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1 Introduction

Exercise 1.1 (Slide 23). (1) Provide a forwards assignment axioms: an assignment axiom which takes an
arbitrary pre-condition and calculates a post-condition. That is, give a formula for 777 in terms of P, x
and FE in the following triple.

{P}z = E{7?7}

(2) Show your answer can derive the backwards assignment axiom
{Plx := E]}z := E{P}

(3) Show your answer can be derived from the backwards assignment axiom.
Answers

(1) We can give the rule as

{P}z:=E{3Y. (3z. PAY = E)Az =Y}

(3) We can derive this new forwards assignment axiom as follows. Using the backwards assignment
axiom we can get:

{@Y.(3z. PN\Y =E)Az=Y)[x:=E|}z:=F{3Y. (2. PANY =FE)Az =Y}

applying substitution, we can get:

{@Y.(3z. PN\Y=E)YANE=Y)}zx:=F{3Y. (Ix. PN\Y =E)Az =Y}
renaming x to a fresh variable and extending its scope, we get

{3Y 32" Plx :=2'|ANY =E[z :=2'| N\E=Y)}x:=F{3Y. (2. PAY = E)Az =Y}

We can eliminate the Y in the pre-condition

{32'. Plx == 2| N\E = Elz := 2|}z := F{3Y. 32. PAY = E)Az =Y}
The pre-condition is implied by P

{P}z:=E{3Y. (3z. PAN\Y =E) Nz =Y}

giving the forwards axiom.



(2) We can derive the backwards assignment axiom as
{Plz := E)}z:= E{3Y. (3z. Plx:=E]ANY =E)Az =Y}
By the rule of consequence, we can modify the postcondition to
{Plz:=El|}z:=F{3Y. 3z. Plz:=Y]|ANY =FE)Az =Y}
and dropping the conjunction, and applying the substitution gives
{Plz :==E|}z:=E{3Y. Plz :=Y]|Az =Y}

which simplifies to
{Plx := E]}z := E{P}

Exercise 1.2. Prove the following triples using the proof rules:

{zx =4} r=x+1 {z =5}
{y=3n2=3} y=z+y {y=6Az2=3}
{odd(z)} y:=z+2x+2 {odd(y)Aodd(x)}

Answers

Assign
r=4=zc+1=5 {z+1=5}r:=x+1{z=>5} g r=5b=z=>5

{r=4}x:=2z+1{x =5}

Conseq

Assign
y=3ANz=3=>z+y=06Ax=3 {r+y=6A2=3}y:=zx+y{y=6A2=23}

{ly=3nr2=3ty:=ax+y{y=6A2=23}

Conseq

odd(z) = odd(w + o+ ) Aodd(z)  {odd(@+ 2+ 2) Aodd(@)}y = o + o+ {odd(y) Aodd@)]} ot

odd(z)}y =z + x4+ x{odd(y) A odd(x)

Conseq

The previous style of proofs tends to be quite hard to read, so we can present them as proof outlines.

Exercise 1.3. Do the same proofs as full proof outlines.

Answers
0
v=4p !
{x—i—lz 5} g o +
X == x+1 %ﬁ % 8
{z=5} < =1
{e=5y g |
O 8

Note in your answers it is perfectly fine to drop duplicated annotations where clear, for example, the above
could have been written:

Consequence: x =4 =2 +1=5

=
)
y = X+y i
<



{odd(x + z + x) A odd(z) } g
y = X+X+X 'z
<

~ {odd(z) A odd(z) }

Consequence: odd(z) = odd(z + = + x)

Exercise 1.4. Show

PYC{Q) 0
(X P}C{3IX.Q}
is equi-expressive to
{P}C{Q) o
{(83X.P}C{Q}

provided X ¢ FV(Q)

Answers Show any proof with (2) can be expressed using (1) and the other structural rules.
Observe X ¢ F'V(Q) means 3X.QQ = @, as () is independent of the value of X. So

{rrc{Q} W
(BX.PyC{3X.Q} IXQ=Q
(3x.rPyCc{Q}

For the other direction. Note that it is always true that

Q=3X.Q

Conseq

So,
rre{e  Q=3x.Q

PyeExael
(3X.P}C{3X.Q}

Exercise 1.5. Prove the Hoare logic defined in the first section sound.

Conseq

Proof. By rule induction on a proof. We may assume the semantics holds of the premises, and must show
it holds of the conclusion. For axioms, we must show it holds of the conclusion.

Skip Assume
ocEP
skip, o0 —* skip, o’
Prove
odEP
By inspecting operational semantics, we can see skip cannot reduce. Therefore, ¢ = ¢’. Hence our
obligation holds by assumption.

Assignment Assume
o = Plz := E]
x:=FE, 0 —* skip,o’
Prove
o EP
By inspecting operational semantics, we can see an assignment can only reduce one way to skip, and then

this cannot reduce. Therefore, o’ = o[z := v] where [E], = v.
Remember the lemma given in the notes,

ol Plx:=F] < o[z :=[E],] EP

This proves the case as required.



Sequencing Assume
= {P}Ci{R}
= {R}C{Q}
cEP
C1;Cy, 0 —* skip, o’

Prove
o EQ
We can prove that, if
Cy; Cy, 0 —™ skip, o’

then, there exists o’ such that
Cy,0 —* skip,d”
Cy, 0" —* skip, o’

by induction on the operational semantics.
Therefore, we can use our first inductive hypothesis: |= {P}C1{R}, to prove ¢” |= R, and hence we
can use the second inductive hypothesis to prove ¢’ |= @ as requried.

If Assume

= {PAB}Ci{Q}

= {P A-B}C{Q}

cEP

if Bthen Cy else Cy,0 —* skip, o’

Prove
o' Q
Case split on [B], = true or [B], = false:
First case, assume [B], = true. Therefore, it must reduce as

if Bthen Cyelse Cy,0 — Ci,0 —* skip,o

We know o |= P A B, therefore by inductive hypothesis, we know o’ = Q.
Second case, similar. O



2 Loops and control flow

Exercise 2.1. Show why the loop invariant for the fast exponentiation is not strong enough. Find a proof
of this program.

Answers The exit of the loop requires us to prove
YZ:x*yZ/\z§0:>x:YZ

but we actually need z = 0 to prove this.
We can strengthen the loop invariant to include z > 0, hence then the end of the loop would require us
to prove
YZ:x*yZ/\ZEO/\ng#x:YZ
which is valid.
We must strengthen the pre-condtion of the code, as it is currently not sufficient to establish the loop

invariant.
y=YNz=ZNz2>0

We can verify the loop as

{YZ =z x(yxy)* 1 A(z>>1) >0}

—~
N
3

N
=y oy 2 §
X =Xy, % g
< )3
§
)

T
Sequencing

(Y7 =ax(yxy) == A(z>>1) >0
0

{YZ=ax(yxy)="TA(z>>1) > 5
z:=2401; E
<

&
yi=yry 2
<

Two of the implications we have used are non-obvious. For the first, used in Consequence (A), we know if
z > 0and 2&1 = 1, then we know z = 2(z >> 1)+ land z >> 1 > 0.

YZ:x*yZ/\zzO/\z>0/\z&1:1
= YZ=gzxy2E>>DH A 25>1>0
= YZ=axy*x(yxy)*”>TAz>>1>0

For the second, used in consequence (A), we know if z > 0 and 2z&1 = 0 then z = 2(z >> 1) and
z>>12>0.
2&1=0AYZ =2xy* AN2>0
= YZ=zxy?t>>DAz2>>1>0
= YZ=ax(y*xy)*> 1A(z>>1)>0



Exercise 2.2 (Prime Palindrome).

Answer The proof proceeds as follows:

true
o=ty 3
{19=19}\ ¢ 5
i=19 |z =
{i=19} ) < g
{i > 19 A (Vj.20 < j < i = —prime(j)—palindrome(j))}) ©

while true do
i=i+1;
if i > 100 then break
if not prime(i) then continue
if palindrome(i) then break

1> 100 = V5.20 < j < 100 = —prime(j) V ﬂpalindrome(j)}

1 A20 <4< 100 = prime(i) A palindrome(i)
1> 100 = V4.20 < j < 100 = —prime(j) V —palindrome(j)
A 20 < i <100 = prime(i) A palindrome(i)

While (A)

To prove the while loop (A), we must show the loop invariant and the negation of the guard imply the
break assertion. This is trivial as the guard is true, hence its negation is false, and thus implies anything.

We must also show that the body preserves the loop invariant in the context
break : i > 100 = v5.20 < j < 100 = —prime(j) V —palindrome(j)
A 20 < i <100 = prime(i) A palindrome(i)
and continue : i > 19 A (V4.20 < j < i = —prime(j)—-palindrome(j))



=t 58
i=i+1; 2 8
{i > 19 A (V4.20 < j <i = —prime(j) V ~palindrome(j))} ) <<

if i > 100 then

{i>100 A (V4.20 < j <100 = —prime(j v g
< w2

break o g
m O

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, +

gi <100A i > 19 A (V.20 < j < i = —prime(j) V ﬁpalindrgmp(j))}

prej
if not prime(i) then
[=prime(i) Ni <100AG>19A
{(Vj.QO < j<i= -prime(j)V —\palindrome(j))}

continue %

continue

[prime(i) Ai < T00 A7 > 19 A

{(Vj.20 < j <i= —prime(j)V ﬂpalindrome(j))}
skip
prime(i) Ai < 100 Ad > 19 A

{(Vj.QO <j<i= —prime(j)V ﬂpalindmme(j))}

{palindrome(i) A prime(i) Ni <100 AP > 19} o §
break § g
{false} =g |
else -
—palindrome(i) Ai < 100 Ai > 19 A o
(V5.20 < j < i = —prime(j) V —palindrome(y)) 5 %
skip n §

Exercise 2.3. Give a rule for do C while B.

{PV(IANB)}C{I}
{P} do C while B{I AN—B}

Exercise 2.4. The exercise to prove the soundness of the while rule with break and continue is perhaps too
hard. When I set the example I forgot the proof required you to induct on the length of reduction. I have
split it into two here. First, we will show the soundness of the while rule without break and continue, this
will illustrate the induction on the length argument. The next exercise will extend this to deal with break

and continue.

Seq



Answer We can define the while evaluation as

elwhile B do C],0 — €[C;while B do C],o where [B], = true
elwhile B do Cl, 0 — ¢€[skip], o where [B], = false

We define the n step reduction —™ as applying n reduction steps to a term.
We can then define semantics of an assertion for n steps, written |=,, { P}C{Q}, as

ocEP=
vm < n.C,o =™ skip,c’ = o' = P

The original semantics from the notes that does not account for the number of steps is equivalent to Vn. |=,

{Pre{Q}y

We then prove the while rule sound by assuming

={PAB}C{P}
PAN-B=Q
Vm < n. Em {P}while B do C{Q}

and must prove

E=n {P} while B do C{Q}

Hence, we can assume
cEP
while B do C, o0 —™ skip, o’
m<n

and must prove
o E=Q
There are two cases for the reduction of while B do C, o either B evaluates to true or false. First case,

assume B is false in o, therefore
while B do C,o0 — skip, o

Hence, 0 = ¢’. By our assumption P A =B = ), we know that ¢’ satisfies @) as required.
Second case, assume B evaluates to true in o. Therefore, we know

cE=PAB
C,o —" skip,o”

By assumption from premise, = {P A B} C { P}, we know:
0_// ): P

Hence,
while B do C, o
— C;while B do C,o
—% skip; while B do C, o
— while B do C, "
—m=1=2 while B do C, o’

Therefore, we can use assumption about shorter lengths of reduction, Vm < n. |=,,, {P} while B do C {Q},
to show o’ = Q.

Exercise 2.5. Prove the soundness of while rule with break and continue, that is, prove

(break : P,continue : Q ={Q AB}C{Q}) AN (QA-B=P)
A (Ym < n.break : P’ continue : Q' =y, {Q}while B do C{P})
= (break : P',continue : Q' =, {Q}while B do C{P}



Answer Assume

(break : P, continue : Q = {Q A B}C{Q})
(QN—-B=P)
ocEQ

Prove Vm < n.
1. while B do C,[|,0 —™ €[break],[],0’ = o' = P’
2. while B do C,[],0c =™ €[continuel,[],0' = ¢’ = Q'
3. while B do C,[],0 =™ skip,[],0' = ¢ E P

We can prove that
while B do C\[],o

cannot reduce to
elbreak],[], o’

This can be seen simply by inspecting the semantics. Similarly, the same is true for continue.
Hence, we can assume
while B do C,[],0 —™ skip, ||, o’

and must prove
odEP
From the semantics, we know that

while B do C,[],0 — C;if =B then break else continue, while B do C, o

Now consider the cases for how this reduces, either C' reduces to e[break], e[continue], skip or it doesn’t
terminate. By assumption it terminates, therefore consider the remaining three cases. Assume C, [|, o —*
elbreak], ], c”, therefore

while B do C,[],o

—  C;if =B then break else continue, while B do C, o

—  ¢[break];if —B then break else continue, while B do C,o"
= €'[break],while B do C,o"

— skip, [,0”

By assumption, with (break : P, continue : Q = {Q A B}C{Q}), we know ¢” |= P as required.
Assume C, [], 0 —* €[continue],[], 0", therefore

while B do C,[],o

—  C;if =B then break else continue, while B do C, o

—  €|continue];if —B then break else continue, while B do C,o"
= ¢[continue],while B do C,c"”

— while B do C,[],c"

By assumption, with (break : P, continue : Q = {Q A B}C{Q}), we know ¢” |= Q. Hence, we can use
assumption about shorter length reductions to prove the total reduction satisfies the specification.

[Note: This proof lacks some detail about the reductions, but is sufficient to outline the soundness of
the while rule]



3 Functions

We will use the context
{return = fib(x)}return

and must verify the body. We can proceed as follows

It st
8
\
[\
>
<
Il
~
~
=
8
X
==
T
Sequencing

xZO}
ifx=1then .
r=0Az=1} 3
{1=Ffib(2)}\ g g
return 1 % g
{false} % g |
{ez0nz#1) o
else
{z>0nz #1} o
skip v
{zz0na#1}) 7
ez One Ly )
{z>0A2#1}
if x = 0 then
{z>0na£1A2=0}\ g
{0= fib(z)} £ 5
return 0 28 IS3
{false} o %
AL T o
{ez2p © |
else -
{z=0na#TAz£0} 2
{zzOAz#l/\z#O} o §
skip g ST
{sz/\m#l/\x#O} @ %
{z>2} ' O
{le>2p
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The second, B, is

|
m
><
[\)
v
Call
Invariance
Logical Var
T
Consequence

{'HX 'X' >0ANX=z-1AX=2—1Ay=fiblx—-2)}
X>0AX=z—-1AX=0-1Ay= fib(zx —2)} . . 3
{(X>0nAX=2-1}\ _ 2 = 8
z:=f(x-1); )»8 -% E = ?‘;
{z=pdX)} : |2 |z
z=fib(X)ANX =2 —1Ay= fib( )} A — O
{IXy=fib(X)ANX =z —1Ay= fib(z —2 )y
yrz= @y .
Exercise 3.1. Prove the two functions call rules are derivable from each other:
D {PH(X{Q}F {PIX = E] Ay = Y}y i= S(B){(Gy-QLX = B] Ay = Y)lreturn := ]} i
FPI @ T (PIX = ELhy =Y A X = (Bly = V)l = F(B)(CGrQIX = B[Ny =Vlreturn =y A X = Bly =YD} gy
L (PLO(QIF (PAX =B A X = (Bly=Y]) Ay =Yl = J@IN = (Bl Vlcturn = A X = (B~ V1) S
D APH QY F (3Y- PAX = EAX = (Bly = V) Ay =Y}y = J(B){FVQIX = (B [y = V]llreturn ==y AX = (Bly = YD}

FAPH(XO{QIF{PANX = E}y = f(E){Q[TetuT yl}

By condition on context we know free variables of P are X and of Q are X, return.

(Fy.Q[X := E] Ay =Y)[return :=y| AN X = (Ely :
= (F.QX :=Elly:=Y|ANy=Y)[return =y
= Q[X = (Ely :=Y))][return :=y]| AN X = (Ely :=Y])

BS
>l
I

o

=
I

=

Follows as ) doesn’t have y as a free variable.

QX = (Ely :=Y])][return ==y AN X =
= JY.Q[return :=y|[X = (Ely =Y]))|] AN X = (Ely :=Y])
= AY.Q[return :=y| AN X = (Ely :=Y])

= JY.Q[return = y]

= Qreturn := y]

We have made use of the following logical facts

true=3X. X =F
X=FANP&PX:=E|ANX=F

4 Heap - Encoding as an array

Exercise 4.1. Prove createlist body meets its specification

11



The definition of list in the notes is incorrect for this. It should have included two locations in the
footprint for the list.

list(z, vs) = x=null Nvs = {}V
»UY T Jy. @heaplx] = y Alist(y,vs \ {z,x + 1}) Az, 2+ 1} Cos
Assume return has specification

Jus.list(return,vs) A Vi ¢ vs.Qheapli] = oldheapli] A Vi € vs.oldheapli] = Qunalloc

and create list has specification

—~

©

S =

I 3

!

IS

=l

=

&

>

g

hS]

—
©
S
3
2
s
o
~——

Assumption

Prove

X := new;

if nondet() then
y .= create_list ();
[x]:=y;

return x

Goal

We can give a proof outline as follows

12



X = new;
Q@Qheap[x] = 0 A Qheaplz + 1] =0 <
AVy € {x,z + 1}.oldheaply] = Qunalloc
Ay ¢ {z,z + 1}.oldheaply] = Qheaply]

Ay € {x,x + 1}.oldheaply] = Qunalloc
AVy & {x,z + 1}.oldheaply] = Qheap|y]
if nondet() then
(@heapls] =0 A @heaplz £ 20 Y
{/\Vy € {z,z + 1}.oldheaply] = @unalloc}
[y] = @heaply]

"{'@'héiz';;[x] =0AQheaplz +1]=0 } I

Ay & {xz,z + 1}.oldheap

y := create_list ();
—Q )
[x]:=y; g
Jus. list(z,vs) -
AYy € vs.oldheaply] = Qunallocc §;
\AVy ¢ vs.oldheaply] = Qheaply] ) =

(@Qheaplz] =0 A Qheaplz + 1] =0 )
Ay € {z,z + 1}.oldheap[y] = Qunalloc
Ay ¢ {x,x + 1}.0oldheaply] = Qheap|y]

skip

Jus. list(xz,vs)
AYy € vs.oldheap(y] = Qunalloc

T
Skip+Conseq

AYy ¢ vs.oldheaply] = Qheaply]

Vz.Qheap|z] = Qunalloc A Qheap|z + 1] = Qunalloc

= @Qheap{z «— 0,z + 1 « 0}[z] =0 A Qheap{z «— 0,2+ 1 «— 0}z + 1] =
Ay € {z, 2z + 1}.oldheaply] = Qunalloc

Ay & {z,z + 1}.oldheaply] = Qheap{z — 0,z + 1 «— 0}[y]

AYy € {z}.oldheaply] = Qunalloc A oldheaply + 1] = Qunalloc
Ay ¢ {x}.oldheaply] = Qheaply] A oldheaply + 1] = Qheaply + 1]

X := new;
{@heap[x] =0AQheaplzr+1] =0 }

Q@Qheap[x] = 0 A Qheaplz + 1] =0
Ay € {x}.oldheaply] = Qunalloc A oldheaply + 1] = Qunalloc
AVy ¢ {z}.oldheaply] = Qheaply] A oldheaply + 1] = Qheaply + 1]

13

Conseq




oldheap = Qheap
= Vy.oldheap|y] = Qheaply]
= Vz.Qheap|z] = Qunalloc A Qheap|z + 1] = Qunalloc
= oldheap|z] = Qunalloc A oldheap|z + 1] = Qunalloc
AVy.oldheaply] = Qheaply]
= Vz.Qheap|z] = Qunalloc A Qheap[z + 1] = Qunalloc
=0=0A0=0
Ay € {z,z + 1}.0ldheaply] = Qunalloc
Ay & {z,z + 1}.0ldheaply] = Qheap|y]
= Vz.Qheap|z] = Qunalloc A Qheap[z + 1] = Qunalloc
= @Qheap{z «— 0,z 4+ 1 «— 0}[z] =0 A @Qheap{z — 0,24+ 1 —0}[z+1] =0
AVy € {z,z + 1}.oldheaply] = Qunalloc
Ay & {z,z + 1}.0oldheaply] = Qheap{z — 0,z + 1 « 0}[y]

To prove (B),
(Qheap[z] = 0 A Qheap[z +1]=0 Yy
Ay € {x, 2z + 1}.oldheaply] = Qunalloc
AVy & {z,x + 1}.oldheaply] = Qheaply] )

Jdoh2. oh2[x] = 0 A oh2[z + 1] =0

Ay € {x,x + 1}.0ldheaply] = Qunalloc
AVy ¢ {z,z + 1}.oldheaply] = oh2[y]A
oh2 = Qheap

y := create_list ();
Jus. list(x,vs)
AYy € vs.oldheap(y] = Qunalloc

Call Rule

Joh2. oh2[z] = 0'A oh2[z +1] = 0

Ny € {x,x + 1}.0oldheaply] = Qunalloc

AVy & {xz,z + 1}.0ldheaply] = oh2[y|A

Jus. list(y,vs)

AYw € vs.oh2[w] = Qunalloc

AYw ¢ vs.oh2[w] = Qheap|w]
{éi;ls'.'@k'e'db[i] =0Avs O {z,x+ 1} = {} Alist(y,vs))

Invariance+VarElim

\
Conseq + Seq + Conseq

AYw € vs U {z,z + 1}.oldheap[w] = Qunalloc

AYw ¢ vs U {z,z + 1}.oldheap[w] = Qheap|w]
[x]:=Yy;

Jus. Qheapz] =y Avs N {z,z + 1} = {} Alist(y, vs)
Ay € vs U {x,x + 1}.oldheaply] = Qunallocc

AVy ¢ vs U {x,x + 1}.oldheaply] = Qheapy]

Assign + Conseq

You should justify the four implications used in this proof.
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