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Outline of today’s lecture

Lecture 1: Introduction
Overview of the course
Why NLP is hard.
Scope of NLP.
A sample application: sentiment classification
More NLP applications
NLP components.
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Lecture 1: Introduction

Overview of the course

NLP and linguistics

NLP: the automatic processing of human language.
1. Morphology — the structure of words: lecture 2.
2. Syntax — the way words are used to form phrases:

lectures 3, 4 and 5.
3. Semantics

I Compositional semantics — the construction of meaning
based on syntax: lecture 6.

I Lexical semantics — the meaning of individual words:
lecture 6.

4. Pragmatics — meaning in context: lecture 7.
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Lecture 1: Introduction

Overview of the course

Also note:

I Exercises: pre-lecture and post-lecture
I Glossary
I Recommended Book: Jurafsky and Martin (2000) (and

second edition draft)
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Lecture 1: Introduction

Why NLP is hard.

Querying a knowledge base

User query:
I Has my order number 4291 been shipped yet?

Database:

ORDER
Order number Date ordered Date shipped
4290 2/2/02 2/2/02
4291 2/2/02 2/2/02
4292 2/2/02

USER: Has my order number 4291 been shipped yet?
DB QUERY: order(number=4291,date_shipped=?)
RESPONSE: Order number 4291 was shipped on 2/2/02
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Lecture 1: Introduction

Why NLP is hard.

Why is this difficult?

Similar strings mean different things, different strings mean the
same thing:

1. How fast is the 505G?
2. How fast will my 505G arrive?
3. Please tell me when I can expect the 505G I ordered.

Ambiguity:
I Do you sell Sony laptops and disk drives?
I Do you sell (Sony (laptops and disk drives))?
I Do you sell (Sony laptops) and disk drives)?
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Lecture 1: Introduction

Scope of NLP.

Some NLP applications
I spelling and grammar

checking
I optical character

recognition (OCR)
I screen readers
I augmentative and

alternative communication
I machine aided translation
I lexicographers’ tools
I information retrieval
I document classification
I document clustering

I information extraction
I question answering
I summarization
I text segmentation
I exam marking
I report generation
I machine translation
I natural language interfaces

to databases
I email understanding
I dialogue systems



Natural Language Processing

Lecture 1: Introduction

A sample application: sentiment classification

Sentiment classification: finding out what people think
about you.

I Task: scan documents for positive and negative opinions
on people, products etc.

I Find all references to entity in some document collection:
list as positive, negative (possibly with strength) or neutral.

I Summaries plus text snippets.
I Fine-grained classification:

e.g., for phone, opinions about: overall design, keypad,
camera.

I Still often done by humans . . .
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Lecture 1: Introduction

A sample application: sentiment classification

Motorola KRZR (from the Guardian)

Motorola has struggled to come up with a worthy
successor to the RAZR, arguably the most influential
phone of the past few years. Its latest attempt is the
KRZR, which has the same clamshell design but has
some additional features. It has a striking blue finish
on the front and the back of the handset is very tactile
brushed rubber. Like its predecessors, the KRZR has
a laser-etched keypad, but in this instance Motorola
has included ridges to make it easier to use.
. . . Overall there’s not much to dislike about the phone,
but its slightly quirky design means that it probably
won’t be as huge or as hot as the RAZR.
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Lecture 1: Introduction

A sample application: sentiment classification

Sentiment classification: the research task.

I Full task: information retrieval, cleaning up text structure,
named entity recognition, identification of relevant parts of
text. Evaluation by humans.

I Research task: preclassified documents, topic known,
opinion in text along with some straightforwardly
extractable score.

I Movie review corpus, with ratings.
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Lecture 1: Introduction

A sample application: sentiment classification

IMDb: An American Werewolf in London (1981)

Rating: 9/10

Ooooo. Scary.
The old adage of the simplest ideas being the best is
once again demonstrated in this, one of the most
entertaining films of the early 80’s, and almost
certainly Jon Landis’ best work to date. The script is
light and witty, the visuals are great and the
atmosphere is top class. Plus there are some great
freeze-frame moments to enjoy again and again. Not
forgetting, of course, the great transformation scene
which still impresses to this day.
In Summary: Top banana
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Lecture 1: Introduction

A sample application: sentiment classification

Bag of words technique.

I Treat the reviews as collections of individual words.
I Classify reviews according to positive or negative words.
I Could use word lists prepared by humans, but machine

learning based on a portion of the corpus (training set) is
preferable.

I Use star rankings for training and evaluation.
I Pang et al, 2002: Chance success is 50% (movie database

was artifically balanced), bag-of-words gives 80%.



Natural Language Processing

Lecture 1: Introduction

A sample application: sentiment classification

Some sources of errors.

I Negation:
Ridley Scott has never directed a bad film.

I Overfitting the training data:
e.g., if training set includes a lot of films from before 2005,
Ridley may be a strong positive indicator, but then we test
on reviews for ‘Kingdom of Heaven’?

I Comparisons and contrasts.
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Lecture 1: Introduction

A sample application: sentiment classification

Contrasts in the discourse

This film should be brilliant. It sounds like a great plot,
the actors are first grade, and the supporting cast is
good as well, and Stallone is attempting to deliver a
good performance. However, it can’t hold up.
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Lecture 1: Introduction

A sample application: sentiment classification

More contrasts

AN AMERICAN WEREWOLF IN PARIS is a failed
attempt . . . Julie Delpy is far too good for this movie.
She imbues Serafine with spirit, spunk, and humanity.
This isn’t necessarily a good thing, since it prevents us
from relaxing and enjoying AN AMERICAN
WEREWOLF IN PARIS as a completely mindless,
campy entertainment experience. Delpy’s injection of
class into an otherwise classless production raises the
specter of what this film could have been with a better
script and a better cast . . . She was radiant,
charismatic, and effective . . .
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Lecture 1: Introduction

A sample application: sentiment classification

Sample data

http://www.cl.cam.ac.uk/ aac10/sentiment/
(linked from http://www.cl.cam.ac.uk/ aac10/stuff.html)
See test data texts in:
http://www.cl.cam.ac.uk/ aac10/sentiment/test/
classified into positive/negative.
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Lecture 1: Introduction

A sample application: sentiment classification

Doing sentiment classification properly?

I Morphology, syntax and compositional semantics:
who is talking about what, what terms are associated with
what, tense . . .

I Lexical semantics:
are words positive or negative in this context? Word
senses (e.g., spirit)?

I Pragmatics and discourse structure:
what is the topic of this section of text? Pronouns and
definite references.

I But getting all this to work on arbitrary text is very hard.
I Ultimately the problem is AI-complete, but can we do well

enough for NLP to be useful?
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Lecture 1: Introduction

More NLP applications

IR, IE and QA

I Information retrieval: return documents in response to a
user query (Internet Search is a special case)

I Information extraction: discover specific information from a
set of documents (e.g. company joint ventures)

I Question answering: answer a specific user question by
returning a section of a document:
What is the capital of France?
Paris has been the French capital for many centuries.

Much more about these in Simone Teufel’s course.
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Lecture 1: Introduction

More NLP applications

MT

I Earliest attempted NLP application
I Quality depends on restricting the domain
I Utility greatly increased with increase in availability of

electronic text
I Good applications for bad MT . . .
I Spoken language translation is viable for limited domains
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Lecture 1: Introduction

More NLP applications

Natural language interfaces and dialogue systems

All rely on a limited domain:
I LUNAR: classic example of a natural language interface to

a database (NLID): 1970–1975
I SHRDLU: (text-based) dialogue system: 1973
I Current spoken dialogue systems: e.g., BA flight

information
Limited domain allows disambiguation: e.g., in LUNAR, rock
had one sense.
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Lecture 1: Introduction

NLP components.

Generic NLP modules

I input preprocessing: speech recogniser, text preprocessor
or gesture recogniser.

I morphological analysis
I part of speech tagging
I parsing: this includes syntax and compositional semantics
I disambiguation
I context module
I text planning
I tactical generation
I morphological generation
I output processing: text-to-speech, text formatter, etc.
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Lecture 1: Introduction

NLP components.

Natural language interface to a knowledge base

KB
*

KB INTERFACE
6

PARSING
6

MORPHOLOGY
6

INPUT PROCESSING
6

user input

j
KB OUTPUT

?
TACTICAL GENERATION

?
MORPHOLOGY GENERATION

?
OUTPUT PROCESSING

?
output
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Lecture 1: Introduction

NLP components.

General comments

I Even ‘simple’ applications might need complex knowledge
sources

I Applications cannot be 100% perfect
I Applications that are < 100% perfect can be useful
I Aids to humans are easier than replacements for humans
I NLP interfaces compete with non-language approaches
I Shallow processing on arbitrary input or deep processing

on narrow domains
I Limited domain systems require extensive and expensive

expertise to port
I External influences on NLP are very important
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Lecture 1: Introduction

NLP components.

Outline of the next lecture

Lecture 2: Morphology and finite state techniques.
A brief introduction to morphology.
Using morphology.
Spelling rules.
Finite state techniques.
More applications for finite state techniques.
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Lecture 2: Morphology and finite state techniques.

A brief introduction to morphology.

Some terminology.

I morpheme: the minimal information carrying unit
I affix: morpheme which only occurs in conjunction with

other morphemes
I words are made up of a stem (more than one in the case

of compounds) and zero or more affixes. e.g., dog plus
plural suffix +s

I affixes: prefixes, suffixes, infixes and circumfixes
I in English: prefixes and suffixes (prefixes only for

derivational morphology)
I productivity: whether affix applies generally, whether it

applies to new words
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Lecture 2: Morphology and finite state techniques.

A brief introduction to morphology.

Inflectional morphology

I e.g., plural suffix +s, past participle +ed
I sets slots in some paradigm
I e.g., tense, aspect, number, person, gender, case
I inflectional affixes are not combined in English
I generally fully productive (modulo irregular forms)
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Lecture 2: Morphology and finite state techniques.

A brief introduction to morphology.

Derivational morphology

I e.g., un-, re-, anti-, -ism, -ist etc
I broad range of semantic possibilities, may change part of

speech
I indefinite combinations

e.g., antiantidisestablishmentarianism
anti-anti-dis-establish-ment-arian-ism

I generally semi-productive
I zero-derivation (e.g. tango, waltz)
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Lecture 2: Morphology and finite state techniques.

A brief introduction to morphology.

Internal structure and ambiguity

Morpheme ambiguity: stems and affixes may be individually
ambiguous: e.g. dog (noun or verb), +s (plural or 3persg-verb)
Structural ambiguity: e.g., shorts/short -s
unionised could be union -ise -ed or un- ion -ise -ed
Bracketing:

I un- ion is not a possible form
I un- is ambiguous:

I with verbs: means ‘reversal’ (e.g., untie)
I with adjectives: means ‘not’ (e.g., unwise)

I internal structure of un- ion -ise -ed
has to be (un- ((ion -ise) -ed))

Temporarily skip 2.3
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Lecture 2: Morphology and finite state techniques.

Using morphology.

Applications of morphological processing

I compiling a full-form lexicon
I stemming for IR (not linguistic stem)
I lemmatization (often inflections only): finding stems and

affixes as a precursor to parsing
NB: may use parsing to filter results (see lecture 5)
e.g., feed analysed as fee-ed (as well as feed)
but parser blocks (assuming lexicon does not have fee as a
verb)

I generation
Morphological processing may be bidirectional: i.e.,
parsing and generation.
sleep + PAST_VERB <-> slept
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Lecture 2: Morphology and finite state techniques.

Using morphology.

Morphology in a deep processing system (cf lec 1)
KB

*

KB INTERFACE
6

PARSING
6

MORPHOLOGY
6

INPUT PROCESSING
6

user input

j
KB OUTPUT

?
TACTICAL GENERATION

?
MORPHOLOGY GENERATION

?
OUTPUT PROCESSING

?
output
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Lecture 2: Morphology and finite state techniques.

Using morphology.

Lexical requirements for morphological processing

I affixes, plus the associated information conveyed by the
affix
ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN

I irregular forms, with associated information similar to that
for affixes
began PAST_VERB begin
begun PSP_VERB begin

I stems with syntactic categories (plus more)
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Lecture 2: Morphology and finite state techniques.

Using morphology.

Mongoose

A zookeeper was ordering extra animals for his zoo. He started
the letter:

“Dear Sir, I need two mongeese.”

This didn’t sound right, so he tried again:
“Dear Sir, I need two mongooses.”

But this sounded terrible too. Finally, he ended up with:
“Dear Sir, I need a mongoose, and while you’re at it,
send me another one as well.”
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Lecture 2: Morphology and finite state techniques.

Spelling rules.

Spelling rules (sec 2.3)

I English morphology is essentially concatenative
I irregular morphology — inflectional forms have to be listed
I regular phonological and spelling changes associated with

affixation, e.g.
I -s is pronounced differently with stem ending in s, x or z
I spelling reflects this with the addition of an e (boxes etc)

I in English, description is independent of particular
stems/affixes
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Lecture 2: Morphology and finite state techniques.

Spelling rules.

e-insertion
e.g. boxˆs to boxes

ε → e/







s
x
z







ˆ s

I map ‘underlying’ form to surface form
I mapping is left of the slash, context to the right
I notation:

position of mapping
ε empty string
ˆ affix boundary — stem ˆ affix

I same rule for plural and 3sg verb
I formalisable/implementable as a finite state transducer
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Finite state automata for recognition
day/month pairs:

0,1,2,3 digit / 0,1 0,1,2

digit digit

1 2 3 4 5 6

I non-deterministic — after input of ‘2’, in state 2 and state 3.
I double circle indicates accept state
I accepts e.g., 11/3 and 3/12
I also accepts 37/00 — overgeneration
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Recursive FSA
comma-separated list of day/month pairs:

0,1,2,3 digit / 0,1 0,1,2

digit digit

,

1 2 3 4 5 6

I list of indefinite length
I e.g., 11/3, 5/6, 12/04
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Finite state transducer

1

e : eother : other
ε : ˆ

2

s : s

3

4

e : eother : other
s : sx : xz : z e : ˆ

s : sx : xz : z

ε → e/







s
x
z







ˆ s

surface : underlying
c a k e s ↔ c a k e ˆ s
b o x e s ↔ b o x ˆ s
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Analysing b o x e s

1

b : b
ε : ˆ

2 3

4
Input: b
Output: b
(Plus: ε . ˆ)
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Analysing b o x e s

1

o : o

2 3

4 Input: b o
Output: b o
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Finite state techniques.

Analysing b o x e s

1 2 3

4

x : x

Input: b o x
Output: b o x
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Analysing b o x e s

1 2 3

4

e : e e : ˆ

Input: b o x e
Output: b o x ˆ
Output: b o x e
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Analysing b o x e ε s

1

ε : ˆ

2 3

4

Input: b o x e
Output: b o x ˆ
Output: b o x e
Input: b o x e ε
Output: b o x e ˆ
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Analysing b o x e s

1 2

s : s

3

4

s : s Input: b o x e s
Output: b o x ˆ s
Output: b o x e s
Input: b o x e ε s
Output: b o x e ˆ s
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Analysing b o x e s

1

e : eother : other
ε : ˆ

2

s : s

3

4

e : eother : other
s : sx : xz : z e : ˆ

s : sx : xz : z

Input: b o x e s
Accept output: b o x ˆ s
Accept output: b o x e s
Input: b o x e ε s
Accept output: b o x e ˆ s
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Lecture 2: Morphology and finite state techniques.

Finite state techniques.

Using FSTs

I FSTs assume tokenization (word boundaries) and words
split into characters. One character pair per transition!

I Analysis: return character list with affix boundaries, so
enabling lexical lookup.

I Generation: input comes from stem and affix lexicons.
I One FST per spelling rule: either compile to big FST or run

in parallel.
I FSTs do not allow for internal structure:

I can’t model un- ion -ize -d bracketing.
I can’t condition on prior transitions, so potential redundancy

(cf 2006/7 exam q)
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Lecture 2: Morphology and finite state techniques.

More applications for finite state techniques.

Some other uses of finite state techniques in NLP

I Grammars for simple spoken dialogue systems (directly
written or compiled)

I Partial grammars for named entity recognition
I Dialogue models for spoken dialogue systems (SDS)

e.g. obtaining a date:
1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.
3. Day only is known. System prompts for month.
4. Month and day known.
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Lecture 2: Morphology and finite state techniques.

More applications for finite state techniques.

Example FSA for dialogue

1

mumble

month day

day &month2

mumble

day

3

mumble

month

4
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Lecture 2: Morphology and finite state techniques.

More applications for finite state techniques.

Example of probabilistic FSA for dialogue

1

0.1

0.5 0.1

0.32

0.1

0.9

3

0.2

0.8

4
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Lecture 2: Morphology and finite state techniques.

More applications for finite state techniques.

Next lecture

Lecture 3: Prediction and part-of-speech tagging.
Corpora in NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging
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Lecture 3: Prediction and part-of-speech tagging.

Outline of today’s lecture

Lecture 3: Prediction and part-of-speech tagging.
Corpora in NLP
Word prediction
Part-of-speech (POS) tagging
Evaluation in general, evaluation of POS tagging

First of three lectures that concern syntax (i.e., how words fit
together). This lecture: ‘shallow’ syntax: word sequences and
POS tags. Next lectures: more detailed syntactic structures.
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Lecture 3: Prediction and part-of-speech tagging.

Corpora in NLP

Corpora

Changes in NLP research over the last 15-20 years are largely
due to increased availability of electronic corpora.

I corpus: text that has been collected for some purpose.
I balanced corpus: texts representing different genres

genre is a type of text (vs domain)
I tagged corpus: a corpus annotated with POS tags
I treebank: a corpus annotated with parse trees
I specialist corpora — e.g., collected to train or evaluate

particular applications
I Movie reviews for sentiment classification
I Data collected from simulation of a dialogue system
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Lecture 3: Prediction and part-of-speech tagging.

Word prediction

Prediction

Guess the missing words:

Illustrations produced by any package can be transferred with
consummate to another.

Wright tells her story with great .
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Lecture 3: Prediction and part-of-speech tagging.

Word prediction

Prediction

Guess the missing words:

Illustrations produced by any package can be transferred with
consummate ease to another.

Wright tells her story with great .
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Lecture 3: Prediction and part-of-speech tagging.

Word prediction

Prediction

Guess the missing words:

Illustrations produced by any package can be transferred with
consummate ease to another.

Wright tells her story with great professionalism .
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Lecture 3: Prediction and part-of-speech tagging.

Word prediction

Prediction

Prediction is relevant for:
I language modelling for speech recognition: e.g., using

N-grams. This is an alternative to finite state grammars,
suitable for large-scale recognition

I word prediction for communication aids (augmentative and
alternative communication). e.g., to help enter text that’s
input to a synthesiser

I text entry on mobile phones and similar devices
I OCR, spelling correction, text segmentation
I estimation of entropy



Natural Language Processing

Lecture 3: Prediction and part-of-speech tagging.

Word prediction

bigrams (N-gram with N=2)
A probability is assigned to a word based on the previous word:

P(wn|wn−1)

where wn is the nth word in a sentence.
Probability of a sequence of words (assuming independence):

P(W n
1 ) ≈

n
∏

k=1
P(wk |wk−1)

Probability is estimated from counts in a training corpus:
C(wn−1wn)

∑

w C(wn−1w)
≈

C(wn−1wn)

C(wn−1)

i.e. count of a particular bigram in the corpus divided by the
count of all bigrams starting with the prior word.



Natural Language Processing

Lecture 3: Prediction and part-of-speech tagging.

Word prediction

Calculating bigrams

〈s〉 good morning 〈s〉 good afternoon 〈s〉 good afternoon 〈s〉 it
is very good 〈s〉 it is good 〈s〉

sequence count bigram probability
〈s〉 5
〈s〉 good 3 .6
〈s〉 it 2 .4
good 5
good morning 1 .2
good afternoon 2 .4
good 〈s〉 2 .4
morning 1
morning 〈s〉 1 1



Natural Language Processing

Lecture 3: Prediction and part-of-speech tagging.

Word prediction

Practical application

I word prediction: guess the word from initial letters (user
confirms each word)

I speech recognition: maximize likelihood of a sequence
(implemented using the Viterbi algorithm)

Problems because of sparse data:
I smoothing: distribute ‘extra’ probability between rare and

unseen events
I backoff: approximate unseen probabilities by a more

general probability, e.g. unigrams
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Lecture 3: Prediction and part-of-speech tagging.

Part-of-speech (POS) tagging

Part of speech tagging

They can fish .
I They_PNP can_VM0 fish_VVI ._PUN
I They_PNP can_VVB fish_NN2 ._PUN
I They_PNP can_VM0 fish_NN2 ._PUN no full parse

POS lexicon fragment:
they PNP
can VM0 VVB VVI NN1
fish NN1 NN2 VVB VVI

tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb
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Part-of-speech (POS) tagging

Part of speech tagging

I They_PNP can_VM0 fish_VVI ._PUN
I They_PNP can_VVB fish_NN2 ._PUN
I They_PNP can_VM0 fish_NN2 ._PUN no full parse

POS lexicon fragment:
they PNP
can VM0 VVB VVI NN1
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tagset (CLAWS 5) includes:
NN1 singular noun NN2 plural noun
PNP personal pronoun VM0 modal auxiliary verb
VVB base form of verb VVI infinitive form of verb
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Part-of-speech (POS) tagging

Why POS tag?

I Coarse-grained syntax / word sense disambiguation: most
approaches are quick to run, so applicable to very large
corpora.

I Potentially useful for some linguistic research and for
lexicography: e.g., how often is tango used as a verb?
dog?

I Basis for named entity recognition and similar tasks (finite
state patterns over POS tagged data).

I Features for machine learning e.g., sentiment
classification. (e.g., stink_V vs stink_N)

I Preliminary processing for full parsing: cut down search
space or provide guesses at unknown words.
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Part-of-speech (POS) tagging

Stochastic part of speech tagging

1. Start with untagged text.
2. Assign all possible tags to each word in the text on the

basis of a lexicon that associates words and tags.
3. Find the most probable sequence (or n-best sequences) of

tags, based on probabilities from the training data.
I lexical probability: e.g., is can most likely to be VM0, VVB,

VVI or NN1?
I and tag sequence probabilities: e.g., is VM0 or NN1 more

likely after PNP?

Note: tags are more fine-grained than conventional part of
speech. Different possible tagsets: i.e., sets of POS tags.
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Lecture 3: Prediction and part-of-speech tagging.

Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP
those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0
people_NN2 fish_VVB in_PRP these_DT0 areas_NN2
._PUN

sequence count bigram probability
NN2 4
NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25

Also lexicon: fish NN2 VVB
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Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP
those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0
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Part-of-speech (POS) tagging

Assigning probabilities

More complex than word prediction, because looking at words
and tags. P(T |W ) is prob of tag sequence T, given word
sequence W, but can’t estimate this directly.
So, applying Bayes theorem:

P(T |W ) =
P(T )P(W |T )

P(W )

P(W ) is constant (tagging a known sequence)
estimate P(T ) as P(ti |ti−1) (bigram assumption)
estimate P(W |T ) as P(wi |ti) (i.e., the probability of each word
given its tag)



Natural Language Processing

Lecture 3: Prediction and part-of-speech tagging.

Part-of-speech (POS) tagging

Example

Tagging: they fish
Assume P(PNP|they) = 1.
Then sequence probability depends on:
P(NN1|PNP)P(fish|NN1)
P(NN2|PNP)P(fish|NN2)
P(VVB|PNP)P(fish|VVB)
etc
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Lecture 3: Prediction and part-of-speech tagging.

Part-of-speech (POS) tagging

Assigning probabilities, more details

I Maximise the overall tag sequence probability — e.g., use
Viterbi.
they_PNP can_VVB fish_NN2
they_PNP can_VM0 fish_VVI
P(VVI|VM0)P(fish|VVI) may be lower than
P(NN2|VVB)P(fish|NN2) but P(VVB|PNP)P(can|VVB)
versus P(VM0|PNP)P(can|VM0)

I Actual systems use trigrams — smoothing and backoff are
critical.

I Unseen words: these are not in the lexicon, so use all
possible open class tags, possibly restricted by
morphology.
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Evaluation in general, evaluation of POS tagging

Evaluation of POS tagging

I percentage of correct tags
I one tag per word (some systems give multiple tags when

uncertain)
I over 95% for English (but note punctuation is

unambiguous)
I baseline of taking the most common tag gives 90%

accuracy
I different tagsets give slightly different results: utility of tag

to end users vs predictive power (an open research issue)
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Evaluation in general, evaluation of POS tagging

Evaluation in general

I Training data and test data Test data must be kept unseen,
often 90% training and 10% test data.

I Baseline
I Ceiling Human performance on the task, where the ceiling

is the percentage agreement found between two
annotators (interannotator agreement)

I Error analysis Error rates are nearly always unevenly
distributed.

I Reproducibility
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Lecture 3: Prediction and part-of-speech tagging.

Evaluation in general, evaluation of POS tagging

Representative corpora and data sparsity

I test corpora have to be representative of the actual
application

I POS tagging and similar techniques are not always very
robust to differences in genre

I balanced corpora may be better, but still don’t cover all text
types

I communication aids: extreme difficulty in obtaining data,
text corpora don’t give good prediction for real data
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Lecture 3: Prediction and part-of-speech tagging.

Evaluation in general, evaluation of POS tagging

Outline of next lecture

Lecture 4: Parsing and generation.
Generative grammar
Simple context free grammars
Random generation with a CFG
Simple chart parsing with CFGs
More advanced chart parsing
Why not finite state?
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Lecture 4: Parsing and generation.

Parsing (and generation)
Syntactic structure in analysis:

I as a step in assigning semantics
I checking grammaticality
I corpus-based investigations, lexical acquisition etc

Lecture 4: Parsing and generation.
Generative grammar
Simple context free grammars
Random generation with a CFG
Simple chart parsing with CFGs
More advanced chart parsing
Why not finite state?

Next lecture — beyond simple CFGs
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Lecture 4: Parsing and generation.

Generative grammar

Generative grammar

a formally specified grammar that can generate all and only the
acceptable sentences of a natural language
Internal structure:

the big dog slept

can be bracketed

((the (big dog)) slept)

constituent a phrase whose components ‘go together’ . . .
weak equivalence grammars generate the same strings
strong equivalence grammars generate the same strings with

same brackets
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Lecture 4: Parsing and generation.

Simple context free grammars

Context free grammars

1. a set of non-terminal symbols (e.g., S, VP);
2. a set of terminal symbols (i.e., the words);
3. a set of rules (productions), where the LHS (mother) is a

single non-terminal and the RHS is a sequence of one or
more non-terminal or terminal symbols (daughters);
S -> NP VP
V -> fish

4. a start symbol, conventionally S, which is a non-terminal.
Exclude empty productions, NOT e.g.:

NP -> ε
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Lecture 4: Parsing and generation.

Simple context free grammars

A simple CFG for a fragment of English

rules

S -> NP VP
VP -> VP PP
VP -> V
VP -> V NP
VP -> V VP
NP -> NP PP
PP -> P NP

lexicon

V -> can
V -> fish
NP -> fish
NP -> rivers
NP -> pools
NP -> December
NP -> Scotland
NP -> it
NP -> they
P -> in
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Lecture 4: Parsing and generation.

Simple context free grammars

Analyses in the simple CFG

they fish

(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))

(S (NP they) (VP (V can) (NP fish)))

they fish in rivers

(S (NP they) (VP (VP (V fish))
(PP (P in) (NP rivers))))
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Simple context free grammars

Analyses in the simple CFG

they fish

(S (NP they) (VP (V fish)))
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(S (NP they) (VP (VP (V fish))
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Lecture 4: Parsing and generation.

Simple context free grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)
(VP (VP (V fish))

(PP (P in) (NP (NP rivers)
(PP (P in) (NP December))))))

(S (NP they)
(VP (VP (VP (V fish))

(PP (P in) (NP (NP rivers))))
(PP (P in) (NP December))))
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Lecture 4: Parsing and generation.

Simple context free grammars

Structural ambiguity without lexical ambiguity

they fish in rivers in December

(S (NP they)
(VP (VP (V fish))

(PP (P in) (NP (NP rivers)
(PP (P in) (NP December))))))

(S (NP they)
(VP (VP (VP (V fish))

(PP (P in) (NP (NP rivers))))
(PP (P in) (NP December))))
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Lecture 4: Parsing and generation.

Simple context free grammars

Parse trees
S

NP VP
they V VP

can VP PP
V

fish
P NP
in December

(S (NP they)
(VP (V can)

(VP (VP (V fish))
(PP (P in)

(NP December)))))
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Lecture 4: Parsing and generation.

Random generation with a CFG

Using a grammar as a random generator

Expand cat category sentence-record:
Let possibilities be all lexical items matching category
and all rules with LHS category
If possibilities is empty,
then fail
else

Randomly select a possibility chosen from possibilities
If chosen is lexical,
then append it to sentence-record
else

expand cat on each rhs category in chosen
(left to right) with the updated sentence-record

return sentence-record
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Lecture 4: Parsing and generation.

Random generation with a CFG

Random generator example

Expand cat S ()
possibilities = {S -> NP VP}, chosen = S -> NP VP

Expand cat NP ()
possibilities = {it, they, fish}
chosen = fish
sentence-record = (fish)
Expand cat VP (fish)
possibilities ={VP -> V, VP -> V VP, VP -> V NP}
chosen = VP -> V

Expand cat V (fish)
possibilities = {fish, can}
chosen = fish
sentence-record = (fish fish)
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Chart parsing
A dynamic programming algorithm (memoisation):

chart store partial results of parsing
edge representation of a rule application

Edge data structure:
[id,left_vtx, right_vtx,mother_category, dtrs]

. they . can . fish .
0 1 2 3

Fragment of chart:
id l r ma dtrs
5 2 3 V (fish)
6 2 3 VP (5)
7 1 3 VP (3 6)



Natural Language Processing

Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

A bottom-up passive chart parser

Parse:
Initialize the chart
For each word word, let from be left vtx,
to right vtx and dtrs be (word)

For each category category
lexically associated with word

Add new edge from, to, category, dtrs
Output results for all spanning edges
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Inner function

Add new edge from, to, category, dtrs:
Put edge in chart: [id,from,to, category,dtrs]
For each rule lhs → cat1 . . . catn−1,category

Find sets of contiguous edges
[id1,from1,to1, cat1,dtrs1] . . .

[idn−1,fromn−1,from, catn−1,dtrsn−1]
(such that to1 = from2 etc)
For each set of edges,

Add new edge from1, to, lhs, (id1 . . . id)
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Bottom up parsing: edges

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S
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Simple chart parsing with CFGs

Bottom up parsing: edges

they can fish
1:NP 2:V

3:VP
4:S

5:V
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

word = they, categories = {NP}
Add new edge 0, 1, NP, (they)
Matching grammar rules: {VP→V NP, PP→P NP}
No matching edges corresponding to V or P
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

word = can, categories = {V}
Add new edge 1, 2, V, (can)
Matching grammar rules: {VP→V}
recurse on edges {(2)}
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 2, VP, (2)
Matching grammar rules: {S→NP VP, VP→V VP}
recurse on edges {(1,3)}
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Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 2, S, (1, 3)
No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP→V VP}
No edges for V VP
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Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

word = fish, categories = {V, NP}
Add new edge 2, 3, V, (fish) NB: fish as V
Matching grammar rules: {VP→V}
recurse on edges {(5)}
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Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 2, 3, VP, (5)
Matching grammar rules: {S →NP VP, VP →V VP}
No edges match NP
recurse on edges for V VP: {(2,6)}
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 3, VP, (2, 6)
Matching grammar rules: {S→NP VP, VP→V VP}
recurse on edges for NP VP: {(1,7)}
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Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 3, S, (1, 7)
No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP →V VP}
No edges matching V
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Lecture 4: Parsing and generation.

Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 2, 3, NP, (fish) NB: fish as NP
Matching grammar rules: {VP→V NP, PP→P NP}
recurse on edges for V NP {(2,9)}
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Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 1, 3, VP, (2, 9)
Matching grammar rules: {S→NP VP, VP→V VP}
recurse on edges for NP VP: {(1, 10)}
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Simple chart parsing with CFGs

Parse construction

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP
10:VP

11:S

Add new edge 0, 3, S, (1, 10)
No matching grammar rules for S

Matching grammar rules: {S→NP VP, VP→V VP}
No edges corresponding to V VP

Matching grammar rules: {VP→V NP, PP→P NP}
No edges corresponding to P NP
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Simple chart parsing with CFGs

Output results for spanning edges

Spanning edges are 8 and 11:
Output results for 8

(S (NP they) (VP (V can) (VP (V fish))))

Output results for 11

(S (NP they) (VP (V can) (NP fish)))

Note: sample chart parsing code in Java is downloadable from
the course web page.
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Lecture 4: Parsing and generation.

More advanced chart parsing

Packing

I exponential number of parses means exponential time
I body can be cubic time: don’t add equivalent edges as

whole new edges
I dtrs is a set of lists of edges (to allow for alternatives)

about to add: [id,l_vtx, right_vtx,ma_cat, dtrs]
and there is an existing edge:

[id-old,l_vtx, right_vtx,ma_cat, dtrs-old]

we simply modify the old edge to record the new dtrs:

[id-old,l_vtx, right_vtx,ma_cat, dtrs-old ∪ dtrs]

and do not recurse on it
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Lecture 4: Parsing and generation.

More advanced chart parsing

Packing example

1 0 1 NP {(they)}
2 1 2 V {(can)}
3 1 2 VP {(2)}
4 0 2 S {(1 3)}
5 2 3 V {(fish)}
6 2 3 VP {(5)}
7 1 3 VP {(2 6)}
8 0 3 S {(1 7)}
9 2 3 NP {(fish)}

Instead of edge 10 1 3 VP {(2 6)}

7 1 3 VP {(2 6), (2 9)}

and we’re done
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Lecture 4: Parsing and generation.

More advanced chart parsing

Packing example

they can fish
1:NP 2:V

3:VP
4:S

5:V
6:VP

7:VP

8:S 9:NP

+

Both spanning results can now be extracted from edge 8.
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More advanced chart parsing

Packing example

they can fish
1:NP 2:V
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+

Both spanning results can now be extracted from edge 8.
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More advanced chart parsing

Active chart parsing

they can fish
1:NP

2:S/VP

id l r ma exp dtrs
1 0 1 NP (they)
2 0 1 S VP (1 ?)

I store partial rule applications
I record expected input as well as seen
I one active edge can create more than one passive edge.

e.g., they fish in Scotland — edge 2 completed by fish and
fish in Scotland. NP is combined with rule once not twice.

I active edges can be packed
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I active edges can be packed



Natural Language Processing

Lecture 4: Parsing and generation.

More advanced chart parsing

Active chart parsing

they can fish
1:NP

2:S/VP

id l r ma exp dtrs
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Lecture 4: Parsing and generation.

More advanced chart parsing

Ordering the search space

I agenda: order edges in chart by priority
I top-down parsing: predict possible edges

Producing n-best parses:
I manual weight assignment
I probabilistic CFG — trained on a treebank

I automatic grammar induction
I automatic weight assignment to existing grammar

I beam-search
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Lecture 4: Parsing and generation.

Why not finite state?

Why not FSA?

centre-embedding:
A → αAβ

generate grammars of the form anbn.
For instance:

the students the police arrested complained

However:

? the students the police the journalists criticised arrested
complained

Limits on human memory / processing ability
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Lecture 4: Parsing and generation.

Why not finite state?

Why not FSA practically?

More importantly for practical application:
1. FSM grammars are very redundant: difficult to build and

maintain
2. FSM grammars don’t support composition of semantics

but FSMs useful for:
1. tokenizers (dates, times etc)
2. named entity recognition in information extraction etc
3. approximating CFGs in speech recognition
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Lecture 4: Parsing and generation.

Why not finite state?

Outline of next lecture

Providing a more adequate treatment of syntax than simple
CFGs: replacing the atomic categories by more complex data
structures.

Lecture 5: Parsing with constraint-based grammars.
Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.
Feature structures (informally)
Encoding agreement
Parsing with feature structures
Feature stuctures more formally
Encoding subcategorisation
Interface to morphology
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Lecture 5: Parsing with constraint-based grammars.

Outline of today’s lecture

Providing a more adequate treatment of syntax than simple
CFGs: replacing the atomic categories by more complex data
structures.

Lecture 5: Parsing with constraint-based grammars.
Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.
Feature structures (informally)
Encoding agreement
Parsing with feature structures
Feature stuctures more formally
Encoding subcategorisation
Interface to morphology
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Lecture 5: Parsing with constraint-based grammars.

Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.

Overgeneration in atomic category CFGs

I agreement: subject verb agreement. e.g., they fish, it
fishes, *it fish, *they fishes. * means ungrammatical

I case: pronouns (and maybe who/whom) e.g., they like
them, *they like they

S -> NP-sg-nom VP-sg
S -> NP-pl-nom VP-pl
VP-sg -> V-sg NP-sg-acc
VP-sg -> V-sg NP-pl-acc
VP-pl -> V-pl NP-sg-acc
VP-pl -> V-pl NP-pl-acc

NP-sg-nom -> he
NP-sg-acc -> him
NP-sg-nom -> fish
NP-pl-nom -> fish
NP-sg-acc -> fish
NP-pl-acc -> fish

BUT: very large grammar, misses generalizations, no way of
saying when we don’t care about agreement.
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BUT: very large grammar, misses generalizations, no way of
saying when we don’t care about agreement.
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Lecture 5: Parsing with constraint-based grammars.

Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.

Intuitive solution for case and agreement

I Separate slots (features) for CASE and AGR
I Slot values for CASE may be nom (e.g., they), acc (e.g.,

them) or unspecified (i.e., don’t care)
I Slot values for AGR may be sg, pl or unspecified
I Subjects have the same value for AGR as their verbs
I Subjects have CASE nom, objects have CASE acc

can (n)





CASE [ ]

AGR sg



 fish (n)





CASE [ ]

AGR [ ]





she





CASE nom
AGR sg



 them





CASE acc
AGR pl




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Lecture 5: Parsing with constraint-based grammars.

Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.

Subcategorization

I intransitive vs transitive etc
I verbs (and other types of words) have different numbers

and types of syntactic arguments:
*Kim adored
*Kim gave Sandy
*Kim adored to sleep
Kim liked to sleep
*Kim devoured
Kim ate

I Subcategorization is correlated with semantics, but not
determined by it.
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Lecture 5: Parsing with constraint-based grammars.

Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.

Overgeneration because of missing subcategorization

Overgeneration:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

I Informally: need slots on the verbs for their syntactic
arguments.

I intransitive takes no following arguments (complements)
I simple transitive takes one NP complement
I like may be a simple transitive or take an infinitival

complement, etc
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Lecture 5: Parsing with constraint-based grammars.

Problems with simple CFG encoding: agreement, subcategorisation, long distance dependencies.

Long-distance dependencies
1. which problem did you say you don’t understand?
2. who do you think Kim asked Sandy to hit?
3. which kids did you say were making all that noise?

‘gaps’ (underscores below)
1. which problem did you say you don’t understand _?
2. who do you think Kim asked Sandy to hit _?
3. which kids did you say _ were making all that noise?

In 3, the verb were shows plural agreement.
* what kid did you say _ were making all that noise?
The gap filler has to be plural.

I Informally: need a ‘gap’ slot which is to be filled by
something that itself has features.
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Lecture 5: Parsing with constraint-based grammars.

Feature structures (informally)

Feature structures




CASE [ ]

AGR sg





1. Features like AGR with simple values: atomic-valued
2. Unspecified values possible on features: compatible with

any value.
3. Values for features for subcat and gap themselves have

features: complex-valued
4. path: a sequence of features
5. Method of specifying two paths are the same: reentrancy
6. Unification: combining two feature structures, retaining all

information from each, or fail if information is incompatible.
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Lecture 5: Parsing with constraint-based grammars.

Feature structures (informally)

Feature structures, continued

I Feature structures are singly-rooted directed acyclic
graphs, with arcs labelled by features and terminal nodes
associated with values.





CASE [ ]

AGR sg





CASE
-

AGR

j
sg

I In grammars, rules relate FSs — i.e. lexical entries and
phrases are represented as FSs

I Rule application by unification



Natural Language Processing

Lecture 5: Parsing with constraint-based grammars.

Feature structures (informally)

Graphs and AVMs

Example 1: CAT -NP
AGR

jsg





CAT NP
AGR sg





Here, CAT and AGR are atomic-valued features. NP and sg are
values.

Example 2:
HEAD- CAT -NP

AGR
j



 HEAD





CAT NP
AGR [ ]









HEAD is complex-valued, AGR is unspecified.
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Lecture 5: Parsing with constraint-based grammars.

Feature structures (informally)

Reentrancy

aF
:

G - a





F a
G a





F

zG - a





F 0 a
G 0





Reentrancy indicated by boxed integer in AVM diagram:
indicates path goes to the same node.
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Lecture 5: Parsing with constraint-based grammars.

Encoding agreement

CFG with agreement

S -> NP-sg VP-sg
S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
V-pl -> like
V-sg -> likes
NP-sg -> it
NP-pl -> they
NP-sg -> fish
NP-pl -> fish
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Lecture 5: Parsing with constraint-based grammars.

Encoding agreement

FS grammar fragment encoding agreement

subj-verb rule





CAT S
AGR 1



 →





CAT NP
AGR 1



,





CAT VP
AGR 1





verb-obj rule





CAT VP
AGR 1



 →





CAT V
AGR 1



,





CAT NP
AGR [ ]





Root structure:
[

CAT S
]

they





CAT NP
AGR pl





fish





CAT NP
AGR [ ]





it





CAT NP
AGR sg





like





CAT V
AGR pl





likes





CAT V
AGR sg




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Lecture 5: Parsing with constraint-based grammars.

Parsing with feature structures

Parsing ‘they like it’
I The lexical structures for like and it are unified with the

corresponding structures on the right hand side of the
verb-obj rule (unifications succeed).

I The structure corresponding to the mother of the rule is
then:





CAT VP
AGR pl





I This unifies with the rightmost daughter position of the
subj-verb rule.

I The structure for they is unified with the leftmost daughter.
I The result unifies with root structure.
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Lecture 5: Parsing with constraint-based grammars.

Parsing with feature structures

Rules as FSs
Rules have features MOTHER, DTR1, DTR2 . . . DTRN.

informally:





CAT VP
AGR 1



 →





CAT V
AGR 1



,





CAT NP
AGR [ ]





actually:





























MOTHER





CAT VP
AGR 1





DTR1





CAT V
AGR 1





DTR2





CAT NP
AGR [ ]
































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Lecture 5: Parsing with constraint-based grammars.

Parsing with feature structures

Verb-obj rule application
Feature structure for like unified with the value of DTR1:
















MOTHER

[

CAT VP
AGR 1 pl

]

DTR1
[

CAT V
AGR 1

]

DTR2
[

CAT NP
AGR [ ]

]

















Feature structure for it unified with the value for DTR2:
















MOTHER

[

CAT VP
AGR 1 pl

]

DTR1
[

CAT V
AGR 1

]

DTR2
[

CAT NP
AGR sg

]
















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Lecture 5: Parsing with constraint-based grammars.

Parsing with feature structures

Subject-verb rule application 1
MOTHER value from the verb-object rule acts as the DTR2 of the
subject-verb rule:

[

CAT VP
AGR pl

]

unified with the DTR2 of:

















MOTHER

[

CAT S
AGR 1

]

DTR1
[

CAT NP
AGR 1

]

DTR2
[

CAT VP
AGR 1

]

















Gives:
















MOTHER

[

CAT S
AGR 1 pl

]

DTR1
[

CAT NP
AGR 1

]

DTR2
[

CAT VP
AGR 1

]
















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Lecture 5: Parsing with constraint-based grammars.

Parsing with feature structures

Subject rule application 2

FS for they:
[

CAT NP
AGR pl

]

Unification of this with the value of DTR1 succeeds (but adds no
new information):
















MOTHER

[

CAT S
AGR 1 pl

]

DTR1
[

CAT NP
AGR 1

]

DTR2
[

CAT VP
AGR 1

]

















Final structure unifies with the root structure:
[

CAT S
]
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Lecture 5: Parsing with constraint-based grammars.

Feature stuctures more formally

Properties of FSs

Connectedness and unique root A FS must have a unique root
node: apart from the root node, all nodes have
one or more parent nodes.

Unique features Any node may have zero or more arcs leading
out of it, but the label on each (that is, the feature)
must be unique.

No cycles No node may have an arc that points back to the
root node or to a node that intervenes between it
and the root node.

Values A node which does not have any arcs leading out
of it may have an associated atomic value.

Finiteness A FS must have a finite number of nodes.
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Lecture 5: Parsing with constraint-based grammars.

Feature stuctures more formally

Subsumption
Feature structures are ordered by information content — FS1
subsumes FS2 if FS2 carries extra information.
FS1 subsumes FS2 if and only if the following conditions hold:
Path values For every path P in FS1 there is a path P in FS2. If

P has a value t in FS1, then P also has value t in
FS2.

Path equivalences Every pair of paths P and Q which are
reentrant in FS1 (i.e., which lead to the same node
in the graph) are also reentrant in FS2.

Unification
The unification of two FSs FS1 and FS2 is the most general FS
which is subsumed by both FS1 and FS2, if it exists.
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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Grammar with subcategorisation

Verb-obj rule:





HEAD 1
OBJ filled
SUBJ 3



 →





HEAD 1
OBJ 2
SUBJ 3



, 2
[

OBJ filled
]

can (transitive verb):













HEAD

[

CAT verb
AGR pl

]

OBJ

[

HEAD
[

CAT noun
]

OBJ filled

]

SUBJ
[

HEAD
[

CAT noun
] ]












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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Grammar with subcategorisation (abbrev for slides)

Verb-obj rule:





HEAD 1
OBJ fld
SUBJ 3



 →





HEAD 1
OBJ 2
SUBJ 3



, 2
[

OBJ fld
]

can (transitive verb):













HEAD

[

CAT v
AGR pl

]

OBJ

[

HEAD
[

CAT n
]

OBJ fld

]

SUBJ
[

HEAD
[

CAT n
] ]












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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Concepts for subcategorisation

I HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP

V VP

VP PP

V P NP
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I HEAD: information shared between a lexical entry and the
dominating phrases of the same category

S

NP VP
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VP PP

V P NP

+

+
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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Concepts for subcategorisation

I HEAD: information shared between a lexical entry and the
dominating phrases of the same category
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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Concepts for subcategorisation

I HEAD: information shared between a lexical entry and the
dominating phrases of the same category

I SUBJ:
The subject-verb rule unifies the first daughter of the rule
with the SUBJ value of the second. (‘the first dtr fills the
SUBJ slot of the second dtr in the rule’)
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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Concepts for subcategorisation

I HEAD: information shared between a lexical entry and the
dominating phrases of the same category

I SUBJ:
The subject-verb rule unifies the first daughter of the rule
with the SUBJ value of the second. (‘the first dtr fills the
SUBJ slot of the second dtr in the rule’)

I OBJ:
The verb-object rule unifies the second dtr with the OBJ
value of the first. (‘the second dtr fills the OBJ slot of the
first dtr in the rule’)
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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Example rule application: they fish 1

Lexical entry for fish:









HEAD

[

CAT v
AGR pl

]

OBJ fld
SUBJ

[

HEAD
[

CAT n
] ]









subject-verb rule:




HEAD 1
OBJ fld
SUBJ fld



 → 2





HEAD
[

AGR 3
]

OBJ fld
SUBJ fld



,





HEAD 1
[

AGR 3
]

OBJ fld
SUBJ 2





unification with second dtr position gives:








HEAD 1
[

CAT v
AGR 3 pl

]

OBJ fld
SUBJ fld









→ 2









HEAD

[

CAT n
AGR 3

]

OBJ fld
SUBJ fld









,





HEAD 1
OBJ fld
SUBJ 2




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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Lexical entry for they:









HEAD

[

CAT n
AGR pl

]

OBJ fld
SUBJ fld









unify this with first dtr position:








HEAD 1
[

CAT v
AGR 3 pl

]

OBJ fld
SUBJ fld









→ 2









HEAD

[

CAT n
AGR 3

]

OBJ fld
SUBJ fld









,





HEAD 1
OBJ fld
SUBJ 2





Root is:





HEAD
[

CAT v
]

OBJ fld
SUBJ fld





Mother structure unifies with root, so valid.
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Lecture 5: Parsing with constraint-based grammars.

Encoding subcategorisation

Parsing with feature structure grammars

I Naive algorithm: standard chart parser with modified rule
application

I Rule application:
1. copy rule
2. copy daughters (lexical entries or FSs associated with

edges)
3. unify rule and daughters
4. if successful, add new edge to chart with rule FS as

category
I Efficient algorithms reduce copying.
I Packing involves subsumption.
I Probabilistic FS grammars are complex.
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Lecture 5: Parsing with constraint-based grammars.

Interface to morphology

Templates

Capture generalizations in the lexicon:

fish INTRANS_VERB
sleep INTRANS_VERB
snore INTRANS_VERB

INTRANS_VERB



















HEAD





CAT v
AGR pl





OBJ fld

SUBJ
[

HEAD
[

CAT n
]

]


















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Lecture 5: Parsing with constraint-based grammars.

Interface to morphology

Interface to morphology: inflectional affixes as FSs

s



 HEAD





CAT n
AGR pl









if stem is:















HEAD





CAT n
AGR [ ]





OBJ fld
SUBJ fld















stem unifies with affix template.

But unification failure would occur with verbs etc, so we get
filtering (lecture 2).



Natural Language Processing

Lecture 5: Parsing with constraint-based grammars.

Interface to morphology

Outline of next lecture

Compositional semantics: the construction of meaning
(generally expressed as logic) based on syntax.
Lexical semantics: the meaning of individual words.

Lecture 6: Compositional and lexical semantics.
Compositional semantics in feature structures
Logical forms
Meaning postulates
Lexical semantics: semantic relations
Polysemy
Word sense disambiguation
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Lecture 6: Compositional and lexical semantics.

Outline of today’s lecture
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Lecture 6: Compositional and lexical semantics.

Compositional semantics in feature structures

Simple compositional semantics in feature structures

I Semantics is built up along with syntax
I Subcategorization ‘slot’ filling instantiates syntax
I Formally equivalent to logical representations (below:

predicate calculus with no quantifiers)
I Alternative FS encodings possible

Objective: obtain the following semantics for they like fish:
pron(x) ∧ (like_v(x , y) ∧ fish_n(y))
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Compositional semantics in feature structures

Feature structure encoding of semantics
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Compositional semantics in feature structures

Noun entry

fish
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I Corresponds to fish(x) where the INDEX points to the
characteristic variable of the noun (that is x).
The INDEX is unambiguous here, but
e.g., picture(x , y) ∧ sheep(y)
picture of sheep
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Compositional semantics in feature structures

Verb entry
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Compositional semantics in feature structures

Verb-object rule
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I As last time: object of the verb (DTR2) ‘fills’ the OBJ slot
I New: semantics on the mother is the ‘and’ of the semantics

of the dtrs
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Logical forms

Logic in semantic representation

I Meaning representation for a sentence is called the logical
form

I Standard approach to composition in theoretical linguistics
is lambda calculus, building FOPC or higher order
representation.

I Representation in notes is quantifier-free predicate
calculus but possible to build FOPC or higher-order
representation in FSs.

I Theorem proving.
I Generation: starting point is logical form, not string.
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Meaning postulates

Meaning postulates
I e.g.,

∀x [bachelor′(x) → man′(x) ∧ unmarried′(x)]

I usable with compositional semantics and theorem provers
I e.g. from ‘Kim is a bachelor’, we can construct the LF

bachelor′(Kim)

and then deduce

unmarried′(Kim)

I OK for narrow domains, but ‘classical’ lexical semantic
relations are more generally useful
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Lexical semantics: semantic relations

Lexical semantic relations

Hyponymy: IS-A:
I (a sense of) dog is a hyponym of (a sense of) animal
I animal is a hypernym of dog
I hyponymy relationships form a taxonomy
I works best for concrete nouns

Meronomy: PART-OF e.g., arm is a meronym of body, steering
wheel is a meronym of car (piece vs part)

Synonymy e.g., aubergine/eggplant
Antonymy e.g., big/little
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Lexical semantics: semantic relations

WordNet
I large scale, open source resource for English
I hand-constructed
I wordnets being built for other languages
I organized into synsets: synonym sets (near-synonyms)

Overview of adj red:

1. (43) red, reddish, ruddy, blood-red, carmine,
cerise, cherry, cherry-red, crimson, ruby,
ruby-red, scarlet - (having any of numerous
bright or strong colors reminiscent of the color
of blood or cherries or tomatoes or rubies)
2. (8) red, reddish - ((used of hair or fur)
of a reddish brown color; "red deer";
reddish hair")
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Lexical semantics: semantic relations

Hyponymy in WordNet
Sense 6
big cat, cat

=> leopard, Panthera pardus
=> leopardess
=> panther

=> snow leopard, ounce, Panthera uncia
=> jaguar, panther, Panthera onca,

Felis onca
=> lion, king of beasts, Panthera leo

=> lioness
=> lionet

=> tiger, Panthera tigris
=> Bengal tiger
=> tigress
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Lexical semantics: semantic relations

Some uses of lexical semantics

I Semantic classification: e.g., for selectional restrictions
(e.g., the object of eat has to be something edible) and for
named entity recognition

I Shallow inference: ‘X murdered Y’ implies ‘X killed Y’ etc
I Back-off to semantic classes in some statistical

approaches
I Word-sense disambiguation
I Machine Translation: if you can’t translate a term,

substitute a hypernym
I Query expansion: if a search doesn’t return enough

results, one option is to replace an over-specific term with
a hypernym
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Polysemy

Polysemy

I homonymy: unrelated word senses. bank (raised land) vs
bank (financial institution)

I bank (financial institution) vs bank (in a casino): related but
distinct senses.

I bank (N) (raised land) vs bank (V) (to create some raised
land): regular polysemy. Compare pile, heap etc

I vagueness: bank (river vs snow vs cloud)?
No clearcut distinctions.
Dictionaries are not consistent.
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Word sense disambiguation

Word sense disambiguation

Needed for many applications, problematic for large domains.
Assumes that we have a standard set of word senses (e.g.,
WordNet)

I frequency: e.g., diet: the food sense (or senses) is much
more frequent than the parliament sense (Diet of Wurms)

I collocations: e.g. striped bass (the fish) vs bass guitar:
syntactically related or in a window of words (latter
sometimes called ‘cooccurrence’). Generally ‘one sense
per collocation’.

I selectional restrictions/preferences (e.g., Kim eats bass,
must refer to fish
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Lecture 6: Compositional and lexical semantics.

Word sense disambiguation

WSD techniques

I supervised learning: cf. POS tagging from lecture 3. But
sense-tagged corpora are difficult to construct, algorithms
need far more data than POS tagging

I unsupervised learning (see below)
I Machine readable dictionaries (MRDs): e.g., look at

overlap with words in definitions and example sentences
I selectional preferences: don’t work very well by

themselves, useful in combination with other techniques
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Word sense disambiguation

WSD by (almost) unsupervised learning

Disambiguating plant (factory vs vegetation senses):
1. Find contexts in training corpus:
sense training example

? company said that the plant is still operating
? although thousands of plant and animal species
? zonal distribution of plant life
? company manufacturing plant is in Orlando

etc
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Word sense disambiguation

Yarowsky (1995): schematically

Initial state
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Word sense disambiguation

2. Identify some seeds to disambiguate a few uses. e.g., ‘plant
life’ for vegetation use (A) ‘manufacturing plant’ for factory use
(B):
sense training example

? company said that the plant is still operating
? although thousands of plant and animal species
A zonal distribution of plant life
B company manufacturing plant is in Orlando

etc
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Word sense disambiguation

Seeds
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Lecture 6: Compositional and lexical semantics.

Word sense disambiguation

3. Train a decision list classifier on the Sense A/Sense B
examples.
reliability criterion sense

8.10 plant life A
7.58 manufacturing plant B
6.27 animal within 10 words of plant A

etc
Decision list classifier: automatically trained if/then statements.
Experimenter decides on classes of test by providing definitions
of features of interest: system builds specific tests and provides
reliability metrics.
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Word sense disambiguation

4. Apply the classifier to the training set and add reliable
examples to A and B sets.
sense training example

? company said that the plant is still operating
A although thousands of plant and animal species
A zonal distribution of plant life
B company manufacturing plant is in Orlando

etc
5. Iterate the previous steps 3 and 4 until convergence
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Word sense disambiguation

Iterating:
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Word sense disambiguation

Final:
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Word sense disambiguation

6. Apply the classifier to the unseen test data

‘one sense per discourse’: can be used as an additional
refinement
e.g., once you’ve disambiguated plant one way in a particular
text/section of text, you can assign all the instances of plant to
that sense
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Word sense disambiguation

Evaluation of WSD

I SENSEVAL competitions
I evaluate against WordNet
I baseline: pick most frequent sense — hard to beat (but

don’t always know most frequent sense)
I human ceiling varies with words
I MT task: more objective but sometimes doesn’t

correspond to polysemy in source language
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Word sense disambiguation

Outline of next lecture

Putting sentences together (in text).

Lecture 7: Discourse.
Relationships between sentences.
Coherence
Anaphora (pronouns etc)
An algorithm for anaphora resolution
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Lecture 7: Discourse.

Relationships between sentences.

Rhetorical relations

Max fell. John pushed him.

can be interpreted as:
1. Max fell because John pushed him.

EXPLANATION
or

2 Max fell and then John pushed him.
NARRATION

Implicit relationship: discourse relation or rhetorical relation
because, and then are examples of cue phrases
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Coherence

Coherence

Discourses have to have connectivity to be coherent:

Kim got into her car. Sandy likes apples.

Can be OK in context:

Kim got into her car. Sandy likes apples, so Kim thought she’d
go to the farm shop and see if she could get some.
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Coherence

Coherence in generation
Strategic generation: constructing the logical form. Tactical
generation: logical form to string.
Strategic generation needs to maintain coherence.

In trading yesterday: Dell was up 4.2%, Safeway was down
3.2%, HP was up 3.1%.

Better:

Computer manufacturers gained in trading yesterday: Dell was
up 4.2% and HP was up 3.1%. But retail stocks suffered:
Safeway was down 3.2%.

So far this has only been attempted for limited domains: e.g.
tutorial dialogues.
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Coherence

Coherence in interpretation

Discourse coherence assumptions can affect interpretation:

Kim’s bike got a puncture. She phoned the AA.

Assumption of coherence (and knowledge about the AA) leads
to bike interpreted as motorbike rather than pedal cycle.

John likes Bill. He gave him an expensive Christmas present.

If EXPLANATION - ‘he’ is probably Bill.
If JUSTIFICATION (supplying evidence for first sentence), ‘he’
is John.
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Coherence

Factors influencing discourse interpretation

1. Cue phrases.
2. Punctuation (also prosody) and text structure.

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

3. Real world content:
Max fell. John pushed him as he lay on the ground.

4. Tense and aspect.
Max fell. John had pushed him.
Max was falling. John pushed him.

Hard problem, but ‘surfacy techniques’ (punctuation and cue
phrases) work to some extent.
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Lecture 7: Discourse.

Coherence

Rhetorical relations and summarization

Analysis of text with rhetorical relations generally gives a binary
branching structure:

I nucleus and satellite: e.g., EXPLANATION,
JUSTIFICATION

I equal weight: e.g., NARRATION
Max fell because John pushed him.
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Coherence

Summarisation by satellite removal

If we consider a discourse relation as a
relationship between two phrases, we get a binary branching
tree structure for the discourse. In many relationships,
such as Explanation, one phrase depends on the other:
e.g., the phrase being explained is the main
one and the other is subsidiary. In fact we can get rid of the
subsidiary phrases and still have a reasonably coherent
discourse.
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Coherence

Summarisation by satellite removal

If we consider a discourse relation as a
relationship between two phrases, we get a binary branching
tree structure for the discourse. In many relationships,
such as Explanation, one phrase depends on the other:
e.g., the phrase being explained is the main
one and the other is subsidiary. In fact we can get rid of the
subsidiary phrases and still have a reasonably coherent
discourse.

We get a binary branching tree structure for the discourse. In
many relationships one phrase depends on the other. In fact we
can get rid of the subsidiary phrases and still have a reasonably
coherent discourse.
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Lecture 7: Discourse.

Anaphora (pronouns etc)

Referring expressions

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.

referent a real world entity that some piece of text (or
speech) refers to. the actual Prof. Ferguson

referring expressions bits of language used to perform
reference by a speaker. ‘Niall Ferguson’, ‘he’, ‘him’

antecedant the text evoking a referent. ‘Niall Ferguson’
anaphora the phenomenon of referring to an antecedant.
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Lecture 7: Discourse.

Anaphora (pronouns etc)

Pronoun resolution

Pronouns: a type of anaphor.
Pronoun resolution: generally only consider cases which refer
to antecedant noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Anaphora (pronouns etc)

Pronoun resolution

Pronouns: a type of anaphor.
Pronoun resolution: generally only consider cases which refer
to antecedant noun phrases.

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him — at least until he spent an hour
being charmed in the historian’s Oxford study.
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Lecture 7: Discourse.

Anaphora (pronouns etc)

Pronoun resolution

Pronouns: a type of anaphor.
Pronoun resolution: generally only consider cases which refer
to antecedant noun phrases.

I hard constraints (e.g., agreement)
I soft preferences / salience (depend on discourse structure)
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Anaphora (pronouns etc)

Hard constraints: Pronoun agreement

I A little girl is at the door — see what she wants, please?
I My dog has hurt his foot — he is in a lot of pain.
I * My dog has hurt his foot — it is in a lot of pain.

Complications:
I The team played really well, but now they are all very tired.
I Kim and Sandy are asleep: they are very tired.
I Kim is snoring and Sandy can’t keep her eyes open: they

are both exhausted.
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Anaphora (pronouns etc)

Hard constraints: Reflexives

I Johni cut himselfi shaving. (himself = John, subscript
notation used to indicate this)

I # Johni cut himj shaving. (i 6= j — a very odd sentence)
Reflexive pronouns must be coreferential with a preceeding
argument of the same verb, non-reflexive pronouns cannot be.
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Anaphora (pronouns etc)

Hard constraints: Pleonastic pronouns

Pleonastic pronouns are semantically empty, and don’t refer:
I It is snowing
I It is not easy to think of good examples.
I It is obvious that Kim snores.
I It bothers Sandy that Kim snores.



Natural Language Processing

Lecture 7: Discourse.

Anaphora (pronouns etc)

Soft preferences: Salience

Recency Kim has a fast car. Sandy has an even faster one.
Lee likes to drive it.

Grammatical role Subjects > objects > everything else: Fred
went to the Grafton Centre with Bill. He bought a
CD.

Repeated mention Entities that have been mentioned more
frequently are preferred.

Parallelism Entities which share the same role as the pronoun
in the same sort of sentence are preferred: Bill
went with Fred to the Grafton Centre. Kim went
with him to Lion Yard. Him=Fred

Coherence effects (mentioned above)
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An algorithm for anaphora resolution

Lappin and Leass

Discourse model: referring NPs in equivalence classes with
global salience value (incrementally updated).
For example:

N Niall Ferguson, him 435
S Stephen Moss 310
H the historian 100
O Oxford study 100

Resolve each pronoun to the entity with the highest weight in
the discourse model.



Natural Language Processing

Lecture 7: Discourse.

An algorithm for anaphora resolution

Lappin and Leass’s algorithm
For each sentence:

1. Divide by two the global salience factors
2. Identify referring NPs
3. Calculate global salience factors for each NP (see below)
4. Update the discourse model with the referents and their

global salience scores.
5. For each pronoun:

5.1 Collect potential referents
5.2 Filter referents
5.3 Calculate the per pronoun adjustments for each referent

(see below).
5.4 Select the referent with the highest salience value for its

equivalence class plus its per-pronoun adjustment.
5.5 Add the pronoun into the equivalence class for that referent,

and increment the salience factor.
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An algorithm for anaphora resolution

Weights
Global salience factors:
recency 100 (current sentence)
subject 80
existential 70 there is a cat
direct object 50
indirect object 40 give Sandy a present
oblique complement 40 put the cat on a mat
non-embedded noun 80
non-adverbial 50

(i.e., embedded -80 and adverbial -50 but no negative weights)
Per pronoun salience factors:
cataphora -175 pronoun before NP
same role 35 e.g., pronoun and NP both subject
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An algorithm for anaphora resolution

Example

Niall Ferguson is prolific, well-paid and a snappy dresser.
Stephen Moss hated him
— at least until he spent an hour being charmed in the
historian’s Oxford study.

Possible antecedants:
N Niall Ferguson, him 435
S Stephen Moss 310

N has score 155 + 280 ((subject + non-embedded +
non-adverbial + recency)/2 + (direct object + non-embedded +
non-adverbial + recency))
S has score 310 (subject + non-embedded + non-adverbial +
recency) + same role per-pronoun 35
So we resolve he to N (wrongly . . . )
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An algorithm for anaphora resolution

Example, continued

Add he to the discourse referent equivalence class.
Update weights: add 80 because he is subject
N Niall Ferguson, him, he 515

Note: no duplicate factors for the same sentence (e.g., no
weight added because he is non-embedded)
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An algorithm for anaphora resolution

Anaphora for everyone, Kennedy and Boguraev

Modification of Lappin and Leass that doesn’t require a parser.
1. POS tag input text (Lingsoft tagger)
2. Regular expressions to identify NPs (NP chunking), mark

expletive it
3. Regular expressions for grammatical role
4. Text segmentation: don’t cross document boundaries etc.
5. Heuristics for reflexives
6. Otherwise much as Lappin and Leass
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An algorithm for anaphora resolution

Evaluation

1. LL quoted 86% (computer manuals), KB 75% (mix genres)
2. much less standardized than POS tagging: datasets,

metrics
3. results are genre-dependent
4. replication is difficult
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An algorithm for anaphora resolution

Outline of next lecture

Applications and (perhaps) demos.
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Outline of today’s lecture

Lecture 8: Applications.
Spoken dialogue systems
Question Answering
Wrapping up
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Spoken dialogue systems

Spoken dialogue systems
1. Single initiative systems (also known as system initiative

systems): system controls what happens when.
System: Do you have your customer reference number?
Please say yes or no. User: Yes
Limited mixed-initiative:
System: When do you want to leave?
User: the twenty-third
OR
User: the morning of the twenty-third

2. Mixed initiative dialogue. Both participants can control the
dialogue to some extent.
System: Which station do you want to leave from?
User: I don’t know, tell me which station I need for
Cambridge.
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Spoken dialogue systems

Approaches to SDS

I Custom grammars: FSAs or simple CFGs (compiled to
FSAs) at each point in a dialogue controlled by an FSA.
VoiceXML
Feature structure grammar compiled to CFG/FSA: e.g.,
Clarissa (International Space Station).

I Statistical language modelling plus robust customised
grammars or keyword spotting

I Statistical language modelling plus grammar induction
I Statistical language modelling plus general purpose

grammar
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Spoken dialogue system architecture
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Dialogue management in single-initiative SDS

I Finite-state dialogue manager
I Tightly controls the dialogue: prompts user for specific

information
I Separate recognition grammar for every state
I DB may help specify the grammars: e.g.,

1. prompt for post code
2. get 100 items on n-best list from recogniser
3. use first line of addresses from these to build a FS grammar
4. prompt for ‘first line’ of address
5. disambiguate post code

I Confirmation strategy is important
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Question Answering

QA with parsed corpus

PARSED CORPUS
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Question Answering

Questions and answers: QA, NLID etc

A valid answer should entail the query (with suitable
interpretation of wh-terms etc).
Is a dog barking?
∃x [dog′(x) ∧ bark′(x)]

A dog is barking entails A dog is barking

Rover is barking and Rover is a dog entails A dog is barking.
bark′(Rover) ∧ dog′(Rover) entails ∃x [dog′(x) ∧ bark′(x)]

which dog is barking?
bark′(Rover) ∧ dog′(Rover) entails ∃x [dog′(x) ∧ bark′(x)]
Bind query term to answer.
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Question Answering

QA example 1

Example
What eats jellyfish?
Simplified semantics:
[ a:eat(e), ARG1(a,x), ARG2(a,y), jellyfish(y) ]
So won’t match on jellyfish eat fish.
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What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.
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Question Answering

What eats jellyfish?

Example
Turtles eat jellyfish and they have special hooks in their throats
to help them swallow these slimy animals.

Match on [ a:eat(e), ARG1(a,x), ARG2(a,y), jellyfish(y) ]

A logically valid answer which entails the query since the
conjunct can be ignored.
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What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.
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Question Answering

What eats jellyfish?

Example
Sea turtles, ocean sunfish (Mola mola) and blue rockfish all are
able to eat large jellyfish, seemingly without being affected by
the nematocysts.

Pattern matching on semantics:
[ a:eat(e), ARG1(a,x), ARG2(a,y), large(y), jellyfish(y) ]

eat large jellyfish entails eat jellyfish (because large is
intersective)
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What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.
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Question Answering

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.
[ a1:know(e), ARG2(a1,h1), qeq(h1,lb), lb:a:eat(e), ARG1(a,x),
ARG2(a,y), jellyfish(y) ]

Logically valid if know is taken as truth preserving.

∀P∀y [know(y , P) =⇒ P]

Axioms like this required for logically valid entailment: missing
axiom would cause failure to match.
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Question Answering

What eats jellyfish?

Example
Also, open ocean-dwelling snails called Janthina and even
some seabirds have been known to eat jellyfish.
[ a1:know(e), ARG2(a1,h1), qeq(h1,lb), lb:a:eat(e), ARG1(a,x),
ARG2(a,y), jellyfish(y) ]

Logically valid if know is taken as truth preserving.

∀P∀y [know(y , P) =⇒ P]

Axioms like this required for logically valid entailment: missing
axiom would cause failure to match.
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Question Answering

QA processing

0. Corpus collection. Parse corpus to semantic
representation.

1. Process query: (i.e., separate words, detect non-words),
run automatic spelling correction (maybe).

2. Morphology and lexical lookup
3. Parse with general grammar. Stochastic parse selection

(trained on treebank).
4. Match question against parsed corpus.
5. Return snippets/documents for best match.
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Morphology and lexical lookup

What eats aardvarks?

What eat+3SG aardvark+PL?
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Morphology and lexical lookup, 2

spelling rule

plur_noun_orule :=
%suffix (!s !ss) (!ss !ssses) (ss sses)
(!ty !ties) (ch ches) (sh shes) (x xes) (z zes)
lex_rule_infl_affixed &
[ ND-AFF +,
SYNSEM mass_or_count_synsem &

[ LOCAL plur_noun ]].
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Semantics
What eats aardvarks?
<mrs>
<label vid=’1’/><var vid=’2’/>
<ep cfrom=’0’ cto=’4’><pred>THING_REL</pred><label vid=’3’/>
<fvpair><rargname>ARG0</rargname><var vid=’4’ sort=’x’>
<extrapair><path>PERS</path><value>3</value></extrapair>
<extrapair><path>NUM</path><value>SG</value></extrapair>
<extrapair><path>SF</path><value>PROP</value></extrapair></var></fvpair></ep>
<ep cfrom=’0’ cto=’4’><pred>WHICH_Q_REL</pred><label vid=’5’/>
<fvpair><rargname>ARG0</rargname><var vid=’4’ sort=’x’>
<extrapair><path>PERS</path><value>3</value></extrapair>
<extrapair><path>NUM</path><value>SG</value></extrapair>
<extrapair><path>SF</path><value>PROP</value></extrapair></var></fvpair>
<fvpair><rargname>RSTR</rargname><var vid=’6’ sort=’h’></var></fvpair>
<fvpair><rargname>BODY</rargname><var vid=’7’ sort=’h’></var></fvpair></ep>
<ep cfrom=’5’ cto=’9’><spred>_eat_v_1_rel</spred><label vid=’8’/>
<fvpair><rargname>ARG0</rargname><var vid=’2’ sort=’e’>
<extrapair><path>TENSE</path><value>PRES</value></extrapair>
<extrapair><path>MOOD</path><value>INDICATIVE</value></extrapair>
<extrapair><path>PROG</path><value>-</value></extrapair>
<extrapair><path>PERF</path><value>-</value></extrapair>
<extrapair><path>SF</path><value>QUES</value></extrapair></var></fvpair>
<fvpair><rargname>ARG1</rargname><var vid=’4’ sort=’x’>
<extrapair><path>PERS</path><value>3</value></extrapair>
<extrapair><path>NUM</path><value>SG</value></extrapair>
<extrapair><path>SF</path><value>PROP</value></extrapair></var></fvpair>
<fvpair><rargname>ARG2</rargname><var vid=’9’ sort=’x’>
<extrapair><path>PERS</path><value>3</value></extrapair>
<extrapair><path>NUM</path><value>PL</value></extrapair>
<extrapair><path>IND</path><value>+</value></extrapair>
<extrapair><path>DIV</path><value>+</value></extrapair>
<extrapair><path>SF</path><value>PROP</value></extrapair></var></fvpair></ep>
<ep cfrom=’10’ cto=’20’><pred>UDEF_Q_REL</pred><label vid=’10’/>
<fvpair><rargname>ARG0</rargname><var vid=’9’ sort=’x’>
<extrapair><path>PERS</path><value>3</value></extrapair>
<extrapair><path>NUM</path><value>PL</value></extrapair>
<extrapair><path>IND</path><value>+</value></extrapair>
<extrapair><path>DIV</path><value>+</value></extrapair>
<extrapair><path>SF</path><value>PROP</value></extrapair></var></fvpair>
<fvpair><rargname>RSTR</rargname><var vid=’11’ sort=’h’></var></fvpair>
<fvpair><rargname>BODY</rargname><var vid=’12’ sort=’h’></var></fvpair></ep>
<ep cfrom=’10’ cto=’20’><spred>_aardvark_n_1_rel</spred><label vid=’13’/>
<fvpair><rargname>ARG0</rargname><var vid=’9’ sort=’x’>
<extrapair><path>PERS</path><value>3</value></extrapair>
<extrapair><path>NUM</path><value>PL</value></extrapair>
<extrapair><path>IND</path><value>+</value></extrapair>
<extrapair><path>DIV</path><value>+</value></extrapair>
<extrapair><path>SF</path><value>PROP</value></extrapair></var></fvpair></ep>
<hcons hreln=’qeq’><hi><var vid=’6’ sort=’h’></var></hi><lo><var vid=’3’ sort=’h’></var></lo></hcons>
<hcons hreln=’qeq’><hi><var vid=’11’ sort=’h’></var></hi><lo><var vid=’13’ sort=’h’></var></lo></hcons>
</mrs>
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DELPH-IN: Deep Linguistic Processing using HPSG

I Informal collaboration on tools and grammars: see
http://www.delph-in.net/

I Large grammars for English, German and Japanese;
medium/growing for Spanish, Norwegian, Portuguese,
Korean, French. Many small grammars.

I Common semantic framework: Minimal Recursion
Semantics (MRS) and Robust MRS. RMRS also from
shallower parsing, chunking, POS tagging.

I Parsing and generation (realization), integrated shallower
processing.

I Grammar Matrix: framework/starter kit for the development
of grammars for diverse languages.
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Generation with the ERG

I Bidirectional grammar, but want to recognise multiple
dialects and generate consistently in an appropriate one

I Full generation so far only used in MT
I Needs further work on speed, selection of realisation (i.e.,

the generated string) and implementation in a runtime
system
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Wrapping up

Themes: ambiguity

I levels: morphology, syntax, semantic, lexical, discourse
I resolution: local ambiguity, syntax as filter for morphology,

selectional restrictions.
I ranking: parse ranking, WSD, anaphora resolution.
I processing efficiency: chart parsing
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Wrapping up

Themes: evaluation

I training data and test data
I reproducibility
I baseline
I ceiling
I module evaluation vs application evaluation
I nothing is perfect!
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Themes: evaluation

I training data and test data
I reproducibility
I baseline
I ceiling
I module evaluation vs application evaluation
I nothing is perfect!
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Conclusion

I different processing modules
I different applications blend modules differently
I many different styles of algorithm:

1. FSAa and FSTs
2. Markov models and HMMs
3. CFG (and probabilistic CFGs)
4. constraint-based frameworks
5. inheritance hierarchies (WordNet), decision trees (WSD)
6. mixing hard and soft constraints (Lappin and Leass)
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Wrapping up

More about speech and language processing

I Simone Teufel’s Part II course
I MPhil course: CSTIT

I jointly taught with Dept of Engineering
I see lab web page for details
I financial support available for some applicants
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More about speech and language processing

I Simone Teufel’s Part II course
I MPhil course: CSTIT

I jointly taught with Dept of Engineering
I see lab web page for details
I financial support available for some applicants
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