siftdown(w:
siftdown(w
= if w <=
else V(
siftdown(w
= if w <=
else if

els

siftdown =

item , 0, 0) =V(w, 0, 0)
, t as V(v,0,0) , 0)
v then V(w , t , 0)

A%

>

, V(w,0,0) , 0)
1l as V(u,11,1r) , r as V(v,rl,rr))

u andalso w <= v then V(w,1l,r)
u <= v then V(u , siftdown(w,11l,1r)

e

V(v , 1, siftdown(w,rl,rr))

raise Impossible ;

,T)

local

exception Impossible ;

fun leftrem(V(v , 0, 0)) = (v, 0)
r))

in

| leftrem(V(v , 1,
= let
val (w,t) = leftrem 1
in
(w, V(v,r,t))
end

| leftrem _ = raise Impossible ;

fun delmin 0O = raise Size

end

end

end ;

| delmin(V(v,0,_)) =0
| delmin(V(v,1,r))
= let
val (w,t) = leftrem 1
in
siftdown(w , r , t)

end

fun

Heap sort

heapTOlist h
if Heap.null h then []
else (Heap.min h) :: heapTOlist(Heap.delmin h) ;

sort
heapT0list
o foldl (fn(v,h) => Heap.insert v h) Heap.empty ;

