Natural Language Processing

2007, 8 Lectures, Michaelmas Term
October 18, 2007

Ann Copestakegac@cl.cam.ac.uk)
http://www.cl.cam.ac.uk/users/aac/

Copyright(© Ann Copestake, 2003—2007

Lecture Synopsis

Aims

This course aims to introduce the fundamental techniquemtfral language processing and to develop an under-
standing of the limits of those techniques. It aims to introgl some current research issues, and to evaluate some
current and potential applications.

e Introduction. Brief history of NLP research, current applications, géniil_P system architecture, knowledge-
basedversusprobabilistic approaches.

¢ Finite-state techniques. Inflectional and derivational morphology, finite-state auata in NLP, finite-state
transducers.

e Prediction and part-of-speech tagging.Corpora, simple N-grams, word prediction, stochastic iaggevalu-
ating system performance.

e Parsing and generation.Generative grammar, context-free grammars, parsing amerggon with context-free
grammars, weights and probabilities.

e Parsing with constraint-based grammars.Constraint-based grammatr, unification.

e Compositional and lexical semanticsSimple compositional semantics in constraint-based gram8emantic
relations, WordNet, word senses, word sense disambiguatio

e Discourse.Anaphora resolution, discourse relations.

e Applications. Machine translation, email response, spoken dialoguessst

Objectives

At the end of the course students should

e be able to describe the architecture of and basic designdgenaric NLP system “shell”

e be able to discuss the current and likely future performamfceeveral NLP applications, such as machine
translation and email response

e be able to describe briefly a fundamental technique for msiog language for several subtasks, such as mor-
phological analysis, parsing, word sense disambiguation e

¢ understand how these techniques draw on and relate to atees af (theoretical) computer science, such as
formal language theory, formal semantics of programmimgjleages, or theorem proving

Overview

NLP is a large and multidisciplinary field, so this course cay provide a very general introduction. The idea is
that this is a ‘taster’ that gives an idea of the differentfmltds and shows some of the huge range of computational
techniques that are used. The first lecture is designed agivoverview of the main aspects and a very brief idea
of the main applications and the methodologies which haea leenployed. The history of NLP is briefly discussed
as a way of putting this into perspective. The next six leztulescribe some of the main subdisciplines in more
detail. The organisation is roughly based on increasedtde processing, starting with relatively surface-otiet
techniques and progressing to considering meaning of seggeand meaning of utterances in context. Most lectures
will start off by considering the subarea as a whole and thenrgto describe one or more sample algorithms which
tackle particular problems. The algorithms have been ahbseause they are relatively straightforward to describe
and because they illustrate a specific technique which has Sigown to be useful, but the idea is to exemplify an
approach, not to give a detailed survey (which would be imsjids in the time available). (Lecture 5 is a bit different
in that it concentrates on a data structure instead of arritign) The final lecture brings the preceding material
together in order to describe the state of the art in thregpmapplications.

There are various themes running throughout the lectures. teme is the connection to linguistics and the tension
that sometimes exists between the predominant view in ¢tieat linguistics and the approaches adopted within NLP.
A somewhat related theme is the distinction between knayddshsed and probabilistic approaches. Evaluation will
be discussed in the context of the different algorithms.

Because NLP is such a large area, there are many topics @t touched on at all in these lectures. Speech
recognition and speech synthesis is almost totally ignotatbrmation retrieval and information extraction are the
topic of a separate course given by Simone Teufel.

Feedback on the handout, lists of typos etc, would be greatyeciated.

Recommended Reading

Recommended Book:

Jurafsky, Daniel and James Mart8peech and Language ProcessiRgentice-Hall, 2000 (referenced as J&M through-
out this handout).

Much of the second edition of J&M can be downloaded fiuttp://www.cs.colorado.edu/ martin/slp2.html
The chapter on POS tagging is recommended over the versibe fiirst edition.

Background:

These books are about linguistics rather that NLP/comjmuntalt linguistics. They are not necessary to understand the
course, but should give readers an idea about some of theniexpof human languages that make NLP interesting
and challenging, without being technical.

Pinker, S.,The Language InstincPenguin, 1994.

This is a thought-provoking and sometimes controversiaptgar’ introduction to linguistics.
Matthews, Petet,inguistics: a very short introductigrOUP, 2003.

The title is accurate ...

Background/reference:

The Internet Grammar of Englishttp://www.ucl.ac.uk/internet-grammar/home.htm
Syntactic concepts and terminology.

Study and Supervision Guide

The handouts and lectures should contain enough informaticenable students to adequately answer the exam
guestions, but the handout is not intended to substituta fextbook (or for thought). In most cases, J&M go into a
considerable amount of further detail: rather than putddtsuggestions for further reading in the handout, in genera
| have assumed that students will look at J&M, and then follgmthe references in there if they are interested. The
notes at the end of each lecture give details of the sectibd&M that are relevant and details of any discrepancies

with these notes.

Supervisors ought to familiarise themselves with the rmatéyparts of Jurafsky and Martin (see notes at the end of each
lecture). However, good students should find it quite easyotoe up with questions that the supervisors (and the
lecturer) can’'t answer! Language is like that . ..

Generally I'm taking a rather informal/example-based apph to concepts such as finite-state automata, context-fre
grammars etc. The assumption is that students will havadreovered this material in other contexts and that this
course will illustrate some NLP applications.

This course inevitably assumes some very basic linguistisedge, such as the distinction between the major parts
of speech. It introduces some linguistic concepts that woafamiliar to all students: since I'll have to go through
these quickly, reading the first few chapters of an introdgctinguistics textbook may help students understand the
material. The idea is to introduce just enough linguistisrotivate the approaches used within NLP rather than
to teach the linguistics for its own sake. At the end of thiadaut, there are some mini-exercises to help students
understand the concepts: it would be very useful if thesesvatiempted before the lectures as indicated. There are
also some suggested post-lecture exercises.

Exam questions won't rely on students remembering the ldethiany specific linguistic phenomenon. As far as
possible, exam questions will be suitable for people whakgenglish as a second language. For instance, if a
guestion relied on knowledge of the ambiguity of a particiaglish word, a gloss of the relevant senses would be
given.

Model answers to past examination questions are availaldegervisors via student admin in the usual way.

Of course, I'll be happy to try and answer questions aboutthese or more general NLP questions, preferably by
email.

Changes to the course since previous years

Most of the changes to previous versions of these notesveymltting in more examples rather than any real changes.
In 2005/2006 there was one change in terminology to makedtesreasier to follow: current notes use subject (SUBJ)
and object (OBJ) for syntactic roles in lecture 5 and 6 rathan specifier (SPR) and complement (COMP) as in the
versions prior to 2005/2006. This means that an exam qurekiic?005 needs minor modification to be usable with
this version of the notes: this should be obvious, but let makof problems.

URLs

Nearly all the URLSs given in these notes should be linked from
http://www.cl.cam.ac.uk/ aacl0/stuff.html
(apart from this one of course ...). If any links break, | vpillt corrected versions there, if available.

1 Lecture 1: Introduction to NLP

The aim of this lecture is to give students some idea of theatbbjes of NLP. The main subareas of NLP will be
introduced, especially those which will be discussed inent®tail in the rest of the course. There will be a preliminary
discussion of the main problems involved in language prEingdy means of examples taken from NLP applications.
This lecture also introduces some methodological disbnstand puts the applications and methodology into some
historical context.

1.1 Whatis NLP?

Natural language processing (NLP) can be defined as the atitofor semi-automatic) processing of human language.
The term ‘NLP’ is sometimes used rather more narrowly thau, thiten excluding information retrieval and sometimes
even excluding machine translation. NLP is sometimes astad with ‘computational linguistics’, with NLP being
thought of as more applied. Nowadays, alternative termeféea preferred, like ‘Language Technology’ or ‘Language
Engineering’. Language is often used in contrast with shéeq., Speech and Language Technology). But I'm going
to simply refer to NLP and use the term broadly.

NLP is essentially multidisciplinary: itis closely relatéo linguistics (although the extent to which NLP overtlaahs

on linguistic theory varies considerably). It also has $in research in cognitive science, psychology, philos@tdy
maths (especially logic). Within CS, it relates to formaldaage theory, compiler techniques, theorem proving, ma-
chine learning and human-computer interaction. Of courisealso related to Al, though nowadays it's not generally
thought of as part of Al.

1.2 Some linguistic terminology

The course is organised so that there are six lectures pomeing to different NLP subareas, moving from relatively
‘shallow’ processing to areas which involve meaning andneations with the real world. These subareas loosely
correspond to some of the standard subdivisions of linipsist

1. Morphology: the structure of words. For instanaausuallycan be thought of as composed of a prefik, a
stemusual and an affixly. composeds composelus the inflectional affixed a spelling rule means we end
up with composedather tharcomposeedMorphology will be discussed in lecture 2.

2. Syntax: the way words are used to form phrases. e.g., @isgh English syntax that a determiner such as
thewill come before a noun, and also that determiners are diligavith certain singular nouns. Formal and
computational aspects of syntax will be discussed in lest@r 4 and 5.

3. Semantics. Compositional semantics is the construcianeaning (generally expressed as logic) based on
syntax. This is contrasted to lexical semantics, i.e., teamng of individual words. Compositional and lexical
semantics is discussed in lecture 6.

4. Pragmatics: meaning in context. This will come into leetid, although linguistics and NLP generally have
very different perspectives here.

1.3 Why is language processing difficult?

Consider trying to build a system that would answer email bgicustomers to a retailer selling laptops and accessories
via the Internet. This might be expected to handle queriek as the following:

e Has my order number 4291 been shipped yet?
¢ |s FD5 compatible with a 505G?
e What is the speed of the 505G?

Assume the query is to be evaluated against a databaseringtproduct and order information, with relations such
as the following:

ORDER

Order number Date ordered Date shipped
4290 2/2/02 2/2/02

4291 2/2/02 2/2/02

4292 2/2/02

USER: Has my order number 4291 been shipped yet?
DB QUERY: order(number=4291,dathipped="?)
RESPONSE TO USER: Order number 4291 was shipped on 2/2/02

It might look quite easy to write patterns for these querimg, very similar strings can mean very different things,
while very different strings can mean much the same thingnd. 2 below look very similar but mean something
completely different, while 2 and 3 look very different bueem much the same thing.

1. How fastis the 505G?
2. How fast will my 505G arrive?

3. Please tell me when | can expect the 505G | ordered.

While some tasks in NLP can be done adequately without haviggart of account of meaning, others require that
we can construct detailed representations which will rétlee underlying meaning rather than the superficial string.

In fact, in natural languages (as opposed to programminguiages), ambiguity is ubiquitous, so exactly the same
string might mean different things. For instance in the guer

Do you sell Sony laptops and disk drives?

the user may or may not be asking about Sony disk drives. Tiscplar ambiguity may be represented by different
bracketings:

Do you sell (Sony laptops) and (disk drives)?
Do you sell (Sony (laptops and disk drives))?

We'll see lots of examples of different types of ambiguitythese lectures.

Often humans have knowledge of the world which resolves aiplesambiguity, probably without the speaker or
hearer even being aware that there is a potential ambi§uyt hand-coding such knowledge in NLP applications
has turned out to be impossibly hard to do for more than venjtdid domains: the termAl-completeis sometimes
used (by analogy to NP-complete), meaning that we'd havelige ghe entire problem of representing the world
and acquiring world knowledge The term Al-complete is intended jokingly, but conveys viatobably the most
important guiding principle in current NLP: we're lookingrfapplications which don’t require Al-complete solutions
i.e., ones where we can work with very limited domains or agpnate full world knowledge by relatively simple
techniques.

1.4 Some NLP applications

The following list is not complete, but useful systems hagerbbuilt for:

11'll use hearergenerally to mean the person who is on the receiving end, disgar of the modality of the language transmission: i.e. retgss
of whether it's spoken, signed or written. Similarly, I'll@speakeifor the person generating the speech, text etcuataanceto mean the speech
or text itself. This is the standard linguistic terminologsich recognises that spoken language is primary and texaieadevelopment.

2|n this course, | will uselomainto mean some circumscribed body of knowledge: for instancerrimition about laptop orders constitutes a
limited domain.

e spelling and grammar checking
e optical character recognition (OCR)
e screen readers for blind and partially sighted users

e augmentative and alternative communication (i.e., systaraid people who have difficulty communicating
because of disability)

e machine aided translation (i.e., systems which help a hunaaslator, e.g., by storing translations of phrases
and providing online dictionaries integrated with word geesors, etc)

¢ lexicographers’ tools

¢ information retrieval

e document classification (filtering, routing)
e document clustering

¢ information extraction

e question answering

e summarization

e text segmentation

e exam marking

e report generation (possibly multilingual)
e machine translation

¢ natural language interfaces to databases
e email understanding

e dialogue systems

Several of these applications are discussed briefly belmugRly speaking, they are ordered according to the com-
plexity of the language technology required. The applaraitowards the top of the list can be seen simply as aids to
human users, while those at the bottom are perceived assageheir own right. Perfect performance on any of these

applications would be Al-complete, but perfection isn’tassary for utility: in many cases, useful versions of these
applications had been built by the late 70s. Commercialesghas often been harder to achieve, however.

1.5 Sentiment classification

Politicians want to know what people think about them. Coniggwant to know what users think about their prod-
ucts. Extracting this sort of information from the Web is agbwand lucrative business but much of the work is still
done by humans who have to read through the relevant docsrardtclassify them by hand, although automation is
increasingly playing a role. The full problem involves findiall the references to an entity from some document set
(e.g., all newspaper articles appearing in September 2@0d)then classifying them as positive, negative or neutral
Customers want to see summaries of the data (e.g., to sebevipetpularity is going up or down), but may also want
to see actual examples (text snippets). Companies may warg-grained classification of aspects of their product
(e.g., laptop batteries, MP3 player screens).

The full problem involves retrieving relevant text, recdtgom of named entitiege.g.,Sony 505GTony Blair) and of
parts of the text that refer to them. But academic reseasdiare looked at a simpler version of sentiment classifinatio
by starting from a set of documents which are already knowbet@pinions about a particular topic or entity (e.g.,
reviews) and where the problem is just to work out whethemththor is expressing positive or negative opinions. This

still turns out to be hard for computers, though generallyyefar humans, especially if neutral reviews are excluded
from the data set (as is often done). Much of the work has beae dn movie reviews. The rating associated with
each review is known (5 stars, 1 star or whatever), so theae @bjective standard as to whether the review is positive
or negative. The research problem is to guess this autoatigtaver the entire corpus.

The most basic technique is to look at the words in the rewieisadlation of each other, and to classify the document
on the basis of whether those words generally indicate igesir negative reviews. A document with more positive
words than negative ones should be a positive review. Ircipli@, this could be done by using human judgements of
positive/negative words, but using machine learning tephes works better. However, the accuracy of the classifica-
tion is only around 80% (for a problem where there is a 50% chauccess raté)One source of errors is negation:
(e.g.,Ridley Scott has never directed a bad fitha positive statement). Another problem is that the maekgarning
technique may match the data too closely: e.g., if the maclgarner is trained on reviews which include a lot of
films from before 2005, it may decide thRidleyis a strong positive indicator but then tend to misclassfyiews for
‘Kingdom of Heaven’. More subtle problems arise from notkiag the contrasts in the discourse:

This film should be brilliant. It sounds like a great plot, thetors are first grade, and the supporting cast
is good as well, and Stallone is attempting to deliver a gaerflbppmance. However, it can't hold up.

Another example:

AN AMERICAN WEREWOLF IN PARIS is a failed attempt . . . Julie [pglis far too good for this movie.
She imbues Serafine with spirit, spunk, and humanity. Thisriscessarily a good thing, since it prevents
us from relaxing and enjoying AN AMERICAN WEREWOLF IN PARIS ascompletely mindless,
campy entertainment experience. Delpys injection of diagsan otherwise classless production raises
the specter of what this film could have been with a bettepsamd a better cast ... She was radiant,
charismatic, and effective . ..

Both examples are from Pang et al (2002).

Unfortunately, although in principle NLP techniques caaldeith syntax, semantics and discourse and thus address
these sort of problems, doing this in a way that can signifigamprove performance over the simple system turns
out to be (very) hard. To understand whether a statementsigiy@mor negative is ultimately Al-complete: the real
guestion is whether automatic methods are good enough aahyecases to be useful.

1.6 Information retrieval, information extraction and que stion answering

Information retrieval involves returning a set of docungeint response to a user query: Internet search engines are a
form of IR. However, one change from classical IR is thatimé¢ search now uses techniques that rank documents
according to how many links there are to them (e.g., Goo@lageRank) as well as the presence of search terms.

Information extraction involves trying to discover speciiinformation from a set of documents. The information
required can be described as a template. For instance, figqpaay joint ventures, the template might have slots for
the companies, the dates, the products, the amount of monelyéd. The slot fillers are generally strings.

Question answering attempts to find a specific answer to afspegueestion from a set of documents, or at least a short
piece of text that contains the answer.

() What is the capital of France?
Paris has been the French capital for many centuries.

There are some question-answering systems on the Web, lstitus® very basic techniques. One common approach
involves employing a large staff of people who search the tedlnd pages which are answers to potential questions.
The question-answering system performs very limited maaifon on the actual input to map to a known question.
The same basic technique is used in many online help systems.

3A corpus(plural corpora) is the technical term for a body of text that has been caéfor some purpose, s&8.1.
4Pang, Lee and Vaithyanatha (200Zjjumbs up? Sentiment Classification using Machine Learfanfiniquesn Proceedings of the 2002
Conference on Empirical Methods in Natural Language Praog$EMNLP).

1.7 Machine translation

MT work started in the US in the early fifties, concentratingRussian to English. A prototype system was publicly
demonstrated in 1954 (remember that the first electronicpeen had only been built a few years before that). MT
funding got drastically cut in the US in the mid-60s and cdasebe academically respectable in some places, but
Systran was providing useful translations by the late 6@str&n is still going (updating it over the years is an amgzin
feat of software engineering): Systran now powers Altad/ssBabelFish

http://world.altavista.com/

and many other translation services on the web (includingtrobthe language pairs available from Google).

Until the 80s, the utility of general purpose MT systems wasesely limited by the fact that text was not available in
electronic form: Systran used teams of skilled typists puirRussian documents.

Systran and similar systems are not a substitute for hunzeasltation: they are useful because they allow people to
get an idea of what a document is about, and maybe decide ahitthinteresting enough to get translated properly.
This is much more relevant now that documents etc are alaitabthe Web. Bad translation is also, apparently, good
enough for chatrooms.

Spoken language translation is viable for limited domaiasearch systems include Verbmobil, SLT and CSTAR.

1.8 Natural language interfaces and dialogue systems

Natural language interfaces were the ‘classic’ NLP probierthe 70s and 80s. LUNAR is the classic example of
a natural language interface to a database (NLID): its @aslsoncerned lunar rock samples brought back from the
Apollo missions. LUNAR is described by Woods (1978) (buteotost of the work was done several years earlier): it
was capable of translating elaborate natural languagessgjuns into database queries.

SHRDLU (Winograd, 1973) was a system capable of partiaiigdti a dialogue about a microworld (the blocks world)
and manipulating this world according to commands issudghiglish by the user. SHRDLU had a big impact on the
perception of NLP at the time since it seemed to show that coenp could actually ‘understand’ language: the
impossibility of scaling up from the microworld was not risald.

LUNAR and SHRDLU both exploited the limitations of one paufiar domain to make the natural language under-
standing problem tractable, particularly with respectitbaguity. To take a trivial example, if you know your databas
is about lunar rock, you don’t need to consider the music orean@ent senses obck when you're analysing a query.

There have been many advances in NLP since these system$uileraystems have become much easier to build,
and somewhat easier to use, but they still haven't beconuitbus. Natural Language interfaces to databases were
commercially available in the late 1970s, but largely diaettny the 1990s: porting to new databases and especially to
new domains requires very specialist skills and is esdgnti expensive (automatic porting was attempted but neve
successfully developed). Users generally preferred gecapmterfaces when these became available. Speech input
would make natural language interfaces much more usefdbriumately, speaker-independent speech recognition
still isn't good enough for even 1970s scale NLP to work welkechniques for dealing with misrecognised data
have proved hard to develop. In many ways, current commiraaployed spoken dialogue systems are using pre-
SHRDLU technology.

1.9 Some more history

Before the 1970s, most NLP researchers were concentratingToas an application (see above). NLP was a very
early application of CS and started about the same time am€kypowas publishing his first major works in formal
linguistics (Chomskyan linguistics quickly became dominaspecially in the US). In the 1950s and early 1960s,
ideas about formal grammar were being worked out in lingessand algorithms for parsing natural language were
being developed at the same time as algorithms for parsiogr@mming languages. However, most linguists were
uninterested in NLP and the approaches that Chomsky dea@kopned out to be only somewhat indirectly useful for
NLP.

NLP in the 1970s and first half of the 1980s was predominaraled on a paradigm where extensive linguistic and
real-world knowledge was hand-coded. There was contrgwaseut how much linguistic knowledge was necessary

for processing, with some researchers downplaying syntaparticular, in favour of world knowledge. NLP re-
searchers were very much part of the Al community (espsggcialihe US and the UK), and the debate that went on in
Al about the use of logic vs other meaning representatioreaf’ vs ‘scruffy’) also affected NLP. By the 1980s, several
linguistic formalisms had appeared which were fully formgrounded and reasonably computationally tractable, and
the linguistic/logical paradigm in NLP was firmly estabksh Unfortunately, this didn't lead to many useful systems,
partly because many of the difficult problems (disambiguraétc) were seen as somebody else’s job (and mainstream
Al was not developing adequate knowledge representatamiques) and partly because most researchers were con-
centrating on the ‘agent-like’ applications and neglegtine user aids. Although the symbolic, linguistically-bds
systems sometimes worked quite well as NLIDs, they provegetof little use when it came to processing less re-
stricted text, for applications such as IE. It also becanpaggnt that lexical acquisition was a serious bottleneck fo
serious development of such systems.

Statistical NLP became the most common paradigm in the 1%80sast in the research community. Speech recog-
nition had demonstrated that simple statistical techréquerked, given enough training data. NLP systems were
built which required very limited hand-coded knowledgeairom initial training material. Most applications were
much shallower than the earlier NLIDs, but the switch toistizal NLP coincided with a change in US funding,
which started to emphasise speech-based interfaces afdhée was also a general realization of the importance
of serious evaluation and of reporting results in a way thlatld be reproduced by other researchers. US funding
emphasised competitions with specific tasks and suppli&drteterial, which encouraged this, although there was a
downside in that some of the techniques developed were askydpecific. It should be emphasised that there had
been computational work on corpora for many years (much by ilinguists): it became much easier to do corpus
work by the late 1980s as disk space became cheap and maehutessle text became ubiquitous. Despite the shift
in research emphasis to statistical approaches, most cariaingystems remained primarily based on hand-coded
linguistic information.

More recently the symbolic/statistical split has beconss fgronounced, since most researchers are interestechid bot
There is considerable emphasis on machine learning in gemecluding machine learning for symbolic processing.
Linguistically-based NLP has made something of a comebaith,increasing availability of open source resources,
and the realisation that at least some of the classic $taliséchniques seem to be reaching limits on performance,
especially because of difficulties in adapting to new tygeexd. However, the modern linguistically-based appraech
are making use of machine learning and statistical proogs3ihe dotcom boom and bust considerably affected NLP
in industry, but at the time of writing (2007), a new boom seeémbe getting underway. The ubiquity of the Internet
has certainly changed the space of interesting NLP apitstand the vast amount of text available can potentially
be exploited, especially for statistical techniques.

1.10 Generic ‘deep’ NLP application architecture

Many NLP applications can be adequately implemented withtively shallow processing. For instance, spelling
checking only requires a word list and simple morphologyéaiseful. I'll use the term ‘deep’ NLP for systems that
build a meaning representation (or an elaborate syntagpiesentation), which is generally agreed to be required fo
applications such as NLIDs, email question answering armdi 4T.

The most important principle in building a successful NLBteyn is modularity. NLP systems are often big software
engineering projects — success requires that systems dampbeved incrementally.

The input to an NLP system could be speech or text. It could bésgesture (multimodal input or perhaps a Sign
Language). The output might be non-linguistic, but mosteays need to give some sort of feedback to the user, even
if they are simply performing some action (issuing a tickgtying a bill, etc). However, often the feedback can be
very formulaic.

There’s general agreement that the following system compisncan be described semi-independently, although as-
sumptions about the detailed nature of the interfaces ktteem differ. Not all systems have all of these components:

e input preprocessing: speech recogniser or text preprocéssn-trivial in languages like Chinese or for highly
structured text for any language) or gesture recognisech System might themselves be very complex, but |
won't discuss them in this course — we’ll assume that thetiblpthe main NLP component is segmented text.

5At least, there are only a few researchers who avoid staistechniques as a matter of principle and all statisticatesys have a symbolic
component!

e morphological analysis: this is relatively well-undemtifor the most common languages that NLP has consid-
ered, but is complicated for many languages (e.qg., TurlBsisque).

e part of speech tagging: not an essential part of most deagegsing systems, but sometimes used as a way of
cutting down parser search space.

e parsing: this includes syntax and compositional semgntibich are sometimes treated as separate components
e disambiguation: this can be done as part of parsing, orighigitleft to a later phase
e context module: this maintains information about the cetpfer anaphora resolution, for instance.

e text planning: the part of language generation that's coresbwith deciding what meaning to convey (I won’t
discuss this in this course)

e tactical generation: converts meaning representatiositiys. This may use the same grammar and leficon
as the parser.

e morphological generation: as with morphological analysis is relatively straightforward for English.

e output processing: text-to-speech, text formatter, ets.with input processing, this may be complex, but for
now we’'ll assume that we're outputting simple text.

Application specific components, for instance:

1. For NL interfaces, email answering and so on, we need arfate between semantic representation (expressed
as some form of logic, for instance) and the underlying krealge base.

2. For MT based otransfer, we need a component that maps between semantic représesitat

It is also very important to distinguish between the knowledources and the programs that use them. For instance,
a morphological analyser has access to a lexicon and a seirphwlogical rules: the morphological generator might
share these knowledge sources. The lexicon for the morpii@pstem may be the same as the lexicon for the parser
and generator.

Other things might be required in order to construct theddath components and knowledge sources:

e lexicon acquisition
e grammar acquisition

e acquisition of statistical information

For a component to be a true module, it obviously needs adedihed set of interfaces. What's less obvious is that it
needs its own evaluation strategy and test suites: devsloged to be able to work somewhat independently.

In principle, at least, components arusablein various ways: for instance, a parser could be used withiphel
grammars, the same grammar can be processed by differes#trpand generators, a parser/grammar combination
could be used in MT or in a natural language interface. Howewee a variety of reasons, it is not easy to reuse
components like this, and generally a lot of work is requii@deach new application, even if it's based on an existing
grammar or the grammar is automatically acquired.

We can draw schematic diagrams for applications showingthewnodules fit together.

6The termlexiconis generally used for the part of the NLP system that contgiictionary-like information — i.e. information about indélal
words.

10

1.11 Natural language interface to a knowledge base

KB

KB INTERFACE/CONTEXT MODULE KB OUTPUT/TEXT PLANNING

A
4
PARSING TACTICAL GENERATION
A
4
MORPHOLOGY MORPHOLOGY GENERATION
A
4
INPUT PROCESSING OUTPUT PROCESSING
user input output

In such systems, the context module generally gets incladgghrt of the KB interface because the discourse state is
quite simple, and contextual resolution is domain spec8imilarly, there’s often no elaborate text planning reqir
ment, though this depends very much on the KB and type of ggiénwolved.

In lectures 2—7, various algorithms will be discussed whiolld be parts of modules in this generic architecture,
although most are also useful in less elaborate contextsutee8 will discuss the architecture and requirements of a
few applications in a bit more detalil.

1.12 General comments

Even ‘simple’ NLP applications need complex knowledge sesifor some problems.
Applications cannot be 100% perfect, because full real dviniowledge is not possible.
Applications that are less than 100% perfect can be usefuméms aren’t 100% perfect anyway).

Applications that aid humans are much easier to constractdipplications which replace humans. It is difficult
to make the limitations of systems which accept speech gulage obvious to naive human users.

NLP interfaces are nearly always competing with a non-laggubased approach.

Currently nearly all applications either do relatively Bba processing on arbitrary input or deep processing on
narrow domains. MT can be domain-specific to varying extelMf§ on arbitrary text isn't very good, but has
some applications.

Limited domain systems require extensive and expensiverégp to port. Research that relies on extensive
hand-coding of knowledge for small domains is nhow genenafarded as a dead-end, though reusable hand-
coding is a different matter.

The development of NLP has mainly been driven by hardwaresaftdvare advances, and societal and infras-
tructure changes, not by great new ideas. Improvements iA téchniques are generally incremental rather
than revolutionary.

11

2 Lecture 2: Morphology and finite-state techniques

This lecture starts with a brief discussion of morphologn@entrating mainly on English morphology. The concept
of a lexicon in an NLP system is discussed with respect to haggical processing. Spelling rules are introduced
and the use of finite state transducers to implement spdilites is explained. The lecture concludes with a brief
overview of some other uses of finite state techniques in NLP.

2.1 A very brief and simplified introduction to morphology

Morphology concerns the structure of words. Words are assulmbe made up ahorphems, which are the minimal
information carrying unit. Morphemes which can only ocauconjunction with other morphemes afixes: words
are made up of a stem (more than one in the case of compourtigeemor more affixes. For instana®ngis a stem
which may occur with the plural suffixs i.e.,dogs English only has suffixes (affixes which come after a sterd) an
prefixes (which come before the stem — in English these ariédihto derivational morphology), but other languages
haveinfixes(affixes which occur inside the stem) and circumfixes (affixb&ch go around a stem, such as thestin
Germangekauf}. For instance, Arabic has stems (root forms) suck aib, which are combined with infixes to form
words (e.g.kataba he wrote kotoly books). Some English irregular verbs show a relic of inftetby infixation (e.g.
sing sang sung but this process is no longproductive(i.e., it won't apply to any new words, such pisg).”

Note the requirement that a morpheme can be regarded as & beit are cases where there seems to be a similarity
in meaning between some clusters of words with similar gt e.g. slink, slide, slither, slip. But such examples
cannot be decomposed (i.e., there isshanorpheme) because the rest of the word does not stand as a unit

2.2 Inflectional vs derivational morphology

Inflectional and derivational morphology can be distinges, although the dividing line isn’'t always sharp. The
distinction is of some importance in NLP, since it meansedéht representation techniques may be appropriate.
Inflectional morphology can be thought of as setting valdesdats in somegparadigm(i.e., there is a fixed set of slots
which can be thought of as being filled with simple valuesfielstional morphology concerns properties such as tense,
aspect, number, person, gender, and case, although nahgllages code all of these: English, for instance, has very
little morphological marking of case and gender. Derivadibaffixes, such asn-, re-, anti- etc, have a broader range
of semantic possibilities (there seems no principled lionitwhat they can mean) and don't fit into neat paradigms.
Inflectional affixes may be combined (though not in Engligtdwever, there are always obvious limits to this, since
once all the possible slot values are ‘set’, nothing elsel@ppen. In contrast, there are no obvious limitations on
the number of derivational affixeartidisestablishmentarianisrantidisestablishmentarianismizatijpand they may
even be applied recursivelgiftiantimissilg. In some languages, such as Inuit, derivational morphoiegften used
where English would use adjectival modification or othertagtic means. This leads to very long ‘words’ occurring
naturally and is presumably responsible for the (mistaletaijn that ‘Eskimo’ has hundreds of words for snow.

Inflectional morphology is generally close to fully prodwuet in the sense that a word of a particular class will
generally show all the possible inflections although theacffix used may vary. For instance, an English verb will
have a present tense form, a 3rd person singular presesetfiams, a past participle and a passive participle (theratte
two being the same for regular verbs). This will also apphaty new words which enter the language: e@xtas

a verb —texts texted Derivational morphology is less productive and the clasgevords to which an affix applies
is less clearcut. For instance, the suffeeis relatively productive texteesounds plausible, meaning the recipient
of a text message, for instance), but doesn’t apply to abbvé®noree Jogee ropeg. Derivational affixes may
change the part of speech of a word (e:tpg-ize converts nouns into verbglural, pluralise). However, there are
also examples of what is sometimes calkio derivation where a similar effect is observed without an affix: e.g.
tangq waltzetc are words which are basically nouns but can be used as.verb

Stems and affixes can be individually ambiguous. There spd$ential for ambiguity in how a word form is split into
morphemes. For instancenionisedcould beunion -ise -edr (in chemistry)un- ion -ise -ed This sort of structural
ambiguity isn’t nearly as common in English morphology asyntax, however. Note tham- ionis not a possible
form (becausen-can't attach to a noun). Furthermore, although there is fiqua- that can attach to verbs, it nearly

7Arguably, though, spoken English has one productive irifixgprocess, exemplified tgbsobloodylutely

12

always denotes a reversal of a process (eugtig), whereas thein- that attaches to adjectives means ‘not’, which is
the meaning in the case ah- ion -ise -ed Hence the internal structure ah- ion -ise -echas to bgun- ((ion -ise)
-ed)).

2.3 Spelling rules

English morphology is essentially concatenative: i.e.,o&n think of words as a sequence of prefixes, stems and
suffixes. Some words have irregular morphology and theieatibnal forms simply have to be listed. However, in
other cases, there are regular phonological or spellinggémassociated with affixation. For instance, the stdfig
pronounced differently when it is added to a stem which endsx or zand the spelling reflects this with the addition
of an e (boxesetc). For the purposes of this course, we’'ll just talk abqélling effects rather than phonological
effects: these effects can be capturedpglling ruleg(also known asrthographic rules.

English spelling rules can be described independentlyeptrticular stems and affixes involved, simply in terms of
the affix boundary. The ‘e-insertion’ rule can be describgdfodiows:

S

e—e/ ¢ X s

z

In such rules, the mapping is always given from the ‘undadyform to the surface form, the mapping is shown to
the left of the slash and the context to the right, with thimdicating the position in questios.is used for the empty
string and" for the affix boundary. This particular rule is read as sayhrg the empty string maps to ‘e’ in the context
where it is preceded by an s,x, or z and an affix boundary atalfetl by an s. For instance, this mdps< sto boxes
This rule might look as though it is written in a context séimeigrammar formalism, but actually we’'ll see §2.7
that it corresponds to a finite state transducer. Becauseildnés independent of the particular affix, it applies etual
to the plural form of nouns and the 3rd person singular prefgem of verbs. Other spelling rules in English include
consonant doubling (e.gat, ratted, though note, notduditted and y/ie conversionp@rty, parties.

2.4 Applications of morphological processing

It is possible to use &ill-form lexiconfor English NLP: i.e., to list all the inflected forms and teat derivational
morphology as non-productive. However, when a new word bdsettreated (generally because the application is
expanded but in principle because a new word has enteredrlgedge) it is redundant to have to specify (or learn)
the inflected forms as well as the stem, since the vast mgjofitvords in English have regular morphology. So a
full-form lexicon is best regarded as a form of compilatidfany other languages have many more inflectional forms,
which increases the need to do morphological analysisrréthe full-form listing.

IR systems usstemmingather than full morphological analysis. For IR, what isuigd is to relate forms, not to
analyse them compositionally, and this can most easily heeaed by reducing all morphologically complex forms
to a canonical form. Although this is referred to as stemmihg canonical form may not be the linguistic stem.
The most commonly used algorithm is tRerter stemmerwhich uses a series of simple rules to strip endings (see
J&M, section 3.4) without the need for a lexicon. Howeveensining does not necessarily help IR. Search engines
sometimes do inflectional morphology, but this can be damgerFor instance, one search engine searchesfpus

as well ascorporawhen given the latter as input, resulting in a large numbespafrious results involvingCorpus
Christi and similar terms.

In most NLP applications, however, morphological analysia precursor to some form of parsing. In this case, the
requirement is to analyse the form into a stem and affixes abthie necessary syntactic (and possibly semantic)
information can be associated with it. Morphological as@ys often calledemmatization For instance, for the part

of speech tagging application which we will discuss in thethecture,muggedwould be assigned a part of speech
tag which indicates it is a verb, thoughugis ambiguous between verb and noun. For full parsing, asusésd

in lectures 4 and 5, we’ll need more detailed syntactic amdasetic information. Morphological generation takes a

8Note the use of * (‘star’) above: this notation is used in lifggics to indicate a word or sentence which is judged (byailtior, at least) to be
incorrect. ? is generally used for a sentence which is queslile, or at least doesn’t have the intended interpretatias used for a pragmatically
anomalous sentence.

13

stem and some syntactic information and returns the cofoect. For some applications, there is a requirement that
morphological processing directionat that is, can be used for analysis and generation. The fitsite Bansducers
we will look at below have this property.

2.5 Lexical requirements for morphological processing
There are three sorts of lexical information that are neddeflill, high precision morphological processing:

¢ affixes, plus the associated information conveyed by the affi
e irregular forms, with associated information similar tatffor affixes

e stems with syntactic categories (plus more detailed in&diom if derivational morphology is to be treated as
productive)

One approach to an affix lexicon is for it to consist of a pgrof affix and some encoding of the syntactic/semantic
effect of the affix? For instance, consider the following fragment of a suffixidex (we can assume there is a separate
lexicon for prefixes):

ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN

HerePAST_VERBPSP_VERBandPLURAL_NOUMNre abbreviations for some bundle of syntactic/semantar-in
mation and form the interface between morphology and theagysemantics: we’ll discuss this briefly §5.7.

A lexicon of irregular forms is also needed. One approacloigHis to just be a triple consisting of inflected form,
‘affix information’ and stem, where ‘affix information’ casponds to whatever encoding is used for the regular affix.
For instance:

began PAST_VERB begin
begun PSP_VERB begin

Note that this information can be used for generation as agetinalysis, as can the affix lexicon.

In most cases, English irregular forms are the same for akbe® of a word. For instancegn is the past ofrun
whether we are talking about athletes, politicians or noSdss argues for associating irregularity with particular
word forms rather than particular senses, especially stocepounds also tend to follow the irregular spelling, even
non-productively formed ones (e.g., the pluraldasfrmousds dormicg. However, there are exceptions: e.ghe
washing was hung/*hanged out to drgthe murderer was hanged

Morphological analysers also generally have access toiedief regular stems. This is heeded for high precision:
e.g. to avoid analysingorpusascorpu -swe need to know that there isn't a woedrpu There are also cases where
historically a word was derived, but where the base form isonger found in the language: we can avoid analysing
unkemptasun- kemptfor instance, simply by not havirkemptin the stem lexicon. Ideally this lexicon should have
syntactic information: for instancéedcould befee -ed but sincefeeis a noun rather than a verb, this isn't a possible
analysis. However, in the approach we’ll assume, the madgglical analyser is split into two stages. The first of
these only concerns morpheme forms and returns fe@hedandfeedgiven the inpufeed A second stage which is
closely coupled to the syntactic analysis then ruledemtedbecause the affix and stem syntactic information are not
compatible (se€5.7 for one approach to this).

If morphology was purely concatenative, it would be very @liento write an algorithm to split off affixes. Spelling
rules complicate this somewhat: in fact, it’s still possibd do a reasonable job for English with ad hoc code, but a
cleaner and more general approach is to use finite stateitpeim

9J&M describe an alternative approach which is to make the sintimformation correspond to a level in a finite state trarest. However, at
least for English, this considerably complicates the traneds.

14

2.6 Finite state automata for recognition

The approach to spelling rules that we’'ll describe involttes use of finite state transducers (FSTs). Rather than
jumping straight into this, we’'ll briefly consider the sinepffinite state automata and how they can be used in a simple
recogniser. Suppose we want to recognise dates (just dasnanth pairs) written in the format day/month. The day
and the month may be expressed as one or two digits (e.g. W12 etc). This format corresponds to the following
simple FSA, where each character corresponds to one ti@nsit

0,1,2,3 digit / 01 01,2

RoRoRo

digit digit

O,

Accept states are shown with a double circle. This is a ndardenistic FSA: for instance, an input starting with the
digit 3 will move the FSA to both state 2 and state 3. This Gpomds to docal ambiguity i.e., one that will be
resolved by subsequent context. By convention, there neusbbleft over’ characters when the system is in the final
state.

To make this a bit more interesting, suppose we want to rasegncomma-separated list of such dates. The FSA,
shown below, now has a cycle and can accept a sequence ohiteléfngth (note that this is iteration and not full
recursion, however).

0,1,2,3 digit / 0,1 01,2

Both these FSAs will accept sequences which are not valesdatich as 37/00. Conversely, if we use them to generate
(random) dates, we will get some invalid output. In geneaaystem which generates output which is invalid is said
to overgenerateln fact, in many language applications, some amount ofgaregration can be tolerated, especially if
we are only concerned with analysis.

2.7 Finite state transducers

FSAs can be used to recognise particular patterns, but,don'themselves, allow for any analysis of word forms.
Hence for morphology, we use finite state transducers (F&f&h allow the surface structure to be mapped into the
list of morphemes. FSTs are useful for both analysis andrgéina, since the mapping is bidirectional. This approach
is known agwo-level morphology

To illustrate two-level morphology, consider the followiST, which recognises the affiz allowing for environ-
ments corresponding to the e-insertion spelling rule shimwj2.3 and repeated beloW.

10Actually, I've simplified this slightly so the correspondernio the spelling rule is not exact: J&M give a more complex transd which is an
accurate reflection of the spelling rule.

15

x
¥

e — e/

e:e
other : other

e:e
other : other

Transducers map between two representations, so eacltitartrresponds to a pair of characters. As with the
spelling rule, we use the special charactéitd correspond to the empty character aridto correspond to an affix
boundary. The abbreviation ‘other : other means that argratter not mentioned specifically in the FST maps to
itself1? As with the FSA example, we assume that the FST only accegtspanif the end of the input corresponds
to an accept state (i.e., no ‘left-over’ characters arengdlt).

For instance, with this FST, the surface fooakeswould start from 1 and go through the transitions/states) (t;
(a:a) 1, (kk) 1, (e:e) 1,&(7) 2, (s:s) 3 (accept, underlyingpke™ s) and also (c:c) 1, (a:a) 1, (kik) 1, (e:e) 1, (s:s) 4
(accept, underlyingake3. ‘dogs'mapsto‘dog s’, foxes'mapstofox s'andto‘foxe” s’ and'buzz
es'mapsto‘'buzZ s’and‘buzz€ s.'2When the transducer is run in analysis mode, this means thensysn
detect an affix boundary (and hence look up the stem and tixdraffie appropriate lexicons). In generation mode, it
can construct the correct string. This FST is non-detestimi

Similar FSTs can be written for the other spelling rules faghksh (although to do consonant doubling correctly, in-
formation about stress and syllable boundaries is reqaingithere are also differences between British and American
spelling conventions which complicate matters). Morplglsystems are usually implemented so that there is one
FST per spelling rule and these operate in parallel.

One issue with this use of FSTs is that they do not allow foriatgrnal structure of the word form. For instance, we
can produce a set of FSTs which will resultunionisedbeing mapped intoin”ion"ise”ed, but as we've seen, the
affixes actually have to be applied in the right order andigri&d modelled by the FSTs.

2.8 Some other uses of finite state techniques in NLP

e Grammars for simple spoken dialogue systems. Finite stafeniques are not adequate to model grammars
of natural languages: we’ll discuss this a little§4.12. However, for very simple spoken dialogue systems,

11The solution notes for the 2003 FST question are slightlyngrim that they should have y : y as well as other : other on aesttion.
12| all cases they also map to themselves: e.g., ‘b uz z e s’ mapaita z e s’ without the affix marker: this is necessary becausdswending
in ‘s’ and ‘es’ are not always inflected forms. e.§lpses

16

a finite-state grammar may be adequate. More complex grasoaar be written as context free grammars
(CFGs) and compiled into finite state approximations.

e Partial grammars for named entity recognition (briefly disged irg4.12).

¢ Dialogue models for spoken dialogue systems (SDS). SDS iakmyde models for a variety of purposes: in-
cluding controlling the way that the information acquiredr the user is instantiated (e.g., the slots that are
filled in an underlying database) and limiting the vocabylarachieve higher recognition rates. FSAs can be
used to record possible transitions between states in desidiglogue. For instance, consider the problem of
obtaining a date expressed as a day and a month from a usee dileefour possible states, corresponding to
the user input recognised so far:

1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.

3. Day only is known. System prompts for month.

4. Month and day known.

The FSA is shown below. The loops that stay in a single statespond to user responses that aren’t recognised
as containing the required informatiomgmbleis the term generally used for an unrecognised input).

2.9 Probabilistic FSAs

In many cases, it is useful to augment the FSA with infornmatibout transition probabilities. For instance, in the
SDS system described above, it is more likely that a userspékify a month alone than a day alone. A probabilistic
FSA for the SDS is shown below. Note that the probabilitiesh@noutgoing arcs from each state must sumto 1.

2.10 Further reading

Chapters 2 and 3 of J&M. Much of Chapter 2 should be familianfrother courses in the CST (at least to Part Il
students). Chapter 3 uses more elaborate transducers\thatisicussed.

17

3 Lecture 3: Prediction and part-of-speech tagging

This lecture introduces some simple statistical techrécurel illustrates their use in NLP for prediction of words and
part-of-speech categories. It starts with a discussiomgdara, then introduces word prediction. Word predictian ¢

be seen as a way of (crudely) modelling some syntactic irdition (i.e., word order). Similar statistical techniques
can also be used to discover parts of speech for uses of woedsdrpus. The lecture concludes with some discussion
of evaluation.

3.1 Corpora

A corpus(corpora is the plural) is simply a body of text that has beellected for some purpose. Balanced
corpuscontains texts which represent different genres (newspafetion, textbooks, parliamentary reports, cooking
recipes, scientific papers etc etc): early examples werBittven corpus (US English) and the Lancaster-Oslo-Bergen
(LOB) corpus (British English) which are each about 1 milliwords: the more recent British National Corpus (BNC)
contains approx 100 million words and includes 20 milliorrdsof spoken English. Corpora are important for many
types of linguistic research, although mainstream lingguigve tended to dismiss their use in favour of reliance on
intuitive judgements about whether or not an utteranceasngnatical (a corpus can only (directly) provide positive
evidence about grammaticality). Corpora are essentiahioch modern NLP research, though NLP researchers have
often used newspaper text (particularly the Wall Streetidal)i rather than balanced corpora.

Distributed corpora are often annotated in some way: thd mggortant type of annotation for NLP is part-of-speech
tagging (POS tagging), which we’ll discuss further below.

Corpora may also be collected for a specific task. For ingtawben implementing an email answering application,
it is essential to collect samples of representative emé&its interface applications in particular, collecting apuss
requires a simulation of the actual application: genertily is done by aVizard of Ozexperiment, where a human
pretends to be a computer.

Corpora are needed in NLP for two reasons. Firstly, we hawev#duate algorithms on real language: corpora are
required for this purpose for any style of NLP. Secondlypooa provide the data source for many machine-learning
approaches.

3.2 Prediction

The essential idea of prediction is that, given a sequeneals, we want to determine what's most likely to come
next. There are a number of reasons to want to do this: the impsirtant is as a form ofanguage modellindor
automatic speech recognition. Speech recognisers canootadely determine a word from the sound signal for that
word alone, and they cannot reliably tell where each wordsstnd finishe$® So the most probable word is chosen
on the basis of the language model, which predicts the masylword, given the prior context. The language models
which are currently most effective work on the basis\aframs(a type ofMarkov chair), where the sequence of the
prior n — 1 words is used to predict the next. Trigram models use thesgiiag 2 words, bigram models the preceding
word and unigram models use no context at all, but simply veorkhe basis of individual word probabilities. Bigrams
are discussed below, though | won't go into details of eyawtiw they are used in speech recognition.

Word prediction is also useful in communication aids: isgstems for people who can’t speak because of some form
of disability. People who use text-to-speech systems koldatause of a non-linguistic disability usually have some
form of general motor impairment which also restricts thaiility to type at normal rates (stroke, ALS, cerebral
palsy etc). Often they use alternative input devices, suchdapted keyboards, puffer switches, mouth sticks or
eye trackers. Generally such users can only construct textfew words a minute, which is too slow for anything
like normal communication to be possible (normal speechaarad 150 words per minute). As a partial aid, a word
prediction system is sometimes helpful: this gives a listaofdidate words that changes as the initial letters areezhte
by the user. The user chooses the desired word from a menuitdggrears. The main difficulty with using statistical

13|n fact, although humans are better at doing this than spesmgignisers, we also need context to recognise words, edlgegbrds likethe
anda. If a recording is made of normal, fluently spoken, speech aadélgments correspondingtteanda are presented to a subject in isolation,
it's generally not possible to tell the difference.

18

prediction models in such applications is in finding enougtadto be useful, the model really has to be trained on an
individual speaker’s output, but of course very little oiftis likely to be available.

Prediction is important in estimation of entropy, inclugliestimations of the entropy of English. The notion of engrop
is important in language modelling because it gives a méirithe difficulty of the prediction problem. For instance,
speech recognition is much easier in situations where thaksp is only saying two easily distinguishable words (e.g.
when a dialogue system prompts by sayamgwer ‘yes’ or ‘no) than when the vocabulary is unlimited: measurements
of entropy can quantify this, but won't be discussed furthehis course.

Other applications for prediction include optical chaexaecognition (OCR), spelling correction and text segmen-
tation for languages such as Chinese, which are convetifiomatten without explicit word boundaries. Some ap-
proaches to word sense disambiguation, to be discussectimdes, can also be treated as a form of prediction.

3.3 bigrams

A bigram model assigns a probability to a word based on theique word: i.e. P(w,|w,—_1) (the probability of
wy, givenw,,_1) wherew,, is the nth word in some string. The probability of some stririgvords P(WW]*) is thus
approximated by the product of these conditional probidssli

PW) ~] Plwklwi-—1)
k=1

This is an approximation because the probabilities are ctoidly independent.
For example, suppose we have the following tiny corpus @frattces:

good morning
good afternoon
good afternoon
it is very good
itis good

We'll use the symbols) to indicate the start of an utterance, so the corpus reatliyddike:
(s) good morning(s) good afternooris) good afternoons) it is very good(s) it is good(s)

The bigram probabilities are given as
C(Wp—1wy)

2w Clwn—qw)
i.e. the count of a particular bigram, normalised by divigllny the total number of bigrams starting with the same

word (which is equivalent to the total number of occurrenoéshat word, except in the case of the last token, a
complication which can be ignored for a reasonable size gfug).

sequence count bigram probability

<s> 5

<s> good 3 .6
<s> it 2 4
good 5

good morning 1 2
good afternoon 2 4
good <s> 2 A4
morning 1

morning <s> 1 1
afternoon 2

afternoon <s> 2 1

19

it 2

it is 2 1

is 2

is very 1 .5
is good 1 5
very 1

very good 1 1

This yields a probability of 0.24 for the strings) good (s)’ which is the highest probability utterance that we can
construct on the basis of the bigrams from this corpus, if mvpdse the constraint that an utterance must begin with
(s) and end with(s).

For application to communication aids, we are simply conedrwith predicting the next word: once the user has
made their choice, the word can't be changed. For speeclygmé@m, the N-gram approach is applied to maximise
the likelihood of a sequence of words, hence we're lookinirtd the most likely sequence overall. Notice that we
can regard bigrams as comprising a simple deterministightet FSA. The/iterbi algorithm an efficient method of
applying N-grams in speech recognition and other appbaoatiis usually described in terms of an FSA.

The probability of {s) very good’ based on this corpus is 0, since the conditiorabalbility of ‘very’ given (s)’ is 0
since we haven't found any examples of this in the training.din general, this is problematic because we will never
have enough data to ensure that we will see all possible ®aatso we don’t want to rule out unseen events entirely.
To allow for sparse datave have to usemoothing which simply means that we make some assumption about the
‘real’ probability of unseen or very infrequently seen etgeand distribute that probability appropriately. A common
approach is simply to add one to all counts: thiadl-one smoothingrhich is not sound theoretically, but is simple
to implement. A better approach in the case of bigrams isaickoffto the unigram probabilities: i.e., to distribute
the unseen probability mass so that it is proportional tauthigram probabilities. This sort of estimation is extreynel
important to get good results from N-gram techniques, butwer’t discuss the details in this course.

3.4 Part of speech tagging

Prediction techniques can be used for word classes, rdtarrjust individual words. One important application is to
part-of-speech tagging (POS tagging), where the words orpus are associated with a tag indicating some syntactic
information that applies to that particular use of the wd¥dr instance, consider the example sentence below:

They can fish.

This has two readings: one (the most likely) about abilitfigh and other about putting fish in caffishis ambiguous
between a singular noun, plural noun and a verb, wbéleis ambiguous between singular noun, verb (the ‘put in
cans’ use) and modal verb. Howeveireyis unambiguously a pronoun. (I am ignoring some less likelggibilities,
such as proper names.) These distinctions can be indicgte®B tags:

they PNP
can VMO VVB VVI NN1
fish NN1 NN2 VVB VI

There are several standard tagsets used in corpora and itelg§@iBg experiments. The one I'm using for the examples
in this lecture is CLAWS 5 (C5) which is given in full in apperdC in J&M. The meaning of the tags above is:

NN1 singular noun

NN2 plural noun

PNP personal pronoun

VMO modal auxiliary verb

VVB base form of verb (except infinitive)

VVI infinitive form of verb (i.e. occurs with ‘to’ and in simi lar contexts)

A POS tagger resolves the lexical ambiguities to give thetilady set of tags for the sentence. In this case, the right
tagging is likely to be:

20

They PNP canVMO fish_-VVI . _PUN

Note the tag for the full stop: punctuation is treated as urigoous. POS tagging can be regarded as a form of very
basic word sense disambiguation.

The other syntactically possible reading is:
They PNP canVVB fish.NN2 ._PUN

However, POS taggers (unlike full parsers) don't attempgartmiuce globally coherent analyses. Thus a POS tagger
might return:

They PNP canVMO fish.NN2 ._.PUN

despite the fact that this doesn’t correspond to a poss#ialding of the sentence.

POS tagging is useful as a way of annotating a corpus bectunskes it easier to extract some types of information
(for linguistic research or NLP experiments). It also acgsagbasis for more complex forms of annotation. Named
entity recognisers (discussed in lecture 4) are generaityon POS-tagged data. POS taggers are sometimes run as
preprocessors to full parsing, since this can cut down theckespace to be considered by the parser. They can also
be used as part of a method for dealing with words which arémibie parser’s lexicon (unknown words).

3.5 Stochastic POS tagging

One form of POS tagging applies the N-gram technique thatameabove, but in this case it applies to the POS

tags rather than the individual words. The most common aapres depend on a small amount of manually tagged

training datafrom which POS N-grams can be extractéd!ll illustrate this with respect to another trivial corpus
They used to can fish in those towns. But now few people fishésdlareas.

This might be tagged as follows:

They PNP used VVD to TOO can_VVI fish NN2 in_PRP those DT 0 towns_NN2 . PUN
But_CJC now_AV0 few_DTO people_NN2 fish_VVB in_PRP these_ DTO areas_NN2 ._PUN

This yields the following counts and probabilities:

sequence count bigram probability
AVO 1

AVO DTO 1 1
cJC 1

CJC AVO0 1 1
DTO 3

DTO NN2 3 1
NN2 4

NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25
PNP 1

)t is possible to build POS taggers that work without a haagjed corpus, but they don’t perform as well as a systemeimiaim even a 1,000
word corpus which can be tagged in a few hours. Furthermoesgthlgorithms still require a lexicon which associatesiptestags with words.

21

PNP VVD 1 1

PRP 1
PRP DTO 2 1
PUN 1
PUN CJC 1 1
TOO 1
TOO VVI 1 1
VVB 1
VVB PRP 1 1
VVD 1
VVD TOO 1 1
VVI 1
VVI NN2 1 1

We can also obtain a lexicon from the tagged data:

word tag count

they PNP 1
used VVD 1
to TOO 1
can VVI 1
fish NN2 1
VVB 1
in PRP 2
those DTO 1
towns NN2 1
. PUN 1
but CcJC 1
now AVO 1
few DTO 1
people NN2 1
these DTO 1
areas NN2 1

The idea of stochastic POS tagging is that the tag can benasklgased on consideration of the lexical probability
(how likely it is that the word has that tag), plus the seqeeoicprior tags. For a bigram model, we only look at a
single previous tag. This is more complicated than the woediption case because we have to take into account both
words and tags.

We are trying to estimate the probability of a sequence of tagen a sequence of wordB(T'|1W). We can't estimate
this directly (mini-exercise: explain why not). By Baye&tiiem:

P(T)P(WIT)

P(TIW) = =5

Since we're looking at assigning tags to a particular seqaef words,P(WW) is constant, so for a relative measure
of probability we can use:
P(TIW) = P(T)P(W|T)

22

We now have to estimaté(7") andP(W|T). If we make the bigram assumptioR(T") is approximated by’ (¢;|t;_1)
— i.e., the probability of some tag given the immediatelygeding tag. We approximate(W|T) asP(w;|t;). These
values can be estimated from the corpus frequencies.

Note that we end up multiplying(¢;|t;—1) with P(w;lt;) (the probability of the word given the tag) rather than
P(t;|w;) (the probability of the tag given the word). For instancewé’re trying to choose between the tags NN2
and VVB forfishin the sentencthey fish we calculateP(NN2|PNP), P(fishiINN2), P(VVB|PNP) and P(fish|VVB)
(assuming PNP is the only possible tag thoey).

To POS tag a sentence, we need to maximise the overall tagrsagprobability (again, this can be implemented
efficiently using the Viterbi algorithm). So a tag which hagthprobability considering its individual bigram estireat
will not be chosen if it does not form part of the highest pitobgy path. For example:

they PNP canVVB fish_.NN2

they PNP canVMO fish_VVI

P(VVI|VMO), P(fishVVI) may be lower tharP(NN2|VVB), P(fishNN2) but the overall probability depends also
on P(VVB|PNP), P(canVVB) versusP(VMO|PNP), P(canVMO) (the latter is much higher).

In fact, POS taggers generally use trigrams rather thambigr— the relevant equations are given in J&M, page 306.
As with word prediction, backoff (to bigrams) and smootharg crucial for reasonable performance because of sparse
data.

When a POS tagger sees a word which was not in its training @ataged some way of assigning possible tags to the
word. One approach is simply to use all possiippen classags, with probabilities based on the unigram probabditie
of those tags. Open class words are ones for which we can giseest complete list for a living language, since words
are always being added: i.e., verbs, nouns, adjectives dvettzs. The rest are considered closed class. A better
approach is to use a morphological analyser (without a ¢eRito restrict this set: e.g., words ending-@dare likely

to be VVD (simple past) or VVN (past participle), but can't W&'G (-ing form).

3.6 Evaluation of POS tagging

POS tagging algorithms are evaluated in terms of percerghgerrect tags. The standard assumption is that every
word should be tagged with exactly one tag, which is scoredoaect or incorrect: there are no marks for near
misses. Generally there are some words which can be taggediyione way, so are automatically counted as correct.
Punctuation is generally given an unambiguous tag. Thexdfte success rates of over 95% which are generally
guoted for POS tagging are a little misleading: the baselirghoosing the most common tag based on the training
set often gives 90% accuracy. Some POS taggers returnptautigs in cases where more than one tag has a similar
probability.

It is worth noting that increasing the size of the tagset dustsnecessarily result in decreased performance: this
depends on whether the tags that are added can generallgigaessunambiguously or not. Potentially, adding more
fine-grained tags could increase performance. For instaumose we wanted to distinguish between present tense
verbs according to whether they were 1st, 2nd or 3rd persath e C5 tagset, and the stochastic tagger described,
this would be impossible to do with high accuracy, becaus@rahouns are tagged PRP, hence they provide no
discriminating power. On the other hand, if we tagg@hdweas PRP1youas PRP2 and so on, the N-gram approach
would allow some discrimination. In general, predictingtbe basis of classes means we have less of a sparse data
problem than when predicting on the basis of words, but we lalse discriminating power. There is also something
of a tradeoff between the utility of a set of tags and theifuisess in POS tagging. For instance, C5 assigns separate
tags for the different forms dbe, which is redundant for many purposes, but helps make distims between other
tags in tagging models where the context is given by a tagesemualone (i.e., rather than considering words prior to
the current one).

POS tagging exemplifies some general issues in NLP evatuatio

Training data and test data The assumption in NLP is always that a system should work aelraata, therefore
test data must be kept unseen.

For machine learning approaches, such as stochastic P@Qidathe usual technique is to spilt a data set into
90% training and 10% test data. Care needs to be taken thegstheata is representative.

For an approach that relies on significant hand-coding gsedata should be literally unseen by the researchers.

23

Development cycles involve looking at some initial datayedeping the algorithm, testing on unseen data,
revising the algorithm and testing on a new batch of data.sE®® data is kept for regression testing.

Baselines Evaluation should be reported with respect to a baselingwik normally what could be achieved with a
very basic approach, given the same training data. Fomnostahe baseline for POS tagging with training data
is to choose the most common tag for a particular word on tiséshmd the training data (and to simply choose
the most frequent tag of all for unseen words).

Ceiling Itis often useful to try and compute some sort of ceiling far performance of an application. This is usually
taken to be human performance on that task, where the céliting percentage agreement found between two
annotatorsifiterannotator agreemehptFor POS tagging, this has been reported as 96% (which neadksting
POS taggers look impressive). However this raises lots ektijons: relatively untrained human annotators
working independently often have quite low agreement, faihéd annotators discussing results can achieve
much higher performance (approaching 100% for POS taggidgjnan performance varies considerably be-
tween individuals. In any case, human performance may natrealistic ceiling on relatively unnatural tasks,
such as POS tagging.

Error analysis The error rate on a particular problem will be distributedyenevenly. For instance, a POS tagger
will never confuse the tag PUN with the tag VVN (past partie)pbut might confuse VVN with AJO (adjective)
because there’s a systematic ambiguity for many forms, (gixen). For a particular application, some errors
may be more important than others. For instance, if one ikitgpfor relatively low frequency cases of de-
nominal verbs (that is verbs derived from nouns — ecgnoe tangq fork used as verbs), then POS tagging is
not directly useful in general, because a verbal use withattaracteristic affix is likely to be mistagged. This
makes POS-tagging less useful for lexicographers, whoféea gpecifically interested in finding examples of
unusual word uses. Similarly, in text categorisation, s@mers are more important than others: e.g. treating
an incoming order for an expensive product as junk email imemworse error than the converse.

Reproducibility If at all possible, evaluation should be done on a generalijlable corpus so that other researchers
can replicate the experiments.

3.7 Further reading

This lecture has skimmed over material that is covered iersdchapters of J&M. See 5.9 for the Viterbi algorithm,
Chapter 6 for N-grams (especially 6.3, 6.4 and 6.7), 7.1fGr3peech recognition and Chapter 8 on POS tagging.
The second edition of J&Mhttp://www.cs.colorado.edu/ martin/slp2.html) contains this material

in a much more self-contained way in Chapter 5.

24

4 Lecture 4. Parsing and generation

In this lecture, we'll discuss syntax in a way which is mucbsdr to the standard notions in formal linguistics than
POS-tagging is. To start with, we’ll briefly motivate the &ef a generative grammar in linguistics, review the notion
of a context-free grammar and then show a context-free granian a tiny fragment of English. We’'ll then show
how context free grammars can be used to implement gensrtorparsers, and discuss chart parsing, which allows
efficient processing of strings containing a high degreerobiguity. Finally we’ll briefly touch on probabilistic
context-free approaches.

4.1 Generative grammar

Since Chomsky’s work in the 1950s, much work in formal lirggigs has been concerned with the notion geaera-

tive grammar— i.e., a formally specified grammar that can generate allanythe acceptable sentences of a natural
language. It's important to realise that nobody has actwatitten such a grammar for any natural language or even
come close to doing so: what most linguists are really istexin is the principles that underly such grammars, espe-
cially to the extent that they apply to all natural languadéisP researchers, on the other hand, are at least sometimes
interested in actually building and using large-scaleitltagrammars.

The formalisms which are of interest to us for modelling syrdissign internal structure to the strings of a language,
which can be represented by bracketing. We already saw seidenee of this in derivational morphology (the
unionisedexample), but here we are concerned with the structure @fsgs: For instance, the sentence:

the big dog slept
can be bracketed
((the (big dog)) slept)

The phrasebig dog is an example of aonstituen{i.e. something that is enclosed in a pair of brackets: big dog
is also a constituent, buahe bigis not. Constituent structure is generally justified by angats about substitution
which | won't go into here: J&M discuss this briefly, but seeiminoductory syntax book for a full discussion. In this
course, | will simply give bracketed structures and hopt tiira constituents make sense intuitively, rather thamgyyi
to justify them.

Two grammars are said to bgeakly-equivalentf they generate the same strings. Two grammarssamngly-
equivalentf they assign the same bracketings to all strings they gaaer

In most, but not all, approaches, the internal structuresgaren labels. For instancthe big dogis anoun phrase
(abbreviated NPXxlept slept in the parkandlicked Sandwareverb phrase (VPs). The labels such as NP and VP cor-
respond to non-terminal symbols in a grammar. In this lextwe’ll discuss the use of simple context-free grammars
for language description, moving onto a more expressivadtism in lecture 5.

4.2 Context free grammars

The idea of a context-free grammar (CFG) should be famit@mfformal language theory. A CFG has four compo-
nents, described here as they apply to grammars of natugliéaes:

1. aset of non-terminal symbols (e.g., S, VP), conventignailitten in uppercase;
2. aset of terminal symbols (i.e., the words), conventilgnatitten in lowercase;

3. a set of rules (productions), where the left hand side rftbéher) is a single non-terminal and the right hand
side is a sequence of one or more non-terminal or terminabsygr(the daughters);

4. a start symbol, conventionally S, which is a member of #t@&non-terminal symbols.

25

The formal description of a CFG generally allows producsiavith an empty righthandside (e.g., Det ¢). Itis
convenient to exclude these however, since they complatng algorithms, and a weakly-equivalent grammar can
always be constructed that disallows sachpty productions

A grammar in which all nonterminal daughters are the lefthadasighter in a rule (i.e., where all rules are of the form
X — Yax), is said to bdeft-associative A grammar where all the nonterminals are rightmogight-associative
Such grammars are weakly-equivalent to regular grammars rammars that can be implemented by FSAs), but
natural languages seem to require more expressive powethisa(see4.12).

4.3 A simple CFG for a fragment of English

The following tiny fragment is intended to illustrate sometlee properties of CFGs so that we can discuss parsing
and generation. It has some serious deficiencies as a rafatsa of even this fragment, which we’ll ignore for now,
though we’ll discuss some of them in lecture 5. Notice thatlits fragment there is no distinction between main verb
canand the modal verban

S > NP VP
VP -> VP PP
VP >V

VP -> V NP
VP -> V VP
NP -> NP PP
PP -> P NP
;;; lexicon

V -> can

V -> fish

NP -> fish

NP -> rivers
NP -> pools
NP -> December
NP -> Scotland
NP -> it

NP -> they

P -> in

The rules with terminal symbols on the RHS correspond togk&dn. Here and below, comments are preceded by

Here are some strings which this grammar generates, alahghégir bracketings:

they fish
(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))

;;; the modal verb *are able to’ reading

(S (NP they) (VP (V can) (NP fish)))

;1; the less plausible, put fish in cans, reading

they fish in rivers
(S (NP they) (VP (VP (V fish)) (PP (P in) (NP rivers))))

they fish in rivers in December

(S (NP they) (VP (VP (V fish)) (PP (P in) (NP (NP rivers) (PP (lP(NP December))))))

;;; 1.e. the implausible reading where the rivers are in Deloer

;5 (cfrivers in Scotland)

(S (NP they) (VP (VP (VP (V fish)) (PP (P in) (NP (NP rivers))PR (P in) (NP December))))
;;; 1.e. the fishing is done in December

26

One important thing to notice about these examples is tleagthlots of potential for ambiguity. In they can fish
example, this is due tlexical ambiguity(it arises from the dual lexical entries cdnandfish), but the last example
demonstrates pureltructural ambiguity In this case, the ambiguity arises from the two possittlachment®f the
prepositional phrase (PR) December it can attach to the NFigers) or to the VP. These attachments correspond
to different semantics, as indicated by the glosses. PEhatiiant ambiguities are a major headache in parsing, since
sequences of four or more PPs are common in real texts andithber of readings increases as the Catalan series,
which is exponential. Other phenomena have similar progggertfor instance, compound nouns (elgng-stay car
park shuttle buk

Notice thatfishcould have been entered in the lexicon directly as a VP, latttttis would cause problems if we were
doing derivational morphology, because we want to say thffikes like-edapply to Vs. Makingiversetc NPs rather
than nouns is a simplification I've adopted here to keep thengnar smaller.

4.4 Parse trees

Parse trees are equivalent to bracketed structures, batarer to read for complex cases. A parse tree and bracketed
structure for one reading difiey can fish in Decembésr shown below. The correspondence should be obvious.

NP/S\VP
N

they \%

N

can
Vv P NP
fish in December
(S (NP they)
(VP (V can)
(VP (VP (V fish))
(PP (P in)

(NP December)))))

4.5 Using a grammar as a random generator
The following simple algorithm illustrates how a grammandge used to generate random sentences.

Expand cat category sentence-recard
Let possibilitiesbe a set containing all lexical items which matategoryand all rules with left-hand sideategory
If possibilitiesis empty,
then fail
else
Randomly select a possibilighoserfrom possibilities
If chosens lexical,
then append it tsentence-record
elseexpand caton each rhs category rhosen(left to right) with the updatedentence-record
returnsentence-record

27

For instance:

Expand catS ()
possibilities =S -> NP VP
chosen=S -> NP VP
Expand catNP ()
possibilities = it, they, fish
chosen = fish
sentence-record = (fish)
Expand cat VP (fish)
possibilities =VP -> V, VP -> V VP, VP -> V NP
chosen /P -> V

Expand catV (fish)
possibilities = fish, can
chosen = fish
sentence-record = (fish fish)

Obviously, the strings generated could be arbitrarily loifgn this naive generation algorithm, we explored all the
search space rather than randomly selecting a possiblegrpathe algorithm wouldn’t terminate.

Real generation operates from semantic representatidnishvaren’t encoded in this grammar, so in what follows
we’ll concentrate on describing parsing algorithms indtedowever, it's important to realise that CFGs are, in prin-
ciple, bidirectional.

4.6 Chart parsing

In order to parse with reasonable efficiency, we need to keepad of the rules that we have applied so that we don't
have to backtrack and redo work that we've done before. Thiksvfor parsing with CFGs because the rules are
independent of their context: a VP can always expand as a \aaiNP regardless of whether or not it was preceded
by an NP or a V, for instance. (In some cases we may be able tg tgghniques that look at the context to cut down
the search space, because we can tell that a particulapplieation is never going to be part of a sentence, but this is
strictly a filter: we're never going to get incorrect resuiisreusing partial structures.) This record keeping strate

an application of dynamic programming/memoization whilised in processing formal languages too. In NLP the
data structure used for recording partial results is gdiyekaown as achart and algorithms for parsing using such
structures are referred to abart parserst® Chart parsing strategies are designed tead@plete that is, if there is a
valid analysis according to a grammar, the chart parseffindl it.

A chart is a list ofedges In the simplest version of chart parsing, each edge recmide application and has the
following structure:

[id left_vertex right_vertexmothercategory daughter}
A vertex is an integer representing a point in the input gtras illustrated below:

. they . can . fish .
0 1 2 3

mothercategoryrefers to the rule that has been applied to create the atlgeghterss a list of the edges that acted
as the daughters for this particular rule application: thisre purely for record keeping so that the output of parsing
can be a labelled bracketing.

For instance, the following edges would be among those fammthe chart after a complete parsetioéy can fish
according to the grammar given above (id numbering is ayijr

I5Natural languages have much higher degrees of ambiguity tesitdy designed programming languages: chart parsing lsswitéd to this.

28

id left right mother daughters

3 1 2 \% (can)
4 2 3 NP (fish)
5 2 3 Y (fish)
6 2 3 VP (5)

7 1 3 VP (3 6)
8 1 3 VP 3 4

The daughters for the terminal rule applications are sintipdyinput word strings.

Note that local ambiguities correspond to situations wiagparticular span has more than one associated edge. We'll
see below that we cgmackstructures so that we never have two edges with the sameocai@gd the same span, but
we’ll ignore this for the moment (s€@l.9). Also, in this chart we're only recording complete rajgplications: this is
passivechart parsing. The more efficieattivechart is discussed below, §4.10.

4.7 A bottom-up passive chart parser

The following pseudo-code sketch is for a very simple charser. Informally, it proceeds by adding the next word
(in left to right order), and adding each lexical categorggible for that word, doing everything it can immediately
after each lexical category is added. The main functiohdd new edgewhich is called for each word in the input
going left to right.Add new edgerecursively scans backwards looking for other daughters.

Parse
Initialise the chart (i.e., clear previous results)
For each wordvord in the input sentence, Ifiom be the left vertexto be the right vertex andaughtersbe gvord)
For each categorgategorythat is lexically associated withord
Add new edgefrom, to, category daughters
Output results for all spanning edges
(i.e., ones that cover the entire input and which have a matbreesponding to the root category)

Add new edgefrom, to, category daughters

Put edge in chart:id,from,to, categorydaughter$

For eaclrule in the grammar of fornths-> cat; ...cat,_q,category
Find set of lists of contiguous edged,from; ,to,, cat; ,daughters] . ..[id,_1,from,_1,from, cat,_,daughterg_1]
(such thato; = from, etc)
(i.e., find all edges that match a rule)
For each list of edge#ydd new edgefromy, to, Ihs, (id; .. .id)
(i.e., apply the rule to the edges)

Notice that this means that the grammar rules are indexetdiyrightmost category, and that the edges in the chart
must be indexed by thefo vertex (because we scan backward from the rightmost catggoonsider:

. they . can . fish .
0 1 2 3

The following diagram shows the chart edges as they are st in order (when there is a choice, taking rules in
a priority order according to the order they appear in thergrear):

id left right mother daughters

1 0 1 NP (they)
2 1 2 \% (can)
3 1 2 VP @)

4 0 2 S 1 3)
5 2 3 Vv (fish)
6 2 3 VP (5)

29

7 1 3 VP 2 6)
8 0 3 s 17
9 2 3 NP (fish)
10 1 3 VP 2 9)
1 0 3 s (1 10)

The spanning edges are 11 and 8: the output routine to givikéted parses simply outputs a left bracket, outputs
the category, recurses through each of the daughters anatitputs a right bracket. So, for instance, the output from
edge 11 is:

(S (NP they) (VP (V can) (NP fish)))

This chart parsing algorithm isomplete it returns all possible analyses, except in the case whdweis not terminate
because there is a recursively applicable rule.

4.8 A detailed trace of the simple chart parser

Parse

word = they

categories= NP

Add new edge0, 1, NP, (they)

N . .

they can fish

Matching grammar rules are:

VP -> V NP
PP -> P NP

No matching edges corresponding to V or P

word = can
categories= V
Add new edgel, 2, V, (can)

N .

they can fish

Matching grammar rules are:
VP >V
set of edge lists= {(2)}

Add new edgel, 2, VP, (2)

they can fish

Matching grammar rules are:

30

S -> NP VP
VP > V VP

set of edge lists corresponding to NP ¥P{(1, 3)}
Add new edge0, 2, S, (1, 3)

1

they can fish
No matching grammar rules for S

No edges matching V VP
word = fish

categories= V, NP
Add new edge2, 3, V, (fish)

e

they can fish

Matching grammar rules are:
VP > V
set of edge lists= {(5)}

Add new edge2, 3, VP, (5)

AN\ N

they can fish

Matching grammar rules are:

S -> NP VP
VP -> V VP

No edges match NP
set of edge lists for V V= {(2,6)}

Add new edgel, 3, VP, (2, 6)

—~ A\ SN\

they can fish
Matching grammar rules are:

31

S -> NP VP
VP > V VP

set of edge lists for NP VE {(1,7)}
Add new edge0, 3, S, (1, 7)

they an fish
No matching grammar rules for S

No edges matching V

Add new edge?, 3, NP, (fish)

they fish

Matching grammar rules are:

VP -> V NP
PP -> P NP

set of edge lists corresponding to V NP{(2,9)}

Add new edgel, 3, VP, (2, 9)

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists corresponding to NP ¥P{(1,10)}
Add new edgeQ, 3, S, (1, 10)

.
RN

they can fish
No matching grammar rules for S

No edges corresponding to V VP

No edges corresponding to P NP
No further words in input
Spanning edges are 8 and 11: Output results for 8

(S (NP they) (VP (V can) (VP (V fish))))
Output results for 11

(S (NP they) (VP (V can) (NP fish)))

4.9 Packing

The algorithm given above is exponential in the case wheseetAre an exponential number of parses. The body
of the algorithm can be modified so that it runs in cubic tineugh producing the output is still exponential. The
modification is simply to change the daughters value on ae talje a set of lists of daughters and to make an equality
check before adding an edge so we don’t add one that’s equivid an existing one. That is, if we are about to add
an edge:

[id,left_.vertex right_vertexmothercategory daughter$

and there is an existing edge:

[id-old,left vertex right_vertexmothercategory daughters-old

we simply modify the old edge to record the new daughters:
[id-old,left_vertex right_vertexmothercategory daughters-oldJ daughter}

There is no need to recurse with this edge, because we cogllrany new results.
For the example above, everything proceeds as before umgo%d

id left right mother daughters

1 0 1 NP {(they)}
2 1 2 \% {(can)}
3 1 2 VP {(2)}

4 0 2 S {@ 3)}
5 2 3 Vv {(fish)}
6 2 3 VP {(5)}

7 1 3 VP {2 6)}
8 0 3 S {@ 7
9 2 3 NP {(fish)}

33

However, rather than add edge 10, which would be:

10 1 3 VP (2 9)

we match this with edge 7, and simply add the new daughtehsato t
7 1 3 VP {2 6), (2 9}

The algorithm then terminates. We only have one spanning éeldge 8) but the display routine is more complex
because we have to consider the alternative sets of daadgbteedge 7. (You should go through this to convince
yourself that the same results are obtained as before.pédth in this case, the amount of processing saved is small,
the effects are much more important with longer sentenaass{derhe believes they can fistor instance).

4.10 Active chart parsing

A more minor efficiency improvement is obtained by storing tiesults of partial rule applications. Thisastive
chart parsing, so called because the partial edges aredesedito be active: i.e. they ‘want’ more input to make them
complete. An active edge records the input it expects asagethe daughters it has already seen. Active edges are
stored on the chart as well as passive edges. For instaniteawiactive chart parser, we might have the following
edges when parsing a sentence startiirgy fish

id left right mother expected daughters

1 0 1 NP (they)
2 0 1 S VP a2
3 0 1 NP PP 1,?2)
4 1 2 \Y, (fish)
5 1 2 VP 4)

6 0 2 S (2,5)
7 1 2 VP NP 4,?)
8 1 2 VP VP 4,?)
9 1 2 VP PP (5,?)

Edge 1 is complete (a passive edge). Edge 2 is active: thehtlrugarked as ? will be instantiated by the edge
corresponding to the VP when it is found (e.g., edge 5 inigtted the active part of edge 2 to give edge 6).

Each word gives rise to a passive edge. Each passive edgéegboaC gives rise to active edges corresponding to
rules with leftmost daughter C (although there are varioassjble pruning strategies than can be used to cut down on
spurious active edges). Every time a passive edge is aduedctive edges are searched to see if the new passive edge
can complete an active edge.

I will not give full details of the active chart parser herbete are several possible variants. The main thing to note
is that active edges may be used to create more than one @assgje. For instance, if we have the strihgy fish in
Scotland edge 2 will be completed Hyshand also byfish in ScotlandWhether this leads to a practical improvement
in efficiency depends on whether the saving in time that tefidcause the NP is only combined with the S rule once
outweighs the overhead of storing the edge. Active edgeshegyacked. Active chart parsing is generally more
efficient than passive parsing for feature structure grarareplained in the next lecture) because there is some cost
associated with combining a daughter with a rule.

4.11 Ordering the search space

In the pseudo-code above, the order of addition of edgeseteliart was determined by the recursion. In general,
chart parsers make use of agendaof edges, so that the next edges to be operated on are thehanasd first on the
agenda. Different parsing algorithms can be implementechéking this agenda a stack or a queue, for instance.

So far, we've considerefdottom upparsing: an alternative i®p downparsing, where the initial edges are given by
the rules whose mother corresponds to the start symbol.

34

Some efficiency improvements can be obtained by orderingélaech space appropriately, though which version is
most efficient depends on properties of the individual grammHowever, the most important reason to use an explicit
agenda is when we are returning parses in some sort of grimdier, corresponding to weights on different grammar
rules or lexical entries.

Weights can be manually assigned to rules and lexical entniea manually constructed grammar. However, in
the last decade, a lot of work has been done on automaticzdjyidng probabilities from a corpus annotated with
trees (atreebanl, either as part of a general process of automatic gramnuprisition, or as automatically acquired
additions to a manually constructed grammar. ProbaluliS&Gs (PCFGs) can be defined quite straightforwardly, if
the assumption is made that the probabilities of rules axiddéentries are independent of one another (of course
this assumption is not correct, but the orderings given seework quite well in practice). The importance of this is
that we rarely want to return all parses in a real applicatiut instead we want to return those which are top-ranked:
i.e., the most likely parses. This is especially true whencaasider that realistic grammars can easily return many
thousands of parses for sentences of quite moderate le2@thc(rds or so). If edges are prioritised by probability,wer
low priority edges can be completely excluded from consitlen if there is a cut-off such that we can be reasonably
certain that no edges with a lower priority than the cut-oilf wontribute to the highest-ranked parse. Limiting the
number of analyses under consideration is knowhessn searclithe analogy is that we're looking within a beam of
light, corresponding to the highest probability edges)amesearch is linear rather than exponential or cubic. Just as
importantly, a good priority ordering from a parser reduttesamount of work that has to be done to filter the results
by whatever system is processing the parser’s output.

4.12 Why can’t we use FSAs to model the syntax of natural lancqages?

In this lecture, we started using CFGs. This raises the gresf why we need this more expressive (and hence
computationally expensive) formalism, rather than madglyntax with FSAs. One reason is that the syntax of
natural languages cannot be described by an FSA, even ioign due to the presence oéntre-embedding.e.
structures which map to:

A — aAp

and which generate grammars of the fagfiv™. For instance:
the students the police arrested complained

has a centre-embedded structure. However, humans hawiltijfiprocessing more than two levels of embedding:
? the students the police the journalists criticised aggesbmplained

If the recursion is finite (no matter how deep), then the ggiaf the language can be generated by an FSA. So it's not
entirely clear whether formally an FSA might not suffice.

There’s a fairly extensive discussion of these issues in J&Mt there are two essential points for our purposes:

1. Grammars written using finite state techniques aloneemehighly redundant, which makes them very difficult
to build and maintain.

2. Without internal structure, we can't build up good senmardgpresentations.

Hence the use of more powerful formalisms: in the next lextwe’ll discuss the inadequacies of simple CFGs from
a similar perspective.

However, FSAs are very useful for partial grammars which'd@guire full recursion. In particular, for information
extraction, we need to recognisamed entitiese.g. Professor Smith, IBM, 101 Dalmatians, the White Hotlse,
Alps and so on. Although NPs are in general recursthe fnan who likes the dog which bites postineelative
clauses are not generally part of named entities. Also tteerial structure of the names is unimportant for IE. Hence
FSAs can be used, with sequences such as ‘title surnameQ ENP’ etc

CFGs can be automatically compiled into approximatelyesjant FSAs by putting bounds on the recursion. This is
particularly important in speech recognition engines.

35

4.13 Further reading

This lecture has covered material which J&M discuss in oba@ and 10, though we also touched on PCFGs (covered
in their chapter 12) and issues of language complexity wthiely discuss in chapter 13. J&M'’s discussion covers the
Earley algorithm, which can be thought of as a form of actwe-down chart parsing. | chose to concentrate on
bottom-up parsing in this lecture, mainly because | find sieato describe, but also because it is easier to see how to
extend this to PCFGs. Bottom-up parsing also seems to hater peactical performance with the sort of grammars
we'll look at in lecture 5.

There are a large number of introductory linguistics texttwhich cover elementary syntax and discuss concepts
such as constituency. For instance, students could ugéddok at the first five chapters of Tallerman (1998):

Tallerman, MaggieUnderstanding SyntaArnold, London, 1998

An alternative would be the first two chapters of Sag and Wad®99) — copies should be in the Computer Lab-
oratory library. This has a narrower focus than most othatay books, but covers a much more detailed grammar
fragment. The later chapters (particularly 3 and 4) arevesiefor lecture 5.

Sag, Ivan A. and Thomas Waso8yntactic Theory — a formal introductip@SLI Publications, Stanford, CA, USA,
1999

36

5 Lecture 5: Parsing with constraint-based grammars

The CFG approach which we've looked at so far has some satligficsencies as a model of natural language. In this
lecture, I'll discuss some of these and give an introductma more expressive formalism which is widely used in
NLP, again with the help of a sample grammar. In the first patthe next lecture, | will also sketch how we can use
this approach to do compositional semantics.

5.1 Deficiencies in atomic category CFGs

If we consider the grammar we saw in the last lecture, seyeodllems are apparent. One is that there is no account
of subject-verb agreement, so, for instandefishis allowed by the grammar as well tieey fish'®

We could, of course, allow for agreement by increasing thalmer of atomic symbols in the CFG, introducing NP-sg,
NP-pl, VP-sg and VP-pl, for instance. But this approach wadon become very tedious:

S -> NP-sg VP-sg

S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
NP-sg -> he

NP-sg -> fish

NP-pl -> fish

Note that we have to expand out the symbols even when theye&smstraint on agreement, since we have no way of
saying that we don't care about the value of number for a caye@.g., past tense verbs).

Another linguistic phenomenon that we are failing to deahvis subcategorizationThis is the lexical property that
tells us how manyargumens a verb can have (among other things). Subcategorizatials te® mirror semantics,
although there are many complications. A verb sucladare for instance, relates two entities and is transitive: a
sentence such a¥im adoredis strange, whil&kim adored Sandis usual. A verb such agiveis ditransitive Kim
gave Sandy an appl@er Kim gave an apple to Sangywithout going into details of exactly how subcategoriaatis
defined, or what an argument is, it should be intuitively ol that we're not encoding this property with our CFG.
The grammar in lecture 4 allows the following, for instance:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

Again this could be dealt with by multiplying out symbols {{jMrans, V-ditrans etc), but the grammar becomes ex-
tremely cumbersome.

Finally, consider the phenomenonlohg-distance dependencjexemplified, for instance, by:

which problem did you say you don’t understand?
who do you think Kim asked Sandy to hit?
which kids did you say were making all that noise?

Traditionally, each of these sentences is said to contgapacorresponding to the place where the noun phrase would
normally appear: the gaps are marked by underscores below:

which problem did you say you don’t understard
who do you think Kim asked Sandy to hit?
which kids did you say were making all that noise?

18In English, the subject of a sentence is generally a noursghsdiich comes before the verb, in contrast to the object,wloitows the verb.
The subject and the verb must (usually) either both have Engwrphology or both have plural mophology: i.e., they magiee There was also
no account otase this is only reflected in a few places in modern English, lihey can theys clearly ungrammatical (as opposedtiey can
them which is grammatical with the transitive verb usecaf).

37

Notice that, in the third example, the verlereshows plural agreement.

Doing this in standard CFGs is possible, but extremely v&ebpotentially leading to trillions of rules. Instead of
having simple atomic categories in the CFG, we want to allowféatures on the categories, which can have values
indicating things like plurality. As the long-distance @gplency examples should indicate, the features need to be
complex-valued. For instance,

* what kid did you say. were making all that noise?

is not grammatical. The analysis needs to be able to représernformation that the gap corresponds to a plural
noun phrase.

In what follows, | will illustrate a simpleonstraint-based grammdormalism, usindeature structuresA constraint-
based grammar describes a language using a set of indepigrstated constraints, without imposing any conditions
on processing or processing order. A CFG can be taken as améxaf a constraint-based grammar, but usually the
term is reserved for richer formalisms. The simplest wayhiok of feature structures (FSs) is that we're replacing the
atomic categories of a CFG with more complex data structuilefirst illustrate this idea intuitively, using a gramma
fragment like the one in lecture 4 but enforcing agreemeihthén go through the feature structure formalism in more
detail. This is followed by an example of a more complex graanmwhich allows for subcategorization (I won’t show
how case and long-distance dependencies are dealt with).

5.2 Avery simple FS grammar encoding agreement

In a FS grammar, rules are described as relating FSs: ixécaleentries and phrases are FSs. In these formalisms,
the termsignis often used to refer to lexical entries and phrases caoliggt In fact, rules themselves can be treated
as FSs. Feature structures are singly-rooted directediagyaphs, with arcs labelled by features and terminal sode
associated with values. A particular feature in a structoay beatomic-valuegdmeaning it points to a terminal node

in the graph, ocomplex-valuedmeaning it points to a non-terminal node. A sequence ofifeatis known as path

For instance, in the structure below, there are two arc®lled) with CAT and AGR, and three nodes, with the two
terminal nodes having valu@® andsg Each of the features is thus atomic-valued.

CAT NP
o —MM8M8M8» o
AGR
sg
[]

In the graph below, the featureEAD is complex-valued, and the value ®&R (i.e., the value of the pathEAD AGR)
is unspecified:

HEAD CAT NP

[] > @ > @
AGR

(]

FSs are usually drawn adtribute-value matriceer AVMs. The AVMs corresponding to the two FSs above are as
follows:

cAT NP
AGR sg

CAT NP
HEAD AGR [}
Since FSs are graphs, rather than trees, a particular nogéemsccessed from the root by more than one path: this is
known agreentrancy In AVMs, reentrancy is conventionally indicated by boxategers, with node identity indicated

38

by integer identity. The actual integers used are arbitrahys is illustrated with an abstract example using featare
anda below:

| Graph | AVM
/ ®a
Non-reentrant| o G > @ a {23}
F
Reentrant (\ ®a {Z % a}

When using FSs in grammars, structures are combinaghification This means that all the information in the two

structures is combined. The empty square bracketg (n an AVM indicate that a value is unspecified: i.e. this is a
node which can be unified with a terminal node (i.e., an atomige) or a complex value. More details of unification
are given below.

When FSs are used in a particular grammar, all signs will hasendar set of features (although sometimes there
are differences between lexical and phrasal signs). Featwucture grammars can be used to implement a variety of
linguistic frameworks. For the first example of a FS gramma’]l just consider how agreement could be encoded.

Suppose we are trying to model a grammar which is weakly edgmit to the CFG fragment below:

S -> NP-sg VP-sg

S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl

V-pl -> like
V-sg -> likes
NP-sg -> it
NP-pl -> they
NP-sg -> fish
NP-pl -> fish

The FS equivalent shown below replaces the atomic categaiitb FSs splitting up the categories so that the main
category and the agreement values are distinct. In the gearhatow, | have used the arrow notation for rules as an
abbreviation: | will describe the actual FS encoding of stdbortly. The FS grammar just needs two rules. There is a
single rule corresponding to ti&> NP VP rule, which enforces identity of agreement values betwbaerNP and

the VP by means of reentrancy (indicated by the tgg The rule corresponding tdP-> V NP simply makes the
agreement values of the V and the VP the same but ignores theragnt value on the N.The lexicon specifies
agreement values fdtr, they, like andlikes, but leaves the agreement value fishuninstantiated (i.e., underspecified).
Note that the grammar also has a root FS: a structure onlyts@sra valid parse if it is unifiable with the root.

FS grammar fragment encoding agreement

Grammar rules

. S NP VP
Subject-verb rule [22; } - [ié; } |:22TR }

i VP Vv CAT NP
Verb-object rule [gg;] — {%\TR] |:AGR [] }

1"Note that the reentrancy indicators are local to each rake{1] in the subject-verb rule is not the same structure ag1hén the verb-object
rule.

39

Lexicon:
;;; noun phrases

ey ||
fish { - “fp] }
e [ay]

;15 verbs

like [carv }
likes [oAT gg]

Root structure:
[CAT S]

Consider parsinghey like itwith this grammar. The lexical structures fide andit are unified with the corresponding
structure to the right hand side of the verb-object rule.rBatifications succeed, and the structure corresponding to
the mother of the rule is:

CAT VP
AGR pl

The agreement value @ because of the coindexation with the agreement valuéef This structure can unify
with the rightmost daughter of the subject-verb rule. Thiecttire fortheyis unified with the leftmost daughter. The
subject-verb rule says that both daughters have to haveathe agreement value, which is the case in this example.
Rule application therefore succeeds and since the restiksiwith the root structure, there is a valid parse.

To see what is going on a bit more precisely, we need to showtbe as FSs. There are several ways of encoding this,
but for current purposes | will assume that rules have festMOTHER, DTR1, DTR2 ...DTRN. So the verb-object
rule, which I informally wrote as:

CATVP | _, | caTV CAT NP
AGR [AGR @ | | AcR []

is actually:

CAT VP
AGR

CAT V
DTR1 [AGR }

CAT NP
DTR2

AGR[}

MOTHER |:

Thus the rules in the CFG correspond to FSs in this formalisthvee can formalise rule application by unification.
For instance, a rule application in bottom-up parsing imgslunifying each of the DTR slots in the rule with the
feature structures for the phrases already in the chart.

Consider parsinthey like itagain.

STEP1: parsingjke it with the rule above.

Step la

The structure folike can be unified with the value ofTR1 in the rule.

40

CAT VP
AGR

CAT V CAT V
DTR1 [AGR} I [DTRI |:AGRp|:|‘|

CAT NP
DTR2

AGR[}

MOTHER |:

Unification means all information is retained, so the resudludes the agreement value frdike:

AGR pl
CAT V
DTR1 [AGR }

CAT NP
DTR2

AGR[}

MOTHER |: CAT VP :|

Step 1b
The structure foit is unified with the value fobTR2 in the result of Step 1a:
CAT VP CAT VP
MOTHER |:AGR p|:| MOTHER |:AGR p|:|
CAT V CAT NP _ CAT V
DTR1 [AGR } 1 [DTRZ {AGR sg }] = | DTR1 AGR
CAT NP
CAT NP
DTR2 [AGR [}] DTR2 AGR Sg

The rule application thus succeeds.

Step 2: application of the subject verb rule.
Step 2a.
The MOTHER value acts as theTR2 of the subject-verb rule. That is:

AGR pl

CAT VP :|
is unified with thedDTR2 value of:

CAT S
MOTHER [AGR }
CAT NP
DTRL | oo
CAT VP

DTR2 | S0

This gives:

CAT S
MOTHER [AGR p|:|

CAT NP

DTRL | oo

CAT VP

DTR2 AGR

Step 2b
The FS fortheyis:

41

CAT NP
AGR pl

The unification of this with the value @TR1 from Step 2a succeeds but adds no new information:

CAT S
MOTHER [AGR pI:|

CAT NP
pTRL | oo
CAT VP

DTR2 | S0

Step 3:
Finally, theMOTHER of this structure unifies with the root structure, so this is&hld parse.

Note however, that if we had tried to paiiséke it, a unification failure would have occurred at Step 2b, siheaGRr
on the lexical entry foit has the valusgwhich clashes with the valya.

| have described these unifications as occurring in a pdaticxder, but it is very important to note that order is not
significant and that the same overall result would have béemireed if another order had been used. This means that
different parsing algorithms are guaranteed to give theesgasult. The one proviso is that with some FS grammars,
just like CFGs, some algorithms may terminate while othersck.

5.3 Feature structures in detail

So far, | have been using a rather informal description of. H8 following section gives more formal definitions.

FSs can be thought of as graphs which have labelled arcs ciimp@odes (except for the case of the simplest FSs,
which consist of a single node with no arcs) The labels on the are the features. Arcs are regarded as having a
direction, conventionally regarded as pointing into theidure, away from the single root node. The set of features
and the set of atomic values are assumed to be finite.

Properties of FSs

Connectedness and unique rootA FS must have a unique root node: apart from the root nodapdkis have one or
more parent nodes.

Unique features Any node may have zero or more arcs leading out of it, but thellan each (that is, the feature)
must be unique.

No cycles No node may have an arc that points back to the root node or tale that intervenes between it and the
root node. (Although some variants of FS formalisms allowies.)

Values A node which does not have any arcs leading out of it may haassociated atomic value.

Finiteness An FS must have a finite number of nodes.

Sequences of features are knowrpais.

Feature structures can be regarded as being ordered byniafion content — an FS is said $obsumenother if the
latter carries extra information. This is important becue define unification in terms of subsumption.

Properties of subsumptionFS1 subsumes FS2 if and only if the following conditions hold

Path values For every path P in FS1 there is a path P in FS2. If P has an at@hie t in FS1, then P also has value
tin FS2.

Path equivalencesEvery pair of paths P and Q which are reentrant in FS1 (i.eichviead to the same node in the
graph) are also reentrant in FS2.

42

Unification corresponds to conjunction of information, ahds can be defined in terms of subsumption, which is a
relation of information containment. The unification of tk&s is defined to be the most general FS which contains
all the information in both of the FSs. Unification will faflthe two FSs contain conflicting information. As we saw
with the simple grammar above, this prevenitdike it getting an analysis, because #&R values conflicted.

Properties of unification The unification of two FSs, FS1 and FS2, is the most generall#&wis subsumed by both
FS1 and FS2, if it exists.

5.4 A grammar enforcing subcategorization

Although the grammar shown above improves on the simple Q8| doesn’t encode subcategorization (e.g., the
difference between tranitive and intransitive). The graanshown overleaf does this. It moves further away from the
CFG. In patrticular, in the previous grammar thet feature encoded both the part-of-speech (i.e., noun o) aerth
the distinction between the lexical sign and the phrase (less NP and V vs VP). In the grammar below, thert
feature just encodes the major category (noun vs verb) anghttasal distinction is encoded in terms of whether the
subcategorization requirements have been satisfied.CAne@ndAGR features are now inside another featbesad
Signs have three features at the top-levaap, oBJandsuBa'®

Briefly, HEAD contains information which is shared between the lexicaélien and phrases of the same category:
e.g., houns share this information with the noun phrase lwbmminates them in the tree, while verbs share head
information with verb phrases and sentencesH8aD is used for agreement information and for category inforamat
(i.e., noun, verb etc). In contrastpJandsuBJare about subcategorization: they contain informatiorualadat can
combine with this sign. For instance, an intransitive veith mave asuBJcorresponding to its subject ‘slot’ and a
value offilled for its oBJ.*°

The grammar below has just two rules, one for combining a wétb its subject and another for combining a verb
with its object.

e The subject rule says that, when building the phrase sth®j value of the second daughter is to be equated
(unified) with the whole structure of the first daughter (zated by[2]). The head of the mother is equated with
the head of the second daught&ll §. The rule also stipulates that theRr values of the two daughters have to
be unified and that the subject has to have a filled object slot.

e The verb-object rule says that, when building the phraseptu value of the first daughter is to be equated
(unified) with the whole structure of the second daughtati¢iated by[2]). The head of the mother is equated
with the head of the first daughtefl{). The suBJ of the mother is also equated with tis&BJ of the first
daughter (3]): this ensures that any information about the subject tlzet specified on the lexical entry for the
verb is preserved. ThesJvalue of the mother is stipulated as befiitgd: this means the mother can't act as
the first daughter in another application of the rule, sifibed won’t unify with a complex feature structure.
This is what we want in order to prevent an ordinary transitrerb taking two objects.

These rules are controlled by the lexical entries in the esémat it's the lexical entries which determine the required
subject and object of a word.

As an example, consider analysitigey fish The verb entry fofishcan be unified with the second daughter position
of the subject-verb rule, giving the following partiallystantiated rule:

HEAD [iégvr?)l :| HEAD [iég nun] HEAD

- , | osJfilled
osJ filled oBJ filled SuBJ
susJfilled susJfilled

The first daughter of this result can be unified with the streeforthey, which in this case returns the same structure,
since it adds no new information. The result can be unifiedl tiée root structure, so this is a valid parse.

18you do not have to memorize the precise details of the featunetate architecture described here for the exam (questibat assume
knowledge of details will give an example). The point of giyithis more complicated grammar is that it starts to demonstratpdlwver of the
feature structure framework, in a way that the simple grammargusgreement does not.

19There are more elegant ways of doing this using lists, butthes more complicated. There are also terminologies whichrgkseover word
classes so that the subcategorisation idea applies to judinisr of speech as well as verbs — one such encoding was upegvinus versions of
these notes. But since this makes the grammar more difficult ftmifathen seen at first, the current version usegJandoBJinstead ofsPrand
COMP.

43

On the other hand, the lexical entry for the ndish does not unify with the second daughter position of the sutbje
verb rule. The entry fotheydoes not unify with the first daughter position of the verljegbrule. Hence there is no
other parse.

Simple FS grammar fragment encoding subcategorization

Subject-verb rule

HEAD HEAD [AGR HEAD [AGR]
OBJf'y.ﬁdd - oBa filled ' | osafilled
i susJtille susJfilled SUBJ
Verb-object rule
HEAD 1 HEAD 1
oBJfiled | — | oBJ , [oBJ filled]
SUBJ SUBJ
Lexicon:
;;; noun phrases
CAT noun
they HEAD |k pl }
osJ filled
susJfilled
CAT noun
. HEAD
fish AGR [}
oBJ filled
susJfilled
CAT noun
it HEAD | R sg }
oBJ filled
suBJfilled
;1 verbs
CAT verb
. HEAD |k pl
fish oB3 filled -
SUBJ[HEAD [CATnOun}}
_ CAT verb
HEAD | .o [}
can o8 {HEAD [CAT verb] } ;;; auxiliary verb
SUBJ[HEAD [CATnOun}}
CAT verb
HEAD [AGRpl }
can oy | HEAD [cAT noun | =+ transitive verb
ol filled
SUBJ[HEAD [CATnOun}}

Root structure:

HEAD | CAT verb]

oBJ filled
suBJfilled

The rules in this grammar ak@nary: i.e., they have exactly two daughters. The formalism adléov unaryrules (one
daughter) and also faernaryrules (three daughterguaternaryrules and so on. Grammars can be defined using only
unary and binary rules which are weakly equivalent to gransmaich use rules of higher arity: some approaches

44

avoid the use of rules with arity of more than 2.

5.5 Parsing with feature structure grammars

Formally we can treat feature structure grammars in ternsubSumption. | won't give details here, but the intuition
is that the rule FSs, the lexical entry FSs and the root FScalha constraints on the parse, which have to be sat-
isfied simultaneously. This means the system has to buildsesructure which is subsumed by all the applicable
constraints. However, this description of what it meanssfamething to be a valid parse doesn't give any hint of a
sensible algorithm.

The standard approach to implementation is to use charingai@s described in the previous lecture, but the notion
of a grammar rule matching an edge in the chart is more comgfea naive implementation, when application of a
grammar rule is checked, all the feature structures in tlgegdh the chart that correspond to the possible daughters
have to be copied, and the grammar rule feature structug# itssalso copied. The copied daughter structures are
unified with the daughter positions in the copy of the rulel gninification succeeds, the copied structure is assatiate
with a new edge on the chart.

The need for copying is often discussed in terms of the detsteunature of the standard algorithm for unification
(which | won’t describe here), but this is perhaps a littlesksading. Unification, however implemented, involves
sharing information between structures. Assume, for imtathat the FS representing the lexical entry of the noun
for fishis underspecified for number agreement. When we parse a serities:

the fish swims

the part of the FS in the result that corresponds to the aldéxical entry will have itsAGR value instantiated. This
means that the structure corresponding to a particular egigeot be reused in another analysis, because it will aontai
‘extra’ information. Consider, for instance, parsing:

the fish in the lake which is near the town swim
A possible analysis of:

fish in the lake which is near the town

(fish (in the lake) (which is near the town))

i.e., the fish (sg) is near the town. If we instantiate Ak value in the FS fofishas sg while constructing this parse,
and then try to reuse that same FSfishin the other parses, analysis will fail. Hence the need fpyatg, so we can
use a fresh structure each time. Copying is potentiallyeexély expensive, because realistic grammars involve FSs
with many hundreds of nodes.

So, although unification is very near to linear in complexitgive implementations of FS formalisms are very in-
efficient. Furthermore, packing is not straightforwardcéese two structures are rarely identical in real grammars
(especially ones that encode semantics).

Reasonably efficient implementations of FS formalisms carertheless be developed. Copying can be greatly re-
duced:
1. by doing an efficient pretest before unification, so thaie®are only made when unification is likely to succeed
2. by sharing parts of FSs that aren’t changed

3. by taking advantage ddcality principlesin linguistic formalisms which limit the need to percolatéarmation
through structures

Packing can also be implemented: the test to see if a new atiggegacked involves subsumption rather than equality.

As with CFGs, for real efficiency we need to control the seafdice so we only get the most likely analyses. Defining
probabilistic FS grammars in a way which is theoreticallylvmeotivated is much more difficult than defining a PCFG.
Practically it seems to turn out that treating a FS grammasinas though it were a CFG works fairly well, but this is
an active research issue.

45

5.6 Templates

The lexicon outlined above has the potential to be very rddaoh For instance, as well as the intransitive viesh,

a full lexicon would have entries fasleep snoreand so on, which would be essentially identical. We avoid thi
redundancy by associating names with particular featutectsires and using those names in lexical entries. For
instance:

fish INTRANS VERB

sleep INTRANSVERB

snore INTRANSVERB

where the template is specified as:

Heap | CAT verb :|

AGR pl
INTRANS_VERB

oBJ filled

SuUBJ [HEAD [CAT noun] :|

The lexical entry may have some specific information assediwith it (e.g., semantic information, see next lecture)
which will be expressed as a FS: in this case, the templatéhardxical feature structure are combined by unification.

5.7 Interface to morphology

So far we have assumed a full-form lexicon (i.e., one thaeimiises for all the inflected forms), but we can now return
to the approach to morphology that we saw in lecture 2, and $toov this relates to feature structures. Recall that we
have spelling rules which can be used to analyse a word fometton a stem and list of affixes and that each affix is
associated with an encoding of the information it cont@isutFor instance, the affsis associated with the template
PLURAL_NOUNvhich would correspond to the following information in agnammar fragment:

CAT noun
HEAD [AGR ol :|]

A stem for a noun is generally assumed to be uninstantiatatlimber (i.e., neutral between sg and pl). So the lexical
entry for the nourdogin our fragment would be the structure for the stem:

CAT noun
HEAD AGR []

ol filled
suBJfilled

One simple way of implementing inflectional morphology insHS simply to unify the contribution of the affix with
that of the stem. If we unify the FS corresponding to the stendégto the FS foPLURAL_NOUNwve get:

HEAD CAT noun :|

AGR pl

osJ filled
susJfilled

This approach assumes that we also have a temBIAtE&ULAR_NOUNwhere this is associated with a ‘null’ affix.
Notice how this is an implementation of the idea of a morpbimal paradigm, mentioned §2.2.

In the case of an example suchfasdincorrectly analysed age -ed discussed if§2.5, the affix information will fail
to unify with the stem, ruling out that analysis.

There are other ways of encoding inflectional morphologhWdg, which | won't discuss here. Note that this simple
approach is not, in general, adequate for derivational halggy. For instance, the affiize, which combines with

a noun to form a verb (e.glemmatizatiol, cannot be represented simply by unification, becausesithv@hange a
nominal form into a verbal one. This can be implemented byestorm oflexical rule (which are essentially grammar
rules with single daughters), but | won't discuss this irstbourse. Note, however, that this reflects the distinction
between inflectional and derivational morphology that we 8a§2.2:while inflectional morphology can be seen as

46

simple addition of information, derivational morphologgrnwerts feature structures into new structures. However,
derivational morphology is often not treated as produc¢tspecially in limited domain systems.

5.8 Further reading

J&M describe feature structures as augmenting a CFG raltlaer ieplacing it, but most of their discussion applies
equally to the FS formalism I've outlined here.

Delphin (ttp://www.delph-in.net/) distributes Open Source FS grammars for a variety of laggsaThe
English Resource Grammar (ERG) is probably the largeshfi@eilable bidirectional grammar.

47

6 Lecture 6: Compositional and lexical semantics

This lecture will give a rather superficial account of senanénd some of its computational aspects:

Compositional semantics in feature structure grammars

Meaning postulates

Classical lexical relations: hyponymy, meronymy, syymag, antonymy
Taxonomies and WordNet

Classes of polysemy: homonymy, regular polysemy, vagsgen

o o ~ w N E

Word sense disambiguation

6.1 Simple semantics in feature structures

The grammar fragment below is based on the one in the prelgéotisre. It is intended as a rough indication of how

it is possible to build up semantic representations usiagufe structures. The lexical entries have been augmented
with pieces of feature structure reflecting predicate-argnt structure. With this grammar, the FS foey like fish

will have asem value of:

PRED and
PRED pron
ARG1 ARGL
PRED and
PRED like v
ARGl | ARG1
ARG2 ARG2
PRED fish_n
ARG2 ARGL

This can be taken to be equivalent to the logical expression(p) A (like_v(z,y) A fish.n(y)) by translating the
reentrancy between argument positions into variable edgrice.

The most important thing to notice is how the syntactic argntypositions in the lexical entries are linked to their
semantic argument positions. This means, for instancefdhthe transitive verllike, the syntactic subject will always
correspond to the first argument position, while the syitaatiject will correspond to the second position.

Simple FS grammar with crude semantic composition

Subject-verb rule

[HEAD
osJ filled
susy filled HEAD | AGR HEAD AGR }
— osJfilled , | osJafilled
<Em igztl’ad susJfilled SUBJ
SEM [@ SEM [5
ARG2
Verb-object rule
[HEAD]
osJ filled
HEAD
SUBJ [3)
_ 0OBJ oBJ filled
PRED and SuBJ ! SEM
SEM | ARG1 SEM
ARG2
Lexicon:

48

CAT verb
HEAD |:AGR pl]
HEAD | CAT noun]
oBJ | osJfilled
. SEM [INDEX] .
like ;;; transitive verb
HEAD [CAT noun]
SUBJ
SEM [INDEX }
PRED like_v
SEM | ARG1
ARG2
CAT noun
HEAD | < b }
. oBJfilled
fish suBJ filled } ;5 noun phrase
INDEX
SEM [PREDfish.n
ARG1
CAT noun
HEAD | <ob ol
osJ filled B
they suBJfilled . ;;; houn phrase
INDEX
SEM | PRED pron
ARG1

Notice the use of the ‘and’ predicate to relate differentgaf the logical form. With very very simple examples as
covered by this grammar, it might seem preferable to use proaph where the nouns are embedded in the semantics
for the verb e.g., likev(fish._n, fish_n) for fish like fish But this sort of representation does not extend well to more
complex sentences.

In these simple examples, syntax and semantics are vemlgladated. But this is often not the case. For instance,
in it rains, theit does not refer to a real entity (s€@.8), so the semantics should simply be rainMore complex
examples include verbs likeeem for instanceKim seems to sleameans much the same thingiaseems that Kim
sleeps(you should contrast this with the behaviourlalievg. There are many examples of this sort that make the
issue of the syntax/semantics interface much more compiax it first appears: thus we cannot simply read the
compositional semantics off a syntax tree.

An alternative approach to encoding semantics is to wrieesimantic composition rules in a separate formalism
such asyped lambda calculusThis corresponds more closely to the approach most comnasdumed in formal
linguistics: variants of lambda calculus are sometimesl is&ILP, but | won't discuss this further here.

In general, a semantic representation constructed for #sem is called théogical form of the sentence. The se-
mantics shown above can be taken to be equivalent to a formedigate calculus without variables or quantifiers:
i.e. the ‘variables’ in the representation actually copm@sd to constants. It turns out that this very impoverished
form of semantic representation is adequate for many NLHGgtjpns: template representations, used in information
extraction or simple dialogue systems can be thought of avagnt to this. But for a fully adequate representation
we need something richer — for instance, to do negation phppklinimally we need full first-order predicate cal-
culus (FOPC). FOPC logical forms can be passed to theorerefs in order to do inference about the meaning of a
sentence. However, although this approach has been esdnsiplored in research work, especially in the 1980s, it
hasn't so far led to practical systems. There are many redeonhis, but perhaps the most important is the difficulty
of acquiring detailed domain knowledge expressed in FOP@rdis also a theoretical Al problem, because we seem
to need some form of probabilistic reasoning for many appiins. So, although most researchers who are working in
computational compositional semantics take support f@rémce as a desideratum, many systems actually use some
form of shallow inference (e.g., semantic transfer in MTnti@ned in lecture 8).

FOPC also has the disadvantage that it forces quantifiers ito & particular scopal relationship, and this information
is not (generally) overt in NL sentences. One classic exarigpl

49

Every man loves a woman

which is ambiguous between:
Vz[mari(z) = Jy[womari(y) A love (z, y)]]

and the less-likely, ‘one specific woman’ reading:
Jy[womari(y) A Vz[mari(z) = love (z,y)]]

Most current systems construct an underspecified reprggamtwhich is neutral between these readings, if they
represent quantifier scope at all. There are several diffedternative formalisms for underspecification.

6.2 Generation

We can generate from a semantic representation with a siff&grammar. Producing an output string given an input
logical form is generally referred to dactical generatioror realization as opposed tstrategic generatioror text
planning which concerns how you might build the logical form in theffiplace. Strategic generation is an open-ended
problem: it depends very much on the application and | woaltehmuch to say about it here. Tactical generation is
more tractable, and is useful without a strategic compoimesbme contexts, such as the semantic transfer approach
to MT, which I'll mention in lecture 8.

Tactical generation can use similar techniques to pardimginstance one approach ébart generatiorwhich uses
many of the same techniques as chart parsing. There has hméress work on generation than on parsing in general,
and building bidirectional grammars is hard: most gramnfarparsing allow through many ungrammatical strings.
Recently there has been some work on statistical generatioere n-grams are used to choose between realisations
constructed by a grammar that overgenerates. But evenivedattight’ bidirectional grammars may need to use
statistical techniques in order to generate natural segnditerances.

6.3 Meaning postulates

Inference rules can be used to relate open class predicategredicates that correspond to open class words. $his i
the classic way of representing lexical meaning in formataetics within linguisticg®

Vxlbachelor(x) <« man(x) A unmarried(x)]

Linguistically and philosophically, this gets pretty dabs. Is the current Pope a bachelor? Technically presumably
yes, butbachelorseems to imply someone who could be married: it's a strange wwapply to the Pope under
current assumptions about celibacy. Meaning postulatesilao too unconstrained: | could construct a predicate
‘bachelor-weds-thurs’ to correspond to someone who wasanred on Wednesday and married on Thursday, but this
isn't going to correspond to a word in any natural languageany case, very few words are as simple to define as
bachelor consider how you might start to defitable, tomatoor thought for instance!

For computational semantics, perhaps the best way of reganteaning postulates is simply as one reasonable way of
linking compositionally constructed semantic represtoms to a specific domain. In NLP, we're normally concerned
with implication rather than definition and this is less gesbatic philosophically:

Vx[bachelor(x) — man(x) A unmarried(z)]

However, the big computational problems with meaning dasts are their acquisition and the control of inference
once they have been obtained. Building meaning postulatearfything other than a small, bounded domain is an
Al-complete problem.

The more general, shallower, relationships that are dabgidiscussed in lexical semantics are currently moréulse
in NLP, especially for broad-coverage processing.

20Generally, linguists don't actually write meaning postatator open-class words, but this is the standard assumgiimrt ~ow meaning would
be represented if anyone could be bothered to do it!

21There has been a court case that hinged on the precise medniabl@and also one that depended on whether tomatoes were fruits or
vegetables.

50

6.4 Hyponymy: IS-A

Hyponymy is the classical IS-A relation: e.dogis ahyponymof animal To be more precise, the relevant sense
of dogis the hyponym ofanimal (dog can also be a verb or used in a metaphorical and derogatorytavaefer to

a human). As nearly everything said in this lecture is aboortdixsenses rather than words, | will avoid explicitly
qualifying all statements in this way, but this should bebglitly understood.

animalis thehypernynof dog Hyponyms can be arranged intexonomiesclassically these are tree-structured: i.e.,
each term has only orteypernym

Despite the fact that hyponymy is by far the most importananirgg relationship assumed in NLP, many questions
arise which don't currently have very good answers:

1. What classes of words can be categorised by hyponymy? Souresnclassically biological taxonomies, but
also human artifacts, professions etc work reasonably Wieltract nouns, such &rith, don't really work very
well (they are either not in hyponymic relationships at atlvery shallow ones). Some verbs can be treated as
being hyponyms of one another — eugurderis a hyponymof kill, but this is not nearly as clear as it is for
concrete nouns. Event-denoting nouns are similar to veriisis respect. Hyponymy is essentially useless for
adjectives.

2. Do differences in quantisation and individuation m&tEor instance, ishair a hyponym offurniture? isbeer
a hyponym ofdrink? iscoin a hyponym ofmoney

3. Is multiple inheritance allowed? Intuitively, multipf@rents might be possible: e.goin might bemetal (or
objecP) and alsamoney Artifacts in general can often be described either in teahgheir form or their
function.

4. What should the top of the hierarchy look like? The best @msgems to be to say that there is no single top
but that there are a series of hierarchies.

6.5 Other lexical semantic relations

Meronymy i.e., PART-OF
The standard examples of meronymy apply to physical relalips: e.g.arm is part of abody (arm is a
meronymof body); steering wheels a meronym ofcar. Note the distinction between ‘part’ and ‘piece’: if |
attack a car with a chainsaw, | get pieces rather than parts!

Synonymy i.e., two words with the same meaning (or nearly the same mggan
True synonyms are relatively uncommon: most cases of tronerggmy are correlated with dialect differences
(e.g.,eggplant/ aubergine boot/ trunk). Often synonymy involves register distinctions, slangaogons: e.g.,
policeman cop, rozzer. .. Near-synonyms convey nuances of meanthip, slim, slender skinny

Antonymy i.e., opposite meaning

Antonymy is mostly discussed with respect to adjectivesg., dig/little, though it's only relevant for some
classes of adjectives.

6.6 WordNet

WordNet is the main resource for lexical semantics for Bsfgthat is used in NLP — primarily because of its very
large coverage and the fact that it's freely available. Wats are under development for many other languages,
though so far none are as extensive as the original.

The primary organisation of WordNet is infynsetssynonym sets (near-synonyms). To illustrate this, thiefahg
is part of what WordNet returns as an ‘overview'ref:

wn red -over

51

Overview of adj red
The adj red has 6 senses (first 5 from tagged texts)

1. (43) red, reddish, ruddy, blood-red, carmine,
cerise, cherry, cherry-red, crimson, ruby, ruby-red,
scarlet -- (having any of numerous bright or strong
colors reminiscent of the color of blood or cherries
or tomatoes or rubies)

2. (8) red, reddish -- ((used of hair or fur) of a
reddish brown color; "red deer"; reddish hair")

Nouns in WordNet are organised by hyponymy, as illustratethb fragment below:

Sense 6
big cat, cat
=> |eopard, Panthera pardus
=> |eopardess
=> panther
=> snow leopard, ounce, Panthera uncia
=> jaguar, panther, Panthera onca, Felis onca
=> lion, king of beasts, Panthera leo
=> lioness
=> lionet
=> tiger, Panthera tigris
=> Bengal tiger
=> tigress
=> liger
=> tiglon, tigon
=> cheetah, chetah, Acinonyx jubatus
=> saber-toothed tiger, sabertooth
=> Smiledon californicus
=> false saber-toothed tiger

The following is an overview of the information availableWordNet for the various POS classes:

e all classes

1. synonyms (ordered by frequency)
2. familiarity / polysemy count
3. compound words (done by spelling)

e Nnouns

1. hyponyms / hypernyms (also sisters)
2. holonyms / meronyms

e adjectives
1. antonyms
e verbs

1. antonyms
2. hyponyms / hypernyms (also sisters)
3. syntax (very simple)

52

e adverbs

Taxonomies have also been automatically or semi-autoeligtiextracted from machine-readable dictionaries, but
these are not distributed. Microsoft's MindNet is the besbwn example (it has many more relationships than just
hyponymy). There are other collections of terms, generalgrarchically ordered, especially medical ontologies.
There have been a number of attempts to build an ontology doldvknowledge: none of the more elaborate ones are
generally available. There is an ongoing attempt at statisktion of ontologies. Ontology support is an important
component of the semantic web.

6.7 Using lexical semantics
By far the most commonly used lexical relation is hyponymypbinymy relations can be used in many ways:

e Semantic classification: e.g., for selectional restritdi¢e.g., the object acfathas to be something edible) and
for named entity recognition

Shallow inference: ‘X murdered Y’ implies ‘X killed Y’ etc

Back-off to semantic classes in some statistical appraache

Word-sense disambiguation

MT: if you can't translate a term, substitute a hypernym

Query expansion for information retrieval: if a search doeseturn enough results, one option is to replace an
over-specific term with a hypernym

Synonymy or near-synonymy is relevant for some of theseoreaand also for generation. (However dialect and reg-
ister haven't been investigated much in NLP, so the posséidsance of different classes of synonym for customising
text hasn't really been looked at.)

6.8 Polysemy

Polysemy refers to the state of a word having more than ongeséime standard examplebank(river bank) vsbank
(financial institution).

This ishomonymy— the two senses are unrelated (not entirely truebfmk actually, but historical relatedness isn'’t
actually important — it's whether ordinary speakers of tarduage feel there’s a relationship). Homonymy is the
most obvious case of polysemy, but is actually relativefyeiquent compared to uses which have different but related
meanings, such dmank(financial institution) vdbank(in a casino).

If polysemy were always homonymy, word senses would be eliscitwo senses would be no more likely to share
characteristics than would morphologically unrelateddgoBut most senses are actually related. Regular or system-
atic polysemy (zero derivation) concerns related but niistisages of words, often with associated syntactic affect
For instancestrawberry, cherry(fruit / plant), rabbit, turkey, halibutimeat / animal)tango, waltz(dance (noun) /
dance (verb)).

There are a lot of complicated issues in deciding whetherra igqpolysemous or simply general/vague. For instance,
teacheris intuitively general between male and female teachetserahan ambiguous, but giving good criteria as a
basis of this distinction is difficult. Dictionaries are matich help, since their decisions as to whether to split assens
or to provide a general definition are very often continganegternal factors such as the size of the dictionary or the
intended audience, and even when these factors are réfatimastant, lexicographers often make different decision
about whether and how to split up senses.

6.9 Word sense disambiguation

Word sense disambiguation (WSD) is needed for most NL apgpitaithat involve semantics (explicitly or implicitly).
In limited domains, WSD is not too big a problem, but for large&rage text processing it's a serious bottleneck.

53

WSD needs depend on the application — there is no objectivemot word sense (dictionaries differ extensively) and
it's very hard to come up with good criteria to judge whethenot to distinguish senses. But in order to experiment
with WSD as a standalone module, there has to be a standard: corosnonly WordNet, because it is the only
extensive modern resource for English with no probleméie Issues. This is controversial, because WordNet has a
very fine granularity of senses — it's also obvious that itss&s often overlap. However, the only current alternative
is a pre-1920 version of Webster's. Various WSD ‘competiidrave been organised (SENSEVAL).

WSD up to the early 1990s was mostly done by hand-construated (still used in some MT systems). Dahlgren
investigated WSD in a fairly broad domain in the 1980s. Reaklyrbroad-coverage WSD generally depends on:

e frequency
e collocations

e selectional restrictions/preferences

What's changed since the 1980s is that various statisticatairhine-learning techniques have been used to avoid
hand-crafting rules.

e supervised learning. Requires a sense-tagged corpud) wghegtremely time-consuming to construct systemat-
ically (examples are the Semcor and SENSEVAL corpora, btit bee really too small). Most experimentation
has been done with a small set of words which can be senseet&dyghe experimenter (e.glant). Supervised
learning techniques do not carry over well from one corpusrother.

e unsupervised learning (see below)

e Machine readable dictionaries (MRDs). Disambiguatingdidiary definitions according to the internal data in
dictionaries is necessary to build taxonomies from MRDs.DdRave also been used as a source of selectional
preference and collocation information for general WSD tgsiuccessfully).

Until recently, most of the statistical or machine-leamiechniques have been evaluated on homonyms: these are
relatively easy to disambiguate. So 95% disambiguationdn &arowsky’s experiments sounds good (see below),
but doesn’t translate into high precision on all words whaaget is WordNet senses (in SENSEVAL 2 the best system
was around 70%).

There have also been some attempts at autorsatise inductiarwhere an attempt is made to determine the clusters
of usages in texts that correspond to senses. In princigiejg a very good idea, since the whole notion of a word
sense is fuzzy: word senses can be argued to be artifactstadrdiry publishing. However, so far sense induction
has not been much explored in monolingual contexts, thougbuld be considered as an inherent part of statistical
approaches to MT.

6.10 Collocations

Informally, a collocation is a group of two or more words tleatur together more often than would be expected by
chance (there are other definitions — this is not really aipeagotion). Collocations have always been the most useful
source of information for WSD, even in Dahlgren’s early expents. For instance:

(2) Striped bass are common.

3) Bass guitars are common.

stripedis a good indication that we're talking about the fish (beedtis a particular sort of bass), similarly witjuitar

and music. In botlbass guitamndstriped basswe’ve arguably got a multiword expression (i.e., a coniaral phrase
that might be listed in a dictionary), but the principle hofdr any sort of collocation. The best collocates for WSD
tend to be syntactically related in the sentence to the watoet disambiguated, but many techniques simply use a
window of words.

J&M make a useful (though non-standard) distinction betwamlocation and co-occurrence: co-occurrence refers to
the appearance of another word in a larger window of text thaallocation. For instancérout might co-occur with
the fish sense of bass.

54

6.11 Yarowsky’s unsupervised learning approach to WSD

Yarowsky (1995) describes a technique for unsuperviseathileg using collocates (collocates and co-occurrences in
J&M's terms). A few seed collocates are chosen for each sénasaually or via an MRD), then these are used
to accurately identify distinct senses. The sentences ichwihe disambiguated senses occur can then be used to
learn other discriminating collocates automatically,qaroing a decision list. The process can then be iterated. The
algorithm allows bad collocates to be overridden. This wdoecause of the general principle of ‘one sense per
collocation’ (experimentally demonstrated by Yarowsky ts-not absolute, but there are very strong preferences).

In a bit more detail, using Yarowsky’s example of disambtinu@plant (which is homonymous between factory vs
vegetation senses):

1. Identify all examples of the word to be disambiguated gntthining corpus and store their contexts.
sense| training example

company said that thglantis still operating
although thousands @lantand animal species
zonal distribution oplantlife

company manufacturinglantis in Orlando

etc

N N))

2. ldentify some seeds which reliably disambiguate a fewhe$¢ uses. Tag the disambiguated senses automati-
cally and count the rest as residual. For instance, chodgiagt life’ as a seed for the vegetation sense of plant
(sense A) and ‘manufacturing plant’ as the seed for the facense (sense B):

sense| training example

company said that thglantis still operating

although thousands @lantand animal species

zonal distribution oplantlife

company manufacturinglantis in Orlando

etc

This disambiguated 2% of uses in Yarowsky’s corpus, lea98i residual.

W >

3. Train adecision listclassifier on the Sense A/Sense B examples. A decision lisbaph gives a list of criteria
which are tried in order until an applicable test is founds il then applied. The decision list classifier takes a
set of already classified examples and returns criterialwtlistinguish them (e.g., word before / after / within
window). The tests are each associated with a reliabilityrimeThe original seeds are likely to be at the top of
the decision list that is returned, followed by other disgriating terms. e.g. the decision list might include:

reliability | criterion \ sense
8.10 plantlife A
7.58 manufacturingplant B
6.27 animalwithin 10 words ofplant | A

etc

Here ‘animalwithin 10 words ofplant is a new criterion, learned by the classifier.

4. Apply the decision list classifier to the training set and all examples which are tagged with greater than a
threshold reliability to the Sense A and Sense B sets.
sense| training example

company said that thglantis still operating
although thousands @lantand animal species
zonal distribution oplantlife

company manufacturinglantis in Orlando

etc

W > >

5. lterate the previous steps 3 and 4 until convergence

55

6. Apply the classifier to the unseen test data

The following schematic diagrams may help:

Initial state:

Seeds

Iterating:

Final:

? ? ?
?? 5
? ? 5
2 7
? H
?? ?
? ?
?2? ? ?
? ?,
? ’ ?
?
? ? B
?? 5
? ?
’ " 2ymanufact
? ?

56

Yarowsky also demonstrated the principle of ‘one sense igepdrse’. For instance, glantis used in the botanical
sense in a particular text, then subsequent instangasiaffin the same tense will also tend to be used in the botanical
sense. Again, this is a very strong, but not absolute efféttis can be used as an additional refinement for the
algorithm above, assuming we have a way of detecting thedsrigs between distinct texts in the corpus.

Decision list classifiers can be thought of as automatidedined case statements. The experimenter decides on the
classes of test (e.g., word next to word to be disambiguatedd within window 10). The system automatically
generates and orders the specific tests based on the trdiiag

Yarowsky argues that decision lists work better than mahgiostatistical frameworks because no attempt is made to
combine probabilities. This would be complex, because titer@a are not independent of each other. More details of
this approach are in J&M (see page 641).

Yarowsky's experiments were nearly all on homonyms: theseiples probably don’t hold as well for sense exten-
sion.

6.12 Evaluation of WSD

The baseline for WSD is generally ‘pick the most frequent'sserihis is hard to beat! However, in many applications,
we don't know the frequency of senses.

SENSEVAL and SENSEVAL-2 evaluated WSD in multiple languagéth various criteria, but generally using Word-
Net senses for English. The human ceiling for this task gar@nsiderably between words: probably partly because of
inherent differences in semantic distance between grofipses and partly because of WordNet itself, which some-
times makes very fine-grained distinctions. An interestiagant in SENSEVAL-2 was to do one experiment on WSD
where the disambiguation was with respect to uses requiififigrent translations into Japanese. This has the advan-
tage that it is useful and relatively objective, but somesrthis task requires splitting terms which aren’t polysaso

in English (e.g.water— hot vs cold). Performance of WSD on this task seems a bit ibittde the general WSD
task.

6.13 Further reading

J&M go into quite a lot of detail about compositional semesiincluding underspecification.
WordNet is freely downloadable: the website has pointeseteral papers which provide a good introduction.

For a lot more detail of WSD than provided by J&M, see Manning 8chitze who have a very detailed account of
WSD and word-sense induction:

Manning, Christopher and Hinrich Siatze (1999),Foundations of Statistical Natural Language ProcessiktjT
Press

Yarowsky's paper is well-written and should be understédheta

Yarowsky, David (1995)
Unsupervised word sense disambiguation rivalling supeyimethods
Proceedings of the 33rd Annual Meeting of the AssociatisrCiomputational Linguistics (ACL-95) MIT, 189-196

Like many other recent NLP papers, this can be downloadedwia.citeseer.com

57

7 Lecture 7: Discourse

Up to now, | have been discussing sentences and parts ohsestéut utterances are always understood in a particular
context. Context-dependent situations include:

1. Referring expressions: pronouns, definite expressitms e

2. Universe of discourseevery dog barkeddoesn’t mean every dog in the world but only every dog in some
explicit or implicit contextual set.

3. Responses to questions, etc: only make sense in a covithgtcame to the party? Not Sandy.

4. Implicit relationships between eventdax fell. John pushed him-the second sentence is (usually) understood
as providing a causal explanation.

In the first part of this lecture, | give a brief overview difetorical relationswhich can be seen as structuring text
at a level above the sentence. I'll then go on to talk aboutpamécular case of context-dependent interpretation —
anaphor resolution. | will describe an algorithm for anaptesolution which uses a relatively broad-coverage shallo
parser and then discuss a variant of it that relies on PO@ftg@gnd regular expression matching rather than parsing.

7.1 Rhetorical relations and coherence
Consider the following discourse:
Max fell. John pushed him.

This discourse can be interpreted in at least two ways:

1. Max fell because John pushed him.

2. Max fell and then John pushed him.

This is yet another form of ambiguity: there are two diffar@mterpretations but there is no syntactic or semantic
ambiguity in the interpretation of the individual sentesicEhere seems to be an implicit relationship between the two
original sentences: discourse relatioror rhetorical relation (I will use the terms interchangeably here, though differ-
ent theories use different terminology, and rhetoricadtieh tends to refer to a more surfacy concept than discourse
relation.) In 1 the link is a form of explanation, but 2 is arample of narration. Theories of discourse/rhetorical
relations reify link types such d@xplanationandNarration. The relationship is made more explicitin 1 and 2 than it
was in the original sentenceecausendand thenare said to beue phrases

7.2 Coherence
Discourses have to have connectivity to be coherent:

Kim got into her car. Sandy likes apples.

Both of these sentences make perfect sense in isolatiotaken together they are incoherent. Adding context can
restore coherence:

Kim got into her car. Sandy likes apples, so Kim thought slggido the farm shop and see if she could
get some.

The second sentence can be interpreted as an explanatios fofst. In many cases, this will also work if the context
is known, even if it isn’t expressed.

Strategic generation requires a way of implementing cafere For example, consider a system that reports share
prices. This might generate:

58

In trading yesterday: Dell was up 4.2%, Safeway was down 3E2P6was up 3.1%.
This is much less acceptable than a connected discourse:

Computer manufacturers gained in trading yesterday: Dadl up 4.2% and HP was up 3.1%. But retalil
stocks suffered: Safeway was down 3.2%.

Herebutindicates a Contrast. Not much actual information has bdde@(assuming we know what sort of company
Dell, HP and Safeway are), but the discourse is easier tovfoll

Discourse coherence assumptions can affect interpratatio
John likes Bill. He gave him an expensive Christmas present.

If we interpret this as Explanation, then ‘he’ is most liké@ifl. But if it is Justification (i.e., the speaker is justifig
the first sentence), then ‘he’ is John.

7.3 Factors influencing discourse interpretation

1. Cue phrases. These are sometimes unambiguous, but atlyusig.andis a cue phrase when used in sentential
or VP conjunction.

2. Punctuation (or the way the sentence is said — intonationasd text structure. For instance, parenthetical
information cannot be related to a main clause by Narratibis (generally Explanation), but a list is often
interpreted as Narration:

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

Similarly, enumerated lists can indicate a form of narnmatio
3. Real world content:
Max fell. John pushed him as he lay on the ground.
4. Tense and aspect.

Max fell. John had pushed him.
Max was falling. John pushed him.

It should be clear that it is potentially very hard to ideptifhetorical relations. In fact, recent research that sympl
uses cue phrases and punctuation is proving quite promi$inig can be done by hand-coding a series of finite-state
patterns, or by a form of supervised learning.

7.4 Discourse structure and summarization

If we consider a discourse relation as a relationship batvwee phrases, we get a binary branching tree structure for
the discourse. In many relationships, such as Explanatioe,phrase depends on the other: e.g., the phrase being
explained is the main one and the other is subsidiary. Inviectan get rid of the subsidiary phrases and still have
a reasonably coherent discourse. (The main phrase is soegetalled thenucleusand the subsidiary one is the
satellite) This can be exploited in summarization.

For instance:

We get a binary branching tree structure for the discounsendny relationships one phrase depends on
the other. In fact we can get rid of the subsidiary phrasesstiithave a reasonably coherent discourse.

Other relationships, such as Narration, give equal weigbbth elements, so don't give any clues for summarization.

Rather than trying to find rhetorical relations for arbifraext, genre-specific cues can be exploited, for instance fo
scientific texts. This allows more detailed summaries todsestructed.

59

7.5 Referring expressions

I'll now move on to talking about another form of discourserusture, specifically the link between referring expres-
sions. The following example will be used to illustrate reifey expressions and anaphora resolution:

Niall Ferguson is prolific, well-paid and a snappy dresseéepBen Moss hated him — at least until he
spent an hour being charmed in the historian’s Oxford st(glyote taken from the Guardian)

Some terminology:

referent a real world entity that some piece of text (or speech) refer®.g., the two people who are mentioned in
this quote.

referring expressions bits of language used to perform reference by a speakehemaragraph abovaliall Fergu-
son himandthe historianare all being used to refer to the same person (tuegfe)).

antecedent the text evoking a referenhliall Fergusonis the antecedent dfim andthe historian

anaphora the phenomenon of referring to an antecedairh andthe historianareanaphoricbecause they refer to a
previously introduced entity.

What abouta shappy dress@r Traditionally, this would be described as predicativeat th, it is a predicate, like an
adjective, rather than being a referring expression itself

Generally, entities are introduced in a discourse (tedilyicevoked by indefinite noun phrases or proper names.
Demonstratives (e.gthis) and pronouns are generally anaphoric. Definite noun phi@seoften anaphoric (as above),
but often used to bring a mutually known and uniquely ideali entity into the current discourse. etbe president

of the US

Sometimes, pronouns appear before their referents amdinted: this icataphora E.g., at the start of a discourse:
Although she couldn’t see any dogs, Kim was sure she’'d heanldriy.

both cases ofherefer to Kim - the first is aataphot

7.6 Pronoun agreement

Pronouns generally have to agree in number and gender wathdahtecedents. In cases where there’s a choice of
pronoun, such ale/'sheor it for an animal (or a baby, in some dialects), then the choisddae consistent.

4) A little girl is at the door — see what she wants, please?
(5) My dog has hurt his foot — he is in a lot of pain.
(6) * My dog has hurt his foot — it is in a lot of pain.

Complications include the gender neuttaty(some dialects), use tfieywith everybodygroup nouns, conjunctions
and discontinuous sets:

@) Somebody’s at the door — see what they want, will you?

(8) | don’t know who the new teacher will be, but I'm sure thegake changes to the course.
(9) Everybody’s coming to the party, aren’t they?

(20) The team played really well, but now they are all vergdir

(12) Kim and Sandy are asleep: they are very tired.

(12) Kim is snoring and Sandy can't keep her eyes open: treepath exhausted.

60

7.7 Reflexives
(13) John cut himself shaving. (himself = John, subscript notation used to irndidais)

(14) # John cut him; shaving. (i j — a very odd sentence)

The informal and not fully adequate generalisation is th#iekive pronouns must be co-referential with a preceding
argument of the same verb (i.e., something it subcategoft while non-reflexive pronouns cannot be. In linguis-
tics, the study of inter-sentential anaphora is knowhiading theory | won't discuss this further, since the constraints
on reference involved are quite different from those witldrsentential anaphora.

7.8 Pleonastic pronouns

Pleonastic pronouns are semantically empty, and don’t:refe

(15) Itis snowing

(16) It is not easy to think of good examples.
a7) It is obvious that Kim snores.

(18) It bothers Sandy that Kim snores.

Note also:

(29) They are digging up the street again

This is an (informal) use ofheywhich, though probably not technically pleonastic, doesipparently refer to a
discourse referent in the standard way (they = ‘the autiesif??).

7.9 Salience

There are a number of effects which cause particular promefaments to be preferred, after all the hard constraints
discussed above are taken into consideration.

Recency More recent referents are preferred. Only relatively rélgaeferred to entities are accessible.
(20) Kim has a fast car. Sandy has an even faster one. Leediki#ve it.
it preferentially refers to Sandy’s car, rather than Kim'’s.
Grammatical role Subjects> objects> everything else:
(22) Fred went to the Grafton Centre with Bill. He bought a CD.
heis more likely to be interpreted as Fred than as Bill.
Repeated mention Entities that have been mentioned more frequently are ezfe

(22) Fred was getting bored. He decided to go shopping. Bilitto the Grafton Centre with Fred. He
bought a CD.

He=Fred (maybe) despite the general preference for sghject
Parallelism Entities which share the same role as the pronoun in the sarhefsentence are preferred:
(23) Bill went with Fred to the Grafton Centre. Kim went withmhto Lion Yard.

Him=Fred, because the parallel interpretation is preterre

61

Coherence effectsThe pronoun resolution may depend on the rhetorical/dissorelation that is inferred.
(24) Bill likes Fred. He has a great sense of humour.

He = Fred preferentially, possibly because the second isemiis interpreted as an explanation of the first, and
having a sense of humour is seen as a reason to like someone.

7.10 Algorithms for resolving anaphora

Most work has gone into the problem of resolving pronounregfes. As well as discourse understanding, this is often
important in MT. For instance, Englishhas to be resolved to translate into German because Germmagmndramatical
gender (though note, if there are two possible antecedeatdoth have the same gender, we probably do not need
to resolve between the two for MT). | will describe one appioto anaphora resolution and a modification of it that
requires fewer resources. However, note that this is justadgorithm — there are many other approaches.

7.11 Lappin and Leass (1994)

The algorithm relies on parsed text (from a fairly shalloweryw broad-coverage parser, which unfortunately isn’t
generally available). The text the system was developedestdd on was all from online computer manuals. The
following description is a little simplified:

The discourse model is a (rather crude) approximation td afsmncepts combined with measure of how salient each
concept currently is. It consists of a set of referring NRsged into equivalence classes (i.e., NPs which we hope
refer to the same concept), each class having a global saliedue.

For each sentence:

Divide by two the global salience factors for each exgtguivalence class.
Identify referring NPs (i.e., exclude pleonastietc)
Calculate global salience factors for each NP (see below)

Update the discourse model with the referents and theiraylsalience scores.

o &~ 0w nhoPRE

For each pronoun:

(a) Collect potential referents (cut off is four sentencasi).

(b) Filter referents according to binding theory and agreehconstraints (e.g., remove referents that are plural
if the pronoun igt). To do this step properly for gender information requiresdal resources.

(c) Calculate the per pronoun adjustments for each rengieiferent (see below).

(d) Selectthe referent with the highest salience value$aduivalence class plus its per-pronoun adjustment.
In case of a tie, prefer the closest referent in the string.

(e) Add the pronoun in to the equivalence class for that egfierand increment the salience factor by the
non-duplicate salience factors pertaining to the pronoun.

The salience factors were determined experimentally. &lshlience factors mostly take account of grammatical
function — they encode the hierarchy mentioned previoulhey give lowest weight to an NP in an adverbial position,
such as inside an adjunct PP. This is achieved by giving evanyadverbial an extra positive score, because we want
all global salience scores to be positive integers (theppanoun adjusted scores may be negative). Embedded NPs
are also downweighted by giving a positive score to non-eldbd NPs. Recency weights mean that intra-sentential
binding is preferred.

62

Global salience factors.

recency 100
subject 80
objects of existential sentences 70
direct object 50
indirect object 40
oblique complement 40
non-embedded noun 80
other non-adverbial 50

Some more detailed explanation of the above weights:

1. Recency is added for the current sentence.
2. ‘Existential objects’ refers to NPs which are in syntacbject position in sentences such as:
There is a cat in the garden.

Herea catis syntactically an object, but functions more like a subjadile there which is syntactically the
subject, does not refer.

3. Anindirect object is the beneficiary in verb phrases ke a present to Sandy give Sandy a present

4. An obligue complement is a complement (roughly speakdngpmplement is something which is required by
the verb which is not the subject) other than a noun phrasedineict object. For instance, Kim put the book
on the tableon the tables an oblique complement.

5. A noun is embedded if it is part of another noun phrase. f&tance, ifThe man with a white suit was asleep
a white suitis embedded.

6. An equivalence class can only get the weight for a fact@mequer sentence. For examples, if there are two
references to the same entity in a sentence, the recencywieignly added once. This means that repeated
mention does increase weight, but only if the additiona¢mefices occur in a different syntactic environment.

The per-pronoun modifications have to be calculated each éirrandidate pronoun is being evaluated. The modifi-
cations strongly disprefer cataphora and slightly preééemrents which are ‘parallel’, where parallel here just mea
having the same syntactic role.
Per pronoun salience factors:

cataphora -175

same role 35

Applying this to the sample discourse:

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour bleargned in the historian’s Oxford study.

Assume we have processed all the anaphora up to ‘—' and areesmlvinghe Discourse referents:
N Niall Fergusonhim 435
S Stephen Moss 310
H the historian 100
@) Oxford study 100

| am assuming thaa snappy dressds ignored, although it might actually be treated as anogmtential referent,
depending on the parser.

N has score 155 + 280 ((subject + non-embedded + non-adiierbéeency)/2 + (direct object + non-embedded +
non-adverbial + recency))

S has score 310 (subject + non-embedded + non-adverbiabhagc+ same role per-pronoun 35345

H has score 100 (recency) - 175 (cataphetay5

O has score 100 (recency) - 175 (cataphefay5

63

So in this case, the wrong candidate wins.

We now addheto the discourse referent equivalence class. The additweight is only 80, for subject, because we
don't add weights for a given factor more than once in a sexen
N Niall Ferguson him, he 515

Note that the wrong result is quite plausible:

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an afterneiog nterviewed at very short notice.

The overall performance of the algorithm reported by Lapgpid Leass was 86% but this was on computer manuals
alone. Their results can'’t be directly replicated, due trthise of a proprietary parser, but other experiments sstgge
that the accuracy on other types of text could be lower.

7.12 Anaphora for everyone

It is potentially important to resolve anaphoric expressiceven for ‘shallow’ NLP tasks, such as Web search, where
full parsing is impractical. An article which mentions thame ‘Niall Ferguson’ once, but then has multiple uses of
‘he’, ‘the historian’ etc referring to the same person is molevant to a search for ‘Niall Ferguson’ than one which
just mentions the name once. It is therefore interestingéovehether an algorithm can be developed which does not
require parsed text. Kennedy and Boguraev (1996) descriagiant of Lappin and Leass which was developed for
text which had just been tagged for part-of-speech.

The input text was tagged with the Lingsoft tagger (a verylgecision and recall tagger that uses manually developed
rules: sednttp://www.lingsoft.fi/demos.html). Besides POS tags, this gives some grammatical function
information: e.g., it notates subjects (for English, tlsigjuite easy to do on the basis of POS-tagged text with some
simple regular expressions). The text was then run throusgrias of regular expression filters to identify NPs and
mark pleonastidt. Heuristics defined as regular expressions are also usetktify the NP’s grammatical role.
Global salience factors are as in Lappin and Leass, but Kignaxed Boguraev add a factor for context (as determined
by a text segmentation algorithm). They also use a distamtbf for possessive NPs.

Because this algorithm doesn’t have access to a parsemgilementation of binding theory has to rely on heuristics
based on the role relationships identified. Otherwise, kperghm is much the same as for Lappin and Leass.

Overall accuracy is quoted as 75%, measured on a mixturerokgdso it isn’t possible to directly compare with
Lappin and Leass, since that was only tested on computeraharfarmation). Few errors were caused by the lack
of detailed syntactic information. 35% of errors were caligg failure to identify gender correctly, 14% were caused
because quoted contexts weren’t handled.

7.13 Another note on evaluation

The situation with respect to evaluation of anaphora regmlus less satisfactory than POS tagging or WSD. This is
partly because of lack of evaluation materials such as iexépntly marked-up corpora. Another factor is the diffigult

in replication: e.g., Lappin and Leass’s algorithm can’fidly replicated because of lack of availability of the pars
This can be partially circumvented by evaluating algorishon treebanks, but existing treebanks are relatively dichit

in the sort of text they contain. Alternatively, differerdngers can be compared according to the accuracy with which
they supply the necessary information, but again this regua suitable testing environment.

7.14 Further reading

J&M discuss the most popular approach to rhetorical refatidhetorical structure theorpr RST. | haven't discussed

it in detail here, partly because | find the theory very uncledtempts to annotate text using RST approaches tend
not to yield good interannotator agreement (see commentyvaluation in lecture 3), although to be fair, this is a
problem with all approaches to rhetorical relations. Treedsgsion of the factors influencing anaphora resolution and
the description of the Lappin and Leass algorithm that I'weg here are partly based on J&M’s account. (The second
edition of J&M omits Lappin and Leass.)

64

The references below are for completeness rather than stegheeading:
Lappin, Shalom and Herb Leass (1994)

An algorithm for pronominal anaphora resolutipn

Computational Linguistics 20(4), 535-561

Kennedy, Christopher and Branimir Boguraev (1996)

Anaphora for everyone: pronominal anaphora resolutiorhwiit a parser

Proceedings of the 16th International Conference on Coatjpuial Linguistics (COLING 96), Copenhagen, Den-
mark, 113-118

65

8 Lecture 8: Applications

This lecture considers three applications of NLP: machiaadlation, spoken dialogue systems and email response.
This isn't intended as a complete overview of these aredgubtias a way of describing how some of the techniques
we've seen in the previous lectures are being used in cusgetéms or how they might be used in the future. (Not all
of these applications will be covered in the lecture.)

Machine translation

8.1 Issues for MT

MT is challenging partly because languages differ in manysyancluding:

e morphology: e.g., English compared to Inuit, mentionegar?

e systematic polysemy / zero derivatidi?2(2,§6.8) For instance French doesn’'t have the noun-to-verbersion
process that allowsammerto be used as a verb in English.

(25) hammer a nail into a frame

(26) enfoncer un clou dans un cadre avec un marteau
Literally: drive a nail into a frame with a hammer

e compounds: noun compounding is very free in German, somewhticted in English (e.g., Germ&dermin-
vorschlagtranslates troposal for a meeting very restricted in French and Italian.

e word order and use of case: English has quite fixed word orddraavery limited case system, Latin has
relatively free word order and an elaborate case system

e determiners: Japanese and Chinese do not have the equiviieea

e counting: Japanese and Chinese cisssifiers(cf Englishthree head of cattlethree pieces of furniturghree
heads of lettuce

e systematic ‘mismatches’: e.g., English manner of movemeriis with completed path are generally translated
into Romance languages (e.g., Spanish) with path verbsyduer adverbial.

(27) Kim swam across the river

(28) Kim crus el io nadando
Literally: Kim crossed the river swimming

e other mismatches in word meaning: e.g. Gerriiéald can be translated asoodor forestbut a small wood is
Waldchen e.g., the German words used for meetings:
Gespachtranslates atalk, conversation, discussipBesprechundranslates adiscussion, confereng8itzung
translates asonference, session

e multiword expressions;6.10). e.g.Unrat wittern, literally ‘to smell rubbish’, translated @e smell a rat nicht
zu Unrechtliterally ‘not to wrong’, translated asot without good reasarHandling multiword expressions is a
major problem for MT.

In some of these cases, information that is implicit in omglaage has to be explicit in another. For instance, when
translating from Japanese to English, we need to deciddvdaiterminer would be most appropriate (although missing
out the determiner is acceptable for rough translation).

The other main problem is ambiguity. Syntactic ambigujtsgh as PP-attachment, do not always need to be resolved
when translating, if the languages are structurally simfar instance, when translating between French and HEnglis

it is often possible to simply keep the PPs in the same relatider. Lexical ambiguity is sometimes the same across
language pairs, but generally it is necessary to disambégu@hus all MT systems require some form of WSD:

66

potentially big improvements in performance could be madihis area. One difficulty, however, is that MT systems
often have to operate with rather small amounts of text, tvkimits the availability of cues. Another issue is that it

is necessary to ‘disambiguate’ words which a native speakedd probably claim are unambiguous (e.g. German
Wald).

An anaphora resolution module is needed when translatitvgdes languages like English and German, since English
it can correspond to Germaat, sie or es for instance. But the resolution should be done on an ‘asied’ basis,
since in some contexts there is no ambiguity.

In the limit, MT is Al-complete: even if we consider techriitaxts rather than literary works: it would be necessary
to understand the text perfectly to translate it perfectly.

Practically, useful results can be obtained, especialigystems which have good lexicons for particular types xif te
(e.g., business letters).

8.2 Methodology for MT
There are four main classical approaches to MT:

e Direct transfer: map between morphologically analysedcstrres.
e Syntactic transfer: map between syntactically analysedtres.

e Semantic transfer: map between semantic structures sutle asedicate calculus representations discussed in
lecture 6.

¢ Interlingua: construct a language-neutral representdtimm parsing and use this for generation.

The standard illustration of the different classical agites to MT is the Vauquois triangle. This is supposed to
illustrate the amount of effort required for analysis anderation as opposed to transfer in the different approaches
e.g., direct transfer requires very little effort for ansikyor generation, since it simply involves morphologicalgsis,

but it requires more effort on transfer than syntactic or astit transfer do.

Interlingua

semantic transfer

analysis generation

syntactic transfer

direct

Source Language Target Language

The Vauquois triangle is potentially misleading, becatiseggests a simple trade-off in effort. It is at least as gilau
ble that the correct geometry is as below (the Vauquois tedgiunnel with very long spout):

67

Language Neutral Utterance Representation

resolved logical form

semantic
transfer

_— >

underspecified semantics
syntactic transfer

direct

Source Language Target Language

This diagram is intended to indicate that the goal of prodg@ language-neutral representation may be extremely
difficult!

Statistical MT involves learning translations fronparallel corpus i.e. a corpus consisting of multiple versions of

a single text in different languages. The classic work wasedon the proceedings of the Canadian parliament (the
Canadian Hansard). It is necessary to align the texts, $aéméences which are translations of each other are paired:
this is non-trivial (the mapping may not be one-to-one). Bhginal statistical MT approach can be thought of as
involving direct transfer, with some more recent work begigser to syntactic transfer, but on the basis of phrases
rather than full sentences. This sort of approach handlesramn multiword expressions well.

Example-based MT involves using a database of existinglkution pairs and trying to find the closest matching
phrase. It is very useful as part of machine-aided tramsidiie., to help a human translator).

Some deployed MT systems use a form of semantic transfesybtdctic transfer is more common. In these systems,
generation is usually a form of text reconstruction, rathan ‘proper’ tactical generation. Direct transfer is uasc
fallback if syntactic analysis fails. Systran uses a migtof direct transfer and syntactic transfer: it works readiy
well because it has an enormous lexicon of phrases. StalisdiT is currently the commonest approach in the
research community, followed by semantic transfer. Goagrutting a great deal of effort into building a statistical
MT system, but currently (Sept 2007), most MT on Google pagesll based on Systran, with only Chinese-English
and Arabic-English using the SMT system. Systran and otbemaercial symbolic systems still tend to outperform
SMT in evaluations.

Dialogue systems

8.3 Human dialogue basics

Turn-taking: generally there are points where a speaker invites somderdceetake a turn (possibly choosing a
specific person), explicitly (e.g., by asking a questiondtiierwise.

Pauses: pauses between turns are generally very short (a few hundiideconds, but highly culture specific).
Longer pauses are assumed to be meaningful: example fromdoev(1983: 300)

A: Is there something bothering you or not? (1.0 sec pause)
A: Yes or no? (1.5 sec pause)

A: Eh?

B: No.

68

Turn-taking disruption is very difficult to adjust to. This evident in situations such as delays on phone lines
and people using speech prostheses, as well as slow aut@ystiéms.

Overlap: Utterances can overlap (the acceptability of this is diddedture specific but unfortunately humans tend to
interrupt automated systems — this is knowrbagge in.

Backchannel: Utterances likdJh-huh OK can occur during other speaker’s utterance as a sign thdidheer is
paying attention.

Attention: The speaker needs reassurance that the hearer is undargfpaging attention. Often eye contact is
enough, but this is problematic with telephone convergatiaark sunglasses, etc. Dialogue systems should
give explicit feedback.

Cooperativity: Because participants assume the others are cooperativgetwedfects such as indirect answers to
questions.

When do you want to leave?
My meeting starts at 3pm.

All of these phenomena mean that the problem of spoken dialagderstanding is very complex. This together with
the unreliability of speech recognition means that spokatogue systems are currently only usable for very limited
interactions.

8.4 Spoken dialogue systems

1. Single initiative systems (also known as system initeailystems): system controls what happens when.
System: Do you have your customer reference number? Plagises or no. User: Yes

Generally very limited: for instance, in the example abdwe system won't accept anything other théesor
No. So it wouldn’t accept don't think sa Designing such systems tends to involve HCI issues (péinsgéhe
user not to complicate things), rather than language tlaites.

2. Limited mixed-initiative:

System: When do you want to leave?
User: the twenty-third

OR

User: the morning of the twenty-third

The user can (optionally) specify two pieces of informatidonce.
3. True mixed initiative dialogue. Both participants camtrol the dialogue to some extent.

System: Which station do you want to leave from?
User: | don't know, tell me which station | need for Cambridge

The user has responded to a question with a question of thair thereby taking control of the dialogue.
Unfortunately, getting systems like this to work propeswery difficult and although research systems and a
small number of practical systems have been built, perfogeas often better if you don’t allow this sort of
interaction. Most ‘mixed initiative’ systems are what | leasalled ‘limited mixed initiative’ above.

4. Dialogue tracking. Explicit dialogue models may impr@arformance in other tasks such as spoken language
machine translation or summarising a human-to-human giiedo Generally it's less critical to get everything
right in such cases, which means broader domains are paltgméalistic.

The use of FSAs in controlling dialogues was mentioned itutec2. Dialogue management in single-initiative SDS
typically involves a finite-state dialogue manager whigfitly controls the dialogue: at each state it prompts user fo
specific information. There is a separate recognition granfor every state.

In general, approaches to SDS grammars include:

69

e Custom grammars: FSAs or simple CFGs (compiled to FSAs)dt state in a dialogue.
Feature structure grammar compiled to CFG/FSA: e.g., §8ar{used on the International Space Station).

e Statistical language modelling plus robust customisechgrars or keyword spotting
e Statistical language modelling plus grammar induction
e Statistical language modelling plus general purpose gamm
One refinement: a database may help specify the grammars: e.g
1. prompt for post code
2. get 100 items on n-best list from recogniser
3. use first line of addresses from these to build a FS grammar
4. prompt for ‘first line’ of address
5. disambiguate post code

In all approaches, the confirmation strategy is very impurta.g., does the system repeat everything it's understood
or not?

Initial versions of simple SDSs can now be built in a few wee&mg toolkits developed by Nuance and other com-
panies: CFGs are generally hand-built for each dialogue.sfis is time-consuming, but testing the SDS with real
users and refining it to improve performance is probably aaserious bottleneck in deploying systems.

8.5 Schematic spoken dialogue system architecture

DIALOGUE MANAGER

DB

slot filling

PARSING: turn-specific grammars ?iﬁlriendgsvl\giz rggggjcehd
grdimmar .
copstraints constraints
Y
SPEECH RECOGNITION TEXTT
| N
user input speech output

70

Email response using deep grammars

8.6 A large coverage grammar

The email response application that | mentioned in lecturéght be addressed using domain-specific grammars, but
unlike in dialogue systems, it is much more difficult to malke limitations in the grammar obvious to the user (and if
the coverage is very limited a menu-driven system might welk better). It is too expensive to manually build a new
broad-coverage grammar for each new application and grarimdaction is generally not feasible because the data
that is available is too limited. The ERG constraint-basedrgnar mentioned in lecture 5 has been used for parsing
in commercially-deployed email response systems. The gr@mvas slightly tailored for the different domains, but
this mostly involved adding lexical entries. The ERG hadvjmesly been used on the Verbmobil spoken language
MT task: the examples below are taken from this. Coveragean@sd 80% on Verbmobil.

Indication of coverage of the ERG:

1. The week of the twenty second, | have two hour blocks dvigla

2. Ifyou give me your name and your address we will send yotithet.

3. Okay, actually | forgot to say that what we need is a two hmaeting.

4. The morning is good, but nine o’clock might be a little tatel, as |
have a seminar at ten o’clock.

5. Well, I am going on vacation for the next two weeks, so trst fiay
that | would be able to meet would be the eighteenth

6. Did you say that you were free from three to five p.m. on Wedag,
the third, because if so that would be a perfect time for me.

Ambiguity and efficiency on a test suite of 1200 naturally weing sentences (with the PET system on an 1.6GHz

Centrino):
Length (words)| Passive edges Analyses| First parse (sec) All parses including unpacking (sec)
30-34 56138 19970 1.85 6.26
25-29 40234 12661 1.53 4.54
20-24 11506 3388 0.71 1.43
15-19 4244 944 0.39 0.61
10-14 1142 81.0 0.16 0.20
5-9 525 71.9 0.05 0.07
04 91 3.68 0.01 0.01

The ERG and other similar systems have demonstrated tisgidissible to use a general purpose grammar in multiple
applications. However, it is crucial that there is a fallbatrategy when a parse fails. For email response, the tlba
is to send the email to a human. Reliability of the automayestesn is extremely important: sending an inappropriate
response can be very costly.

8.7 Ordering electronic goods: examples of different procgsing stages

This section contains examples of different processingestahat are used in the ERG-based systems. The idea is to
indicate how some of the ideas in the lectures are used iipgabut you are not expected to follow the details.

From amel Mon Jan 27 22:37:34 PST 2003
From: amel@yy.com

Subject: OrderCancellation # 53000
MIME-Version: 1.0

Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 8bit

Message-ID: <1043735854@foo.yy.com>

| talked with one of your CSR’s and she said that she would canc el
my order. | am writing to check if it has in fact been cancelled

71

Processing stages (see the diagram of a natural languagko# to a knowledge base from lecture 1):

1. Process email headers, tokenise email body. (i.e., a&paords, detect non-words), run automatic spelling
correction (maybe).

2. Morphology and lexical lookup

3. Parse with general typed feature structure grammarh&stic parse selection (trained on treebank). Semantics
in TFS.

4. DB query extracted from semantics

Morphology and lexical lookup

Inflected terms in the text:

| talk+PAST_VERB with one of your CSR+SING_NOUN ’'s and she
say+PAST_VERB that she would cancel+BSE_VERB my order+SIN G_NOUN.
| am writing+PRP_VERB to check+BSE_VERB if it has in fact

been cancelled+PASSIVE.

A morphological rule from the ERG:

prp_verb_infl_rule :=
%suffix (tlvic !tiviclcing) (* ing) (e ing) (ee eeing) (ie ying)

lex_rule_infl_affixed &
[ND-AFF +,
SYNSEM.LOCAL prp_verb 1].
An irregular entry:
said PAST_VERB say
A multiword entry:
in_fact_advl := adv_vp_aux_le &
[STEM < "in", "fact" >,

SYNSEM [LKEYS.KEYREL.PRED " _in+fact_a_rel",
PHON.ONSET voc] 1.

Semantics

This is the semantics fofour order was cancellegince the semantics for the full email is very long.

<mrs>
<var vid='h1/>
<ep><pred>prop_m_rel</pred><var vid="h1'/>

<fvpair><rargname>MARG</rargname><var vid="h3'/></fv pair>
<fvpair><rargname>PSV</rargname><var vid="x4'/></fvp air>
<fvpair><rargname>TPC</rarghame><var vid="u5'/></fvp air></ep>
<ep><pred>def_explicit_q_rel</pred><var vid="h6'/>
<fvpair><rargname>ARGO</rargname><var vid="x4'/></fv pair>
<fvpair><rargname>RSTR</rargname><var vid="h8'/></fv pair>
<fvpair><rargname>BODY</rargname><var vid="h7'/></fv pair></ep>

72

<ep><pred>pro_poss_rel</pred><var vid="h9'/>
<fvpair><rargname>ARGO</rargname><var vid="i11'/></f
<fvpair><rargname>ARG1</rargname><var vid="x10'/></f
<fvpair><rargname>ARG2</rarghame><var vid="x4'/></fv
<ep><pred>pronoun_q_rel</pred><var vid="h12'/>
<fvpair><rargname>ARGO0</rargname><var vid="x10"/></f
<fvpair><rargname>RSTR</rargname><var vid="h13/></f
<fvpair><rargname>BODY</rargname><var vid="h14'/></f
<ep><pred>pron_rel</pred><var vid="h15/>
<fvpair><rargname>ARGO</rargname><var vid="x10'/></f
<ep><pred>_order_n_rel</pred><var vid="h9'/>
<fvpair><rargname>ARGO</rargname><var vid="x4'/></fv
<fvpair><rargname>ARG1</rargname><var vid='i16'/></f
<ep><pred>_cancel_v_rel</pred><var vid="h17’/>
<fvpair><rargname>ARGO</rargname><var vid='e2'/></fv
<fvpair><rargname>ARG1</rargname><var vid="i18/></f
<fvpair><rargname>ARG2</rargname><var vid="x4'/></fv
<hcons hreln="geq’><hi><var vid="h3/></hi>

<lo><var vid="h17'/></lo></hcons>

<hcons hreln="gqeq’><hi><var vid="h8/></hi>

<lo><var vid="h9'/></lo></hcons>

<hcons hreln="gqeq’><hi><var vid="h13/></hi>

<lo><var vid="h15/></lo></hcons>

</mrs>

KB connection and domain adaptation

vpair>
vpair>
pair></ep>

vpair>
vpair>
vpair></ep>

vpair></ep>

pair>
vpair></ep>

pair>
vpair>
pair></ep>

A big difficulty for email response is connecting the semanfproduced by the general purpose grammar to the
underlying knowledge base or database. This is expensiegrits of manpower, but does not require much linguistic
expertise. Hence, this sort of approach is potentially cencmlly viable for organisations that have to deal with
a lot of fairly routine email. Although tailoring the grammhby adding lexical entries is not too hard, it is much
more difficult to manually adjust the weights on grammar suded lexical entries so that the best parse is preferred:
automatic methods are definitely required here. Much lessitrg data is required to tune a grammar than to induce

one.

8.8 Further reading

J&M discuss MT and spoken dialogue systems.

73

A glossary/index of some of the terms used in the lectures

This is primarily intended to cover concepts which are nmemd in more than one lecture. The lecture where the
term is explained in most detail is generally indicated. dme cases, | have just given a pointer to the section in the
lectures where the term is defined. Note that IGE stand$lierinternet Grammar of English
(http://www.ucl.ac.uk/internet-grammar/home.htm). There are a few cases where this uses a term
in a slightly different way from these course notes: | haiedtto indicate these.

active chart See§4.10.

adjective See IGE or notes for prelecture exercises in lecture 3.

adjunct Seeargument and also IGE.

adverb See IGE or notes for prelecture exercises in lecture 3.

affix A morpheme which can only occur in conjunction with other pteemes (lecture 2).

Al-complete A half-joking term, applied to problems that would requirs@ution to the problem of representing the
world and acquiring world knowledge (lecture 1).

agreement The requirement for two phrases to have compatible valuegréonmatical features such as number and
gender. For instance, in Englistpgs barkis grammatical butlog barkanddogs barksare not. See IGE.
(lecture 5)

ambiguity The same string (or sequence of sounds) meaning differemgshContrasted withhagueness

anaphora The phenomenon of referring to something that was mentigmediously in a text. An anaphor is an
expression which does this, such as a pronoun{8ds.

antonymy Opposite meaning: such aananddirty (§6.5).

argument In syntax, the phrases which are lexically required to besgmé by a particular word (prototypically a
verb). This is as opposed &aljuncts, which modify a word or phrase but are not required. Fominsg, in:

Kim saw Sandy on Tuesday

Sandyis an argument budn Tuesdays an adjunct. Arguments are specified by siicategorizationof a verb
etc. Also see the IGE. (lecture 5)

aspect A term used to cover distinctions such as whether a verb sig@a event has been completed or not (as
opposed to tense, which refers to the time of an event). Rtamte she was writing a books she wrote a
book

backoff Usually used to refer to techniques for dealing with datasgrgess in probabilistic systems: using a more
general classification rather than a more specific one. Fiamte, using unigram probabilities instead of
bigrams; using word classes instead of individual wordst(iie 3).

baseline In evaluation, the performance produced by a simple systgainat which the experimental technique is
compared {3.6).

bidirectional Usable for both analysis and generation (lecture 2).

case Distinctions between nominals indicating their syntactie in a sentence. In English, some pronouns show a
distinction: e.g.sheis used for subjects, whilker is used for objects. e.gshe likes hewrs *her likes she
Languages such as German and Latin mark case much moreieghgns

ceiling In evaluation, the performance produced by a ‘perfect’@ys(such as human annotation) against which the
experimental technique is comparéd.6).

chart parsing Seet4.6.

74

Chomsky Noam Chomsky, professor at MIT. The founder of modern thesooif syntax in linguistics.

closed classRefers to parts of speech, such as conjunction, for whidchalnembers could potentially be enumerated
(lecture 3).

coherence See§7.2
collocation See§6.10
complement For the purposes of this course, amgument other than the subject.

compositionality The idea that the meaning of a phrase is a function of the mgaufi its parts. compositional
semanticsis the study of how meaning can be built up by semantic ruleglwhirror syntactic structure
(lecture 6).

constituent A sequence of words which is considered as a unit in a paatigrammar (lecture 4).

constraint-based grammar A formalism which describes a language using a set of indagetty stated constraints,
without imposing any conditions on processing or procegsiaer (lecture 5).

context The situation in which an utterance occurs: includes priterances, the physical environment, background
knowledge of the speaker and hearer(s), etc etc.

corpus A body of text used in experiments (plu@rpora). See§3.1.

cue phrasesPhrases which indicates particuthetorical relations.

denominal Something derived from a noun: e.g., the veahgois a denominal verb.
derivational morphology See§2.2

determiner See IGE or notes for prelecture exercises in lecture 3.

deverbal Something derived from a verb: e.g., the adjecsueprised

direct object See IGE. Contrashdirect object.

discourse In NLP, a piece of connected text.

discourse relations Seerhetorical relations.

domain Not a precise term, but | use it to mean some restricted sat@fledge appropriate for an application.
error analysis In evaluation, working out what sort of errors are found fajigen approacht.6).
expletive pronoun Another term fompleonastic pronoun see§7.8.

feature structure See Lecture 5.

full-form lexicon A lexicon where all morphological variants are explicitigted (lecture 2).

generation The process of constructing strings from some input reptasien. With bidirectional grammars using
compositional semantics, generation can be splitstrtategic generation which is the process of deciding on
thelogical form (also known agext planning), andtactical generationwhich is the process of going from the
logical form to the string (also known agalization). §6.2.

generative grammar The family of approaches to linguistics where a natural leagg is treated as governed by rules
which can produce all and only the well-formed utterances:ture 4.

genre Type of text: e.g., newspaper, novel, textbook, lecturesascientific paper. Note the differencedimmain
(which is about the type of knowledge): it's possible to htesds in different genre discussing the same domain
(e.g., discussion of human genome in newspaper vs textt®plyper).

75

grammar Formally, in the generative tradition, the set of rules dmgllexicon. Lecture 4.

head In syntax, the most important element of a phrase.

hearer Anyone on the receiving end of an utterance (spoken, writesigned).§1.3.

homonymy Instances opolysemywhere the two senses are unrelatggl§).

hyponymy An ‘IS-A relationship §6.4) More general terms alg/pernyms, more specifityponyms.

indirect object The beneficiary in verb phrases ligéve a present to Sandy give Sandy a presenin this case the
indirect object isSandyand thedirect object is a present

interannotator agreement The degree of agreement between the decisions of two or monats with respect to
some categorisatior33.6).

language model A term generally used in speech recognition, for a statistitodel of a natural language (lecture 3).
lemmatization Finding the stem and affixes for words (lecture 2).

lexical ambiguity Ambiguity caused because of multiple senses for a word.

lexicon The part of an NLP system that contains information abouviddal words (lecture 1).

linking Relating syntax and semantics in lexical entrig&).

local ambiguity Ambiguity that arises during analysis etc, but which will lesolved when the utterance is com-
pletely processed.

logical form The semantic representation constructed for an uttera6cE)(

meaning postulatesinference rules that capture some aspects of the meaningofca
meronymy The ‘part-of’ lexical semantic relatior$6.5).

morpheme Minimal information carrying units within a worcg.1).

morphology See§l.2

MT Machine translation

multiword expression A conventional phrase that has something idiosyncraticbib@and therefore might be listed
in a dictionary.

mumble input Any unrecognised input in a spoken dialogue system (le@ure

n-gram A sequence of. words §3.2).

named entity recognition Recognition and categorisation of person names, namesoéql dates etc (lecture 4).
noun See IGE or notes for prelecture exercises in lecture 3.

noun phrase (NP) A phrase which has a noun as syntattad See IGE.

ontology In NLP and Al, a specification of the entities in a particulamn@hin and (sometimes) the relationships
between them. Often hierarchically structured.

open classOpposite oftlosed class
orthographic rules spelling rules(§2.3)

overgenerate Of a grammatr, to produce strings which are invalid, e.g.abee they are not grammatical according
to human judgements.

76

packing See§4.9

passive chart parsing Seet4.7

parse tree Seet4.4

part of speech The main syntactic categories: noun, verb, adjective, dxlygeposition, conjunction etc.

part of speech tagging Automatic assignment of syntactic categories to the wands fext. The set of categories
used is actually generally more fine-grained than traditigrarts of speech.

pleonastic Non-referring (esp. of pronouns): sge.8
polysemy The phenomenon of words having different sen§és3)).
pragmatics See§l.2

predicate In logic, something that takes zero or more arguments andne truth value. (Used in IGE for the verb
phrase following the subject in a sentence, but | don’t uaetdrminology.)

prefix An affix that precedes thetem

probabilistic context free grammars (PCFGs) CFGs with probabilities associated with rulest(liec4).
realization Another term fortactical generation— seegeneration

referring expression See§7.5

relative clause See IGE.
A restrictive relative clauseis one which limits the interpretation of a noun to a subseg: the students who
sleep in lectures are obviously overworkirgfers to a subset of students. Contrash-restrictive, which is a
form of parenthetical comment: e.the students, who sleep in lectures, are obviously ovelngrkeans all
(or nearly all) are sleeping.

selectional restrictions Constraints on the semantic classes of arguments to verhig.et, the subject ahink is
restricted to being sentient). The tes@lectional preferenceas used for non-absolute restrictions.

semantics See§1.2
sign As used in lecture 5, the bundle of properties representingrd or phrase.

smoothing Redistributing observed probabilities to allow fgparse data especially to give a non-zero probability
to unseen events (lecture 2).

sparse data Especially in statistical techniques, data concerning exents which isn’t adequate to give good proba-
bility estimates (lecture 2).

speaker Someone who makes aterance (§1.3).

spelling rules §2.3

stem A morphemewhich is a central component of a word (contraffix). §2.1.
stemming Strippingaffixes (se&2.4).

strong equivalence Of grammars, accepting/rejecting exactly the same stramgsassigning the same bracketings
(contrastweak equivalencg. Lecture 4.

structural ambiguity The situation where the same string corresponds to mubigleketings.
subcategorization The lexical property that tells us how maaggumens a verb etc can have.

suffix An affix that follows thestem

77

summarization Producing a shorter piece of text (or speech) that captheeegdsential information in the original.
synonymy Having the same meaningg.5).
syntax Seegl.2

taxonomy Traditionally, the scheme of classification of biologicedanisms. Extended in NLP to mean a hierarchical
classification of word senses. The teomtology is sometimes used in a rather similar way, but ontologied ten
to be classifications of domain-knowledge, without neadlgdaaving a direct link to words, and may have a
richer structure than a taxonomy.

template In feature structure grammars, see 5.6
tense Past, present, future etc.
text planning Another term forstrategic generation seegeneration

training data Data used to train any sort of machine-learning system. Mesteparated from test data which is kept
unseen. Manually-constructed systems should ideallywdsastrictly unseen data for evaluation.

transfer In MT, the process of going from a representation appropriatthe original (source) language to one
appropriate for the target language.

treebank a corpus annotated with trees (lecture 4).
unification See Lecture 5, especialf$.3.

weak equivalence Of grammars, accepting/rejecting exactly the same st(iogstraststrong equivalencg. Lecture
4,

Wizard of Oz experiment An experiment where data is collected, generally for a djatosystem, by asking users
to interact with a mock-up of a real system, where some orfah® ‘processing’ is actually being done by a
human rather than automatically.

WordNet See§6.6

word-sense disambiguationSee§6.9

utterance A piece of speech or text (sentence or fragment) generatadspgaker in a particular context.
verb See IGE or notes for prelecture exercises in lecture 3.

verb phrase (VP) A phrase headed by a verb.

78

Exercises for NLP course, 2007

Notes on exercises

These exercises are organised by lecture. They are dividedwo classes: prelecture and postlecture. The prekectur
exercises are intended to review the basic concepts thit yeed to fully understand the lecture. Depending on your
background, you may find these trivial or you may need to rbachbtes, but in either case they shouldn’t take more
than a few minutes. The first one or two examples generallyecaith answers, other answers are at the end (where
appropriate).

Answers to the postlecture exercises are with the supervisotes (where appropriate). These are mostly intended as
quick exercises to check understanding of the lecture gh@ome are more open-ended.

A Lecturel

A.1 Postlecture exercises

Without looking at any film reviews beforehand, write downw@rds which you think would be good indications of a

positive review (when taken in isolation) and 10 words whjolu think would be negative. Then go through a review
of a film and see whether you find there are more of your positiwgds than the negative ones. Are there words in
the review which you think you should have added to yourahitsts?

Have a look athttp://www.cl.cam.ac.uk/ aacl10/stuff.html for pointers to sentiment analysis data
used in experiments.

B Lecture 2

B.1 Prelecture exercises

1. Split the following words into morphological units, ldlimg each as stem, suffix or prefix. If there is any
ambiguity, give all possible splits.

(a) dries
answer: dry (stem), -s (suffix)

(b) cartwheel
answer: cart (stem), wheel (stem)

(c) carries

(d) running

(e) uncaring

(f) intruders

(g) bookshelves
(h) reattaches
(i) anticipated

2. List the simple past and past/passive participle formba@following verbs:

(a) sing
Answer: simple pastang participlesung

(b) carry
(c) sleep

79

(d) see

Note that the simple past is used by itself (ekdm sang well while the participle form is used with an auxiliary (e.g.,
Kim had sung we)l The passive participle is always the same as the pastipdetin English: (e.g.Kim began the
lecture early Kim had begun the lecture earlyhe lecture was begun eajly

B.2 Post-lecture exercises

1. For each of the following surface forms, give a list of thates that the FST given in the lecture notes for
e-insertion passes through, and the corresponding urnidgiflgrms:

(@) cats
(b) corpus
(c) asses
(d) assess
(e) axes

2. Modify the FSA for dates so that it only accepts valid manthurn your revised FSA into a FST which maps
between the numerical representation of months and thbreatations (Jan ... Dec).

C Lecture 3

C.1 Pre-lecture

Label each of the words in the following sentences with tpait of speech, distinguishing between nouns, proper
nouns, verbs, adjectives, adverbs, determiners, prémositpronouns and others. (Traditional classificatiornierof
distinguish between a large number of additional parts eksh, but the finer distinctions won't be important here.)
There are notes on part of speech distinctions below, if yaueproblems.

1. The brown fox could jump quickly over the dog, Rover. Answihe/Det brown/Adj fox/Noun could/Verb(modal)
jump/Verb quickly/Adverb over/Preposition the/Determirdog/Noun, Rover/Proper noun.

2. The big cat chased the small dog into the barn.
3. Those barns have red roofs.

4. Dogs often bark loudly.

5. Further discussion seems useless.

6. Kim did not like him.
7. Time flies.

Notes on parts of speech. These notes are English-spedifirarjust intended to help with the lectures and the exer-
cises: see a linguistics textbook for definitions! Somegates have fuzzy boundaries, but none of the complicated
cases will be important for this course.

Noun prototypically, nouns refer to physical objects or subséan e.g.aardvark chainsawrice. But they can also
be abstract (e.gtruth, beauty or refer to events, states or processes (elecjsior). If you can saythe Xand
have a sensible phrase, that's a good indication that X isia.no

Pronoun something that can stand in for a noun: ehim, his

Proper noun / Proper name a name of a person, place etc: ekjizabeth Paris

80

Verb Verbs refer to events, processes or states but since nouhadjectives can do this as well, the distinction
between the categories is based on distribution, not seéesaor instance, nouns can occur with determiners
like the (e.g.,the decisioh whereas verbs can't (e.g.,the decidg In English, verbs are often found with
auxiliaries pe haveor do) indicating tense and aspect, and sometime occur with raptile can, could etc.
Auxiliaries and modals are themselves generally treateibslasses of verbs.

Adjective a word that modifies a noun: e.dpig, loud. Most adjectives can also occur after the vbdgand a few
other verbs: e.gthe students are unhappiNumbers are sometimes treated as a type of adjective byisitsy
but generally given their own category in traditional graerm Past participle forms of verbs can also often be
used as adjectives (e.guprriedin the very worried man Sometimes it's impossible to tell whether something
is a participle or an adjective (e.ghe man was worried

Adverb a word that modifies a verb: e.quickly, probably.

Determiner these precede nouns e.the every this. It is not always clear whether a word is a determiner or some
type of adjective.

Preposition e.g.,in, at, with

Nouns, proper nouns, verbs, adjectives and adverbs amptre classesnew words can occur in any of these cate-
gories. Determiners, prepositions and pronouns are clossdes (as are auxiliary and modal verbs).

C.2 Post-lecture

Try out one or more of the following POS tagging sites:

http://ucrel.lancs.ac.uk/claws/trial.html
http://12r.cs.uiuc.edu/"cogcomp/pos_demo.php
http://www.ling.gu.se/"lager/Home/brilltagger_ui.ht mi

(Unfortunately | haven’t been able to find a current site veithonline demo for a stochastic tagger: these systems use
rather different approaches.) Find two short pieces ofradluoccurring English text, one of which you think should
be relatively easy to tag correctly and one which you pretditte difficult. Look at the tagged output and estimate the
percentage of correct tags in each case, concentratingeorpéin-class words. You might like to get another student
to look at the same output and see if you agree on which tagsoanect.

D Lecture 4

D.1 Pre-lecture

Put brackets round the noun phrases and the verb phrases fiolltwing sentences (if there is ambiguity, give two
bracketings):

1. The cat with white fur chased the small dog into the barn.
Answer: ((The cat), with (white fur),,), chased (the small dog) into (the barn),,
The cat with white fur (chased the small dog into the bgyn)

2. The big cat with black fur chased the dog which barked.
3. Three dogs barked at him.

4. Kim saw the birdwatcher with the binoculars.

81

Note that noun phrases consist of the noun, the determihgrgsent) and any modifiers of the noun (adjective,
prepositional phrase, relative clause). This means thah pihrases may be nested. Verb phrases include the verb
and any auxiliaries, plus the object and indirect objec(ietgeneral, the complements of the verb) and any adverbial
modifiers?? The verb phrase does not include the subject.

D.2 Post-lecture

Using the CFG given in the lecture notes (section 4.3):
1. show the edges generated when partiey fish in rivers in Decembaevith the simple chart parser in 4.7
2. show the edges generated for this sentence if packingd(as described in 4.9)

3. show the edges generated fioey fish in riversf an active chart parser is used (as in 4.10)

E Lectureb5

E.1 Pre-lecture

1. A very simple form of semantic representation corresganndnaking verbs one-, two- or three- place logical
predicates. Proper names are assumed to correspond taisnsthe first argument should always correspond
to the subject of the active sentence, the second to thetdifjwere is one) and the third to the indirect object
(i.e., the beneficiary, if there is one). Give representetifor the following examples:

(&) Kim likes Sandy
Answer: like(Kim, Sandy)

(b) Kim sleeps
(c) Sandy adores Kim
(d) Kimis adored by Sandy (note, this is passive:ltiishould not be represented)
(e) Kim gave Rover to Sandy (theis not represented)
(f) Kim gave Sandy Rover
2. List three verbs that are intransitive only, three whiok simple transitive only, three which can be intransitive
or transitive and three which are ditransitives.

The distinction between intransitive, transitive andatisitive verbs can be illustrated by examples such as:
sleep — intransitive. No object is (generally) possibii&im slept the evening.

adore — transitive. An object is obligatoryKim adored

give —- ditransitive. These verbs have an object and an iodaleject.Kim gave Sandy an appler Kim gave
an apple to Sandy

E.2 Post-lecture

1. Give the unification of the following feature structures:

CAT ap . CAT VP
(a) [AGR ’[Jl]] unified with [AGR [J]
MOTHER l:ié;vj|

AGR AGR sg

CAT NP
DTR2

AGR[]

22A modifieris something that further specifies a particular entity omgve.g.,big housgshout loudly

(b) | or1 {CAT v] unified with [DTRI [CAT M] ‘|

82

() g} unified with | {JKL]}

@ 59 a} unified with [b |

c @ | } unified with [;}

=

F @
) [S] unified with {j]
e]} unifiedwith[ij]]

2. Add case to the initial FS grammar in order to prevent sezge such athey can theyrom parsing.

3. Work though parses of the following strings for the secBSdgrammar, deciding whether they parse or not:
(a) fish fish
(b) they can fish
(c) itfish
(d) they can
(e) theyfishit
4. Modify the second FS grammar to allow for verbs which takénairect object as well as an object. Also add a
lexical entry forgive (just do the variant which takes two noun phrases).

F Lecture 6

F.1 Pre-lecture

Without looking at a dictionary, write down brief definitisrfior as many senses as you can think of for the following
words:

1. plant
2. shower

3. bass

If possible, compare your answers with another studentiswith a dictionary.

F.2 Post-lecture

1. If you did the exercise associated with the previous kedtniadd ditransitive verbs to the grammar, amend your
modified grammar so that it produces semantic representatio

2. Give hypernyms and (if possible) hyponyms for the nomgesises of the following words:

83

(a) horse
(b) rice
(c) curtain

3. List some possible seeds for Yarowsky’s algorithm thatiaistinguish between the sensessbbwerand
bassthat you gave in the prelecture exercise.

G Lecture7

G.1 Pre-lecture

No suggested exercises.

G.2 Post-lecture

Work through the Lappin and Leass algorithm with a short @ietnaturally occurring text. If there are cases where
the algorithm gets the results wrong, suggest the sortsaflledge that would be needed to give the correct answer.

H Lecture 8

H.1 Exercises (pre- or post- lecture)

Try out a spoken dialogue system. One good example is BAfistays flight information (0870 551 1155 — charged
at standard national rate). Think of a realistic task befane phone: for instance, to find arrival times for a morning
flight from Edinburgh to Heathrow.

Use Systran (vidttp://world.altavista.com/) to translate some text and investigate whether the text it
outputs is grammatical and whether it deals well with issdiesussed in the course, such as lexical ambiguity and
pronoun resolution. Ideally you would get the help of somewato speaks a language other than English for this if
you're not fairly fluent in another language yourself: thedaage pairs that Systran deals with are listed on the site.

Open ended: Suppose you were supervising undergraduales:weuld it take to build a system that responded to
email requests for supervisions and automatically updatednline diary? To think about this, ideally you should
collect a corpus of emails.

84

| Answers to some of the exercises

.1 Lecture 1 (post-lecture)

Something like this experiment was tried by Pang et al (200p)yovide a baseline for their machine learning system.
The table below shows the accuracy they obtained on moviewe\by counting the positive and negative terms in the
document. The third set was obtained with the help of prelani frequency data: note the inclusion of *?’ and ‘!".

Terms Accuracy
Human 1 positive: dazzling, brilliant, phenomenal, excellent, fantasti&8%
negative:suck, terrible, awful, unwatchable, hideous
Human 2 positive: gripping, mesmerizing, riveting, spectacular, codl,64%

awesome, thrilling, badass, excellent, moving, exciting
negative:bad, cliched, sucks, boring, stupid, slow

Human 3 (with stats)| positive:love, wonderful, best, great, superb, still, beautiful69%
negative:bad, worst, stupid, waste, boring, ?, !

.2 Lecture 2 (pre-lecture)
1. (a) carries
carry (stem) s (suffix)

(b) running
run (stem) ing (suffix)

(c) uncaring
un (prefix) care (stem) ing (suffix)

(d) intruders
intrude (stem) er (suffix) s (suffix)
Note that in- is not a real prefix here

(e) bookshelves
book (stem) shelf (stem) s (suffix)

(f) reattaches
re (prefix) attach (stem) s (suffix)

(g) anticipated
anticipate (stem) ed (suffix)

2. (a) carry
Answer: simple pastarried, past participlecarried

(b) sleep
Answer: simple pastlept past participleslept

(c) see
Answer: simple pastaw past participleseen
1.3 Lecture 3 (pre-lecture)
The/Det big/Adj cat/Noun chased/Verb the/Det small/éoijj/Noun into/Prep the/Det barn/Noun.
Those/Det barns/Noun have/Verb red/Adj roofs/Noun.
Dogs/Noun often/Adverb bark/Verb loudly/Adverb.

Further/Adj discussion/Noun seems/Verb useless/Adj.

a w0 N RE

Kim/Proper noun did/Verb(aux) not/Adverb(or Other)dikerb him/Pronoun.

85

6. Time/Noun flies/\Verb.
Time/Verb flies/Noun. (the imperative!)

.4 Lecture 4 (pre-lecture)

1. The big cat with black fur chased the dog which barked.
((The big cat),, with (black fur),,)., chased (the dog which barkegd)
The big cat with black fur (chased the dog which barkgd)

2. Three dogs barked at him. (Three dogs)arked at (him), Three dogs (barked at hir)

3. Kim saw the birdwatcher with the binoculars.
Analysis 1 (the birdwatcher has the binoculars) (Kig¥aw ((the birdwatchey), with (the binoculars),),
Kim (saw the birdwatcher with the binoculays)
Analysis 2 (the seeing was with the binoculars) (Kim¥aw (the birdwatchey), with (the binoculars),
Kim (saw the birdwatcher with the binoculays)

1.5 Lecture 5 (pre-lecture)

1. Kim sleeps
sleep(Kim)

2. Sandy adores Kim
adore(Sandy, Kim)

3. Kimis adored by Sandy
adore(Sandy, Kim)

4. Kim gave Rover to Sandy
give(Kim, Rover, Sandy)

5. Kim gave Sandy Rover
give(Kim, Rover, Sandy)

Some examples of different classes of verb (obviously yoe lsdmost certainly come up with different ones!)

sleep, snore, sneeze, cough — intransitive only
adore, comb, rub — simple transitive only

eat, wash, shave, dust — transitive or intransitive
give, hand, lend — ditransitive

86

