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Some notation

RV
IID
PGF Gx(2)
mgf Mx(t)
X ~ U(0,1) RVX U(0,1), etc
I(A) function of the event A
P(A) that event A occurs, e.g. A= {X = n}
E(X) of RV X
E(X") of RV X,forn=1,2,...
Fx(x) , Fx(x) =P(X < x)
fx(x) of RV X given, when it exists, by Fj(x)
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Limits and inequalities

We are familiar with limits of real numbers. If x, =1/nforn=1,2,...
then lim,_. X, = 0 whereas if x, = (—1)" no such limit exists.
Behaviour or is an important characteristic
of everyday life.

In this section we will be concerned with these notions of limiting
behaviour when the real numbers x, are replaced by random
variables X,. As we shall see there are several distinct notions of
convergence that can be considered.

To study these forms of convergence and the limiting theorems that
emerge we shall on the way also gather a potent collection of
concepts and tools for the probabilistic analysis of models and
systems.

Theorem (Markov’s inequality)
IfE(X) < oo then for any a > 0,

a
Proof.
We have that
1 |X|>a

I(|X| > a) = ~

(Xl = a) {0 otherwise .
Clearly,

|X| > al(|X| > a)

hence

E(1X]) = E(al(|X| = a)) = aP(|X| = a)

which yields the result.
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Probabilistic inequalities

To help assess how close RVs are to each other it is useful to have
methods that provide upper bounds on probabilities of the form

P(X > a)
for fixed constants a, and where, for example, X = [X; — X3|.
We shall consider several such bounds and related inequalities.
» Markov’s inequality

» Chebychev’s inequality
» Lyapunov’s inequality

Theorem (Chebychev’s inequality)
Let X be a RV with mean 1. and finite variance o2 then for all a > 0

LN}

g
P(\X*M\Za)ﬁg-

Proof.
Consider, for example, the case of a continuous RV X and
put Y = |X — u| then

o? =E(Y?) = /yzfv(y)dy :/ yzfv(y)dy+/ Y2 fy(y)dy
0<y<a y>a

so that
0?2 >0+ &P(Y > a).
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Theorem (Lyapunov’s inequality) Moment generating function
r\1/r s\1/s L
Ifr >s>0thenE(|X|")"/" > E(|X]?)"/s. Definition
Proof. The (mgf) of a RV X is given by
i . O
Omitted My (1) = E(e)
and is defined for those values of t € R for which this expectation
exists.
Using the power series & = 1 + x + x2/2! + x3/3! + - .. we see that
Mx(t) = E(e™) = 1 + E(X)t + E(X?)£2/2! + B(X®)3/3! - -
and so the n" moment of X, E(X"), is given by the coefficient of t"/n!
in the power series expansion of the mgf Mx ().
Elementary properties of the mgf Fundamental properties of the mgf
1. If X has mgf Mx(t) then Y = aX + b has mgf My(t) = e®*Myx(at). 1. : to each mgf there corresponds a unique distribution
2. If Xand Y are then X + Y has function having that mgf.
mgf My y(t) = Mx()My(t). In fact, if X and Y are RVs with the mgf in some
n (n) () ; . region —a < t < awhere a > 0 then X and Y have the
3. E(X") = M,”(0) where M" is the n"” derivative of M. distribution.
4. If Xis a discrete RV taking values 0, 1,2, ... with 2. - if distribution functions F,(x) converge pointwise to a

Gx(2) = E(2X) then Mx(t) = Gx(e"). distribution function F(x), the corresponding mgf’s (where they

exist) converge to the mgf of F(x). Conversely, if a sequence of
mgf’s M,(t) converge to M(t) which is continuous at t = 0,

then M(t) is a mgf, and the corresponding distribution

functions F,(x) converge to the distribution function determined

by M(t).
Example: exponential distribution Example: normal distribution
If X has an exponential distribution with parameter A > 0 Consider a normal RV X ~ N(u, ?) then fx(x) = g‘ﬁe*(’(*“)z/z"2
then fx(x) = Ae™ for 0 < x < cc. Hence, for t < ), so that
0o S had 1 2,5 2
My (t) = fX)\ —)\xd — / A —()\—t)xd My (t) = / etx e—(x—u) /20 dx
x(t) /0 ere™ V= | Ae X x (1) Iy~
- ,Lef(/\fwx - - L _ 1 /OO e~ (2t +(x—p)?)/20° gy
A=1) o A-—t ovV2r )
Fort <A So, by completing the square,
SENY FRNA I A o
n—1 A - A A2 My(t) = ertto’t/2 {7/ e*(X*(u+t(72))2/202} dx
X( ) U\/E —o0

and hence E(X) = 1/X and E(X?) = 2/)2 so that _ gutto?f2

Var(X) = E(X?) — (E(X))? = 1/)2.
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Example: uniform distribution
Consider a uniform RV X ~ U(a, b). Then

S a<x<b
fx(x) = ¢ b-a
x(x) {0 otherwise .

Hence,

b elx
Mx(t):/ b
a

- [6%.

Notions of convergence: X, — X as n —

For a sequence of RVs (X;),>1, we shall define several distinct
notions of convergence to some RV X as n — oc.

Definition (Convergence in distribution)
X, 2 Xxif Fx,(x) — Fx(x) for all points x at which Fx is continuous.

Definition (Convergence in probability)
X, £ X it P(|X, — X| > €) — Oforall e > 0.

Definition (Convergence almost surely)
Xn 255 X it P(Xy — X) = 1.

Definition (Convergence in r’” mean)
Xn 5 X if B(|X, — X|") — 0.

Theorem
IF X, 255 X then X, £ X.

Proof.
Omitted. O
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Theorem (Chernoff’s bound)
Suppose that X has mgf Mx(t) and a € R then for all t > 0

P(X > a) < e~ @Mx(t).

Proof.
Using Markov’s inequality, we have that

P(X > a) = P(eX > )
E(etX)

e
= e*t"Mx(t)

]

Note that the above bound holds for all t > 0 so we can select the
such bound by choosing t to minimize e~@Mx(t).

Convergence theorems

Theorem
If X, 255 X then X, &> X.

Theorem
It X, &5 X then X, 2 X.

Theorem
Ifr>s>1andX, 5 X then X, = X.

Theorem
Ifr>1and X, % X then X, = X.

Theorem
IF X, 25 X then X, 2 X.

Proof
We prove this theorem as follows. Fix, ¢ > 0 then
Fx,(x) =P(Xn <xNX>x+€)+PXa < xNX < Xx+e¢)

since X > x + e and X < x + ¢ form a partition. But if X, < x
and X > x + ethen | X, — X| > ¢
and {X, < xNX < x+ e} C {X < x+¢€}. Therefore,

Fx,(x) <P(|Xp— X| > €) + Fx(x+¢).
Similarly,

Fx(x—e)=P(X<x—enNXp>x)+P(X <x—enNX, < X)
<P(|Xn — X| > €) + Fx,(X) .
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The proof is completed by noting that together these inequalities
show that

Fx(x — €) = P(1Xn — X| > €) < Fy,(x) < P(1Xo — X| > €) + Fx(x + ).

But X, & X implies that P(| X, — X| > ¢) — 0. So, as n — oo, Fx,(x)
is squeezed between Fx(x — ¢) and Fx(x + ¢).

Hence, if Fx is continuous at x, Fx,(x) — Fx(x) and so X, 2x. o
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Theorem
Ifr>1and X, = X then X, = X.

Proof.
By Markov’s inequality, for all e > 0

_E(X - X))

P(| Xy — X| > ¢)

€

But X, = X implies X, 1, X and so the right hand side tends to zero
and as required X, £x. O
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WLLN

Theorem (Weak Law of Large Numbers/WLLN)
Suppose (Xn)n>1 are IID RVs with finite mean . and finite variance o2
then X, 2 u.

Proof.
Recall that E(X,,) = 1 and Var(X,) = o2/n. Hence, by Chebychev’s
inequality, for all ¢ > 0

o?/n_ o*

]P)(|YH7M| > 6) < 2 = ne2

and so, letting n — oo,
P X, —p|>€)—0

hence X, = 1 as required. O
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Theorem
Ifr>s>1andX, 5 X then X, > X.

Proof.
Set Y, = | X, — X| > 0 then by Lyapunov’s inequality

E(Y))'" > E(Y3)'*.

Hence, if E(Y,) — 0 then E(Y;) — 0. O

Limit theorems

Given a sequence of RVs (X;),>1, let

Sn=Xi+Xo+---+ X, and X, = Sy/n.

What happens to X, for large n?
Theorem (Weak Law of Large Numbers/WLLN)

Suppose (Xn)n>1 are IID RVs with finite mean . (and finite
variance o2) then X 2 p.

Theorem (Strong Law of Large Numbers/SLLN)
Suppose (Xn)n>1 are 11D RVs with finite mean . (and finite fourth

moment) then X, 2% 1.

Note that convergence to x in the WLLN and SLLN actually means
convergence to a RV, X, with P(X = p) = 1.

SLLN

Theorem (Strong Law of Large Numbers/SLLN)
Suppose (Xp)n>1 are IID RVs with finite mean p. (and finite fourth
moment) then X, 255 p.

Proof.
Omitted. O
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Applications: estimating probabilities

Suppose we wish to estimate the probability, p, that we succeed
when we play some game. Fori=1,..., n, let

X; = I({i"game is success}).

So X, = m/nif we succeed m times in n attempts.
We have that = E(X;) = P(X; = 1) = p so then

m/n2p

by the SLLN.

Thus we have shown the important result that the empirical estimate
of the probability of some event by its observed sample frequency
converges to the correct value as the number of samples grows.
This result forms the basis of all simulation methods.

124

Proof.

Observe that p(X;) is a RV taking the value p(x) with probabilty p(x)
and similarly p(Xi, Xz, ..., Xp) is a RV taking a value p(x1, X2, . . ., Xn)
with probability p(x1, X2, . .., Xn). Therefore,

1 1 5
“h log, p(X1, Xz, ..., Xn) = “h log, HP(X/)
i=1

1 n
= ; log, p(X))

=13~ (“10g, (%)
i=1

n
£ E(~ log, p(X)))
=—> p(x)log, p(x)

xel

= H(X)

by WLLN

Central limit theorem

Theorem (Central limit theorem/CLT)
Let (Xn)n>1 be a sequence of IID RVs with mean y, variance o2 and
whose moment generating function converges in some
interval —a < t < awitha > 0. Then
Yn — K D
Z, = Z ~ N(0,1).
n U/\/E - ( )
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Applications: Shannon’s entropy

Theorem (Asymptotic Equipartition Property/AEP)
If X, is a sequence of IID discrete RV with probability distribution
given by P(X; = x) = p(x) for each x € | then

where Shannon’s is defined by

H(X) = H(X) = - = H(Xa) = = 3 p(x) log, p(x)
xel

and

AEP implications
By the AEP, for all e > 0,

1
nILmOO]P(\ -5 log, p(X1, Xz, ..., Xp) — H(X)| <€) =1

lim P(H(X) - e < ‘,17 log, P(Xi, Xa. ..., Xn) < H(X) +¢) = 1
lim P(=n(H(X) = ) = logy p(X1, Xe, .., Xa) = =n(H(X) + €)) = 1

Jim P2 "HX)+) < p(Xq, Xo, ..., Xp) < 27 "HX)=)) =4

Thus, the sequences of outcomes (x1, Xz, . .., Xp) for which

27 "HXD) < p(xq, xa, .. ., Xp) < 27HX)=)

have a high probability and are refered to as . An
efficient (optimal) coding is to assign short codewords to such
sequences leaving longer codewords for any non-typical sequence.
Such long codewords must arise only rarely in the limit.

Proof of CLT
Set Y; = (X; — p)/o then E(Y;) = 0 and E(Y?) = Var(Y;) = 1 so

t2
Myl(t) =1+ 5 + O(tg)

where o(t?) refers to terms of higher order than t> which will therefore
tendto 0 as t — 0. Also,

Xn—p 1 &
z,=2" =—> V.
" a/y/n \/ﬁ; !

- (on ()
o)

2
—e’?  as

Hence,

n—oo.

But ef’/2 is the mgf of the N(0, 1) distribution so, together with the
continuity property, the CLT now follows as required.
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CLT example CLT example: symmetric

Suppose Xi, Xz, . .., X, are the 1ID RVs showing the n sample 10,000 replications

outcomes of a 6-sided die with common distribution

]
PXi=j))=p, j=12..86 =20

Set S, = X; + Xo + -+ - + X, the total score obtained, and consider

the two cases W

» symmetric: (p;) = (1/6,1/6,1/6,1/6,1/6,1/6) so gg
ogo

Frrrrt
cocooo
Protttt
SRES®D

that 1 = E(X;) = 3.5 and 02 = Var(X;) ~ 2.9
» asymmeiric: (pj) = (0.2,0.1,0.0,0.0,0.3,0.4) so 2
that 1 = E(X;) = 4.3 and 02 = Var(X;) =~ 4.0 Z n=10
for varying sample sizes n=5,10,15 and 20. A

The CLT tells us that for large n, S, is approximately distributed
as N(nu, no®) where 1 and o2 are the mean and variance,

|

Lt

rrrrt
cocooo
oooo—
SRES®S

=5
respectively, of X;. %%% . 0 L
003 = -
0.00 T T T T T T T
0 20 40 60 80 100 120
score
130 131
CLT example: asymmetric Confidence intervals |
10,000 replications One of the major statistical applications of the CLT is to the
construction of confidence intervals. The CLT shows that
Il Il Il Il Il Il Il —
n=20 7 _ Xn— 1
- ~0.10 " o/vn
- - 005
S]] — 0.00 is asymptotically distributed as N(0, 1). If, the true value of o2 is
n=15 unknown we may estimate it by the sample variance given by
0.10 — -
005 — - 1 Z _
g’ 0.00 M S? = n=1 Z()(j*xn)z.
) =l i=1
&} - ~ 0.10
- mﬂm _ 005 For instance, it can be shown that E(S?) = o2 and then
- 0.00 _
n=5 Xn—p
0.10 — - S/vn
005 — -
0.00 et - - - - is approximately distributed as N(0, 1) for large n.
0 20 40 60 80 100 120
SCOLC 132 133
Confidence intervals I Confidence intervals: example
Define z, so that P(Z > z,) = a where Z ~ N(0, 1) and so Consider a collection of n 11D RVs, X;, with common
distribution X; ~ Pois()). Hence,
]P(*Za/g <Z< Za/g) =1-a.
L Ne™ .
Hence, P(Xi=j) = ji j=0,1,...
Pz < Xn—pb <Zap|m~1-a with mean E()Q)_: A _
S/vn Then a 95% confidence interval for the (unknown) mean value X is
- s - s given by -
]P(anza/2%<u<xn+za/gﬁ>%170&. Xni1968/\/ﬁ
. o . . where Z0.025 = 1.96.
The interval X, + z,/2S/v/n is thus an (approximate) 100(1 — «) Alternatively, to obtain 99% confidence intervals replace 1.96
percent confidence interval for the unknown parameter p. by Zo.005 = 2.58.

134 135
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Confidence intervals: illustration with A = 25

100 runs, n=10 100 runs, n=40

15 20 25 30 35 15 20 25 30 35
confidence interval confidence interval

136
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Transition probabilities

The dynamics of the Markov chain are governed by the
P(Xp = j| Xn—1 = i).

Definition (time-homogeneous MC)
A Markov chain (X) is if

P(Xp = j|Xn—1 = 1) =P(Xy =j|Xo =)
forall n> 1 and states i,j € S.

» We shall assume that our MCs are time-homogeneous unless
explicitly stated otherwise.

140
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Monte Carlo simulation

Suppose we wish to estimate the value of 7. One way to proceed is

to perform the following experiment. Select a

point (X, Y) € [-1,1] x [-1, 1], the square of side 2 and area 4 units,

with X and Y chosen independently and uniformly in [—1, 1]. Now

consider those points within unit distance of the origin then

P((X, Y) lies in unit circle) = P(X% + Y2 < 1) = _areaof dircle

area of square 4

Suppose we have access to a stream of random

variables U; ~ U(0,1) then 2U; — 1 ~ U(—1,1). Now

set X; = 2Upj—1 — 1, Vi = 2Uz — 1 and H; = I({X? + Y? < 1}) so that
E(H)=B(Xf + Y/ <1)=7.

Then by the SLLN the proportion of points (X;, Y;) falling within the

unit circle converges almost surely to 7 /4.

Markov chains

Definition (Markov chain)

Suppose that (X,) n > 0 is a sequence of discrete random variables
taking values in some countable state space S. The sequence (X,) is
a if

P(Xn = Xn|Xo = X0, X1 = X1, ..., Xn_1 = Xn_1) = P(Xp = Xn| X1 = Xn_1)

forall n > 1 and for all xo, X1,...,X, € S.

Since, S is countable we can always choose to label the possible
values of X, by integers and say that when X, = i the Markov chain is
in the or

Transition matrix

Definition (Transition matrix)
The , P, of a MC (X,) is given by P = (p;;) where for
alli,jeS

Pij = P(Xp = jIXp-1 =1).

» Note that Pis a , that is, it has non-negative
entries (p; > 0) and the row sums all equal one (3, pj = 1).

» The transition matrix completely characterizes the dynamics of
the MC.
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Example
Suppose the states of the MC are S = {1, 2,3} and that the transition

matrix is given by
1/3 1/3 1/3
P=[1/2 0 1/2].
2/3 0 1/3
» Thus, in state 1 we are equally likely to be in any of the three

states at the next step.

» In state 2, we can move with equal probabilities to 1 or 3 at the
next step.

» Finally in state 3, we either move to state 1 with probability 2/3 or
remain in state 3 at the next step.

Chapman-Kolmogorov equations

Theorem (Chapman-Kolmogorov)
For all states i,j and for all steps m, n

P =" piey
k

Hence, P(m+n) = p(m) p(n) and P(") = P", the n'" power of P.
Proof.

P = P(Xmin = 1Xo = 1) = > P(Xmsn = j, Xm = K| Xo = i)
k
=Y " P(Xmin = j|Xn = k, Xo = I)P(Xm = K| Xo = i)
k
=" B(Xmin = jl1Xm = K)P(Xm = k[ Xo = i)

k
=S P
k

Classification of states

Definition (Accessibility)

If, for some n > 0, p,(/-”) > 0 then we say that state j is from
state /, written i ~ j.
If i ~ jand j ~~ i then we say that j and j

Observe that the relation
» reflexive
» symmetric
» transitive

, written / «~ j.

w8

and hence is an equivalence relation. The corresponding equivalence
classes partition the state space into subsets of states, called
, that communicate with each other.
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n-step transition matrix

Definition (n-step transition matrix)
The is P(" = (pfj”)) where

pl(/_n) =P(X,=j|Xo=1).

Thus P() = P and we also set P(©) = |, the identity matrix.

The Chapman-Kolmorgorov equations tell us how the long-term
evolution of the MC depends on the short-term evolution specified by
the transition matrix.

If we let A = P(X,, = i) be the elements of a row vector (")
specifying the distribution of the MC at the n'" time step then the
follow holds.

Lemma

Alm+n) _ y(m) p(n)

and so,
A — 30 p()

where A©) s the initial distribution \* = P(X, = /).
Proof.

N = P(Xnin =) = > P(Xmin = j|Xm = )P(Xm = i)

1

— (m) p(m) _
- Zx,m P = (\mP)

Irreducibility

» A communicating class, C, that once entered can not be left is
called ,thatis pj=0forallie C,j ¢ C.

» A closed communicating class consisting of a single state is

called
» When the state space forms a single communicating class, the
MC is called and is called otherwise.
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Recurrence and transience Recurrence and transience, ctd

Write for n > 1 » Observe that if we return to a state i at some time n then the

o ) ] ) evolution of the MC is independent of the path before time n.

G =P(Xi #),o o Xnor £, Xn = | Xo = 1) Hence, the probability that we will return at least N times is £¥.

" . - o ) . . » Now, if i is recurrent fN = 1 for all N and we are sure to return to
so that ;" is the probability starting in state / that we visit state  for state i infinitely often.
the attime n. Also, let » Conversely, if state i is transient then f¥ — 0 as N — oo and so
fi= Z £m there is zero probability of returning infinitely often.
if
n>1

the probability that we ever visit state j, starting in state /.
Definition

» If fj < 1 then state i is

» If f; = 1 then state i is

148 149

By examining the first time, r, that we return to /i, we have
Theorem form=1,2,... that
> iis transient < Y, , i converges (m Z 70 g1
- Pii pi -
> iisrecurrent < - -4 p,(,”) diverges ! !

Ifi and j belong to the same communicating class then they are Now multiply by z™ and summing over m we get
either both recurrent or both transient — the
Proof Pi(z) =1+ z"p{"
First, define generating functions > m
— 1432y
9] =1 =1
Pi(z) = Zp”” and  Fi(z)=)_ £ zn T
pard 14 Z fér)zr Zpﬁm—r)zm—r
©) _ ) _ -
where we take p;’ =1and f;’ = 0. =1+ Fi(2)Pi(2)
Thus, P;(z) = 1/(1 — Fii(2)). Now let z ~ 1 then Fy(z) — Fi(1) = fi Mean recurrence time
and P;(2) — Z"p”n First, let
If iis transient then f; < 1 so Zn " converges. Conversely, if / is T=min{n>1:X,=j}

recurrent then f; = 1 and >_ p,-,-”) dlverges.
Furthermore, if i and j are in the same class then there exist mand n
so that p,(-/-m) > 0 and p},") > 0. Now, forall r >0

be the time of the first visit to state j and set T; = oo if no such visit
ever occurs.
Thus, P(T; = oo| Xy = i) > 0 if and only if / is transient in which

p(m+r+n) > pt p(,)p(,,) case ]E(T,'|X0 = i) =00
! B Definition (Mean recurrence time)
so that Z,p}j’) and >, pf,k) diverge or converge together. O The , i, of a state i is defined as

S, 0t if i is recurrent
if i is transient.

u,—E(nlxo—i)—{

» Note that ; may still be infinite when i is recurrent.
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Positive and null recurrence

Definition
A recurrent state i is
> if 11j < oo and
> if pj = oo.
Periodicity

Let d; be the greatest common divisor of {n: P,(,'n) > 0}.
Definition
» Ifd;=1theniis

» Ifd; > 1theniis with period d;.

» It may be shown that the period is a class property, that is,
ifi,j e Cthen d; = d.
We will now concentrate on irreducible and aperiodic Markov chains.

Markov’s example

Markov was lead to the notion of a Markov chain by study the
patterns of vowels and consonants in text. In his original example, he
found a transition matrix for the states {vowel, consonant) as

p_ 0.128 0.872
~\0.663 0.337) -

Taking successive powers of P we find

= (0.595 0.405) = (0.345 0.655) Pt — <0.478 0.522>

0.308 0.692 0.498 0.502 0.397 0.603
As n — oo,
pn_, 0.432 0.568
0.432 0.568) °
Check that = = (0.432,0.568) is a stationary distribution, that
isTP = .
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Example: simple random walk

Recall the where X, = 3", Y; where (Y,) are
IID RVs with P(Y; = 1) = p=1—P(Y; = —1). Thus X, is the position
after n steps where we take unit steps up or down with probabilities p
and 1 — p, respectively.

It is clear that return to the origin is only possible after an even
number of steps. Thus the sequence (pég)) alternates between zero
and a positive value.

Stationary distributions

Definition
The vector 7 = (mj;j € S)isa
transition matrix P if
1. m>0forallje Sand 3 gm =1
2. == 7P, or equivalently, m; = 3~ s mipj.

for the MC with

Such a distribution is stationary in the sense
that 7P? = (rP)P = nP = wand foralln > 0

7P =1.

Thus if Xp has distribution 7 then X, has distribution = for all n.
Moreover, = is the of X, as n — oc.

Limiting behaviour as n — oo

Theorem (Erdds-Feller-Pollard)
For all states i and j in an irreducible, aperiodic MC,

1. if the chain is transient, pf].”) -0

2. if the chain is recurrent, p,(v]v”) — m;j, where
21 either, every mj = 0
22 or,everym; >0, 3>, m =1 and r is the unique
probability distribution solving =P = .
3. Incase (2), let T; be the time to return to i then pj = E(T;) = 1/m;
with pj = oo ifmj = 0.

Proof.
Omitted. 0

10
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Remarks

» The limiting distribution, =, is seen to be a stationary one.
Suppose the current distribution is given by = and consider the
evolution of the MC for a further period of T steps. Since = is
stationary, the probability of being in any state i remains 7, so
we will make around T; visits to i. Consequently, the mean time
between visits to i would be T/(Tx;) = 1/m;.

» Using /\/(.”) =P(X, = j) and since A" = \(O)pn

1. for transient or null recurrent states A"’ — 0, that is, P(X, = j) — 0
for all states j

2. for a positive recurrent state, p” — 7 > 0, that
is, P(Xn = j) — m; > 0 for all j, where 7 is the unique probability
vector solving 7P = .

» Note the distinction between a transient and a null recurrent
chain is that in a transient chain we might never make a return
visit to some state i and there is zero probability that we will
return infinitely often. However, in a null recurrent chain we are
sure to make infinitely many return visits but the mean time
between consecutive visits is infinite.

Theorem
A MC (Xp) is reversible if and only if

TiPj = TiPji foralli,jeS.

Proof.
Consider the transition probabilities g; ofthe MC (Y}) then

9j = P(Yne1 = 1Yo =1)
=P(X_p_1 =JjIX_p =)
=P(Xn = i[Xm—1 = )P(Xm—1 = j)/P(Xm = 1)

= pimj/7i -

where m= —n

Hence, p; = gj if and only if m;p; = m;p;. O

Ehrenfest model

Suppose we have two containers A and B containing a total of m
balls. At each time step a ball is chosen uniformly at random and
switched between containers. Let X, be the number of balls in
container A after n units of time. Thus, (X,) is @ MC with transition
matrix given by

i

Pii-1 = —.

Pii+1 = m’ m

Instead of solving the equations = = 7P we look for solutions to
TiPj = TjPji

which yields m; = (7) ()™, a binomial distribution with parameters m
and 3.
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Time-reversibility

Suppose now that (X, : —o0o < n < ) is an irreducible, postive
recurrent MC with transition matrix P and unique stationary
distribution 7. Suppose also that X, has the distribution = for
all —co < n < co. Now define the by

Yn=X_p for —oo < n < oo

Then (Y}) is also a MC and where Y, has the distribution 7.

Definition (Reversibility)
AMC (X,) is if the transition matrices of (X,) and (Y,) are
equal.

Theorem
For an irreducible chain, if there exists a vector = such that

1.0<m<tandym=1

2. mipj = mp; foralli,j e S
then the chain is reversible and positive recurrent, with stationary
distribution .

Proof.
Suppose that 7 satisfies the conditions of the theorem then

D ompj =Y mpi =y Pi=m
i i i

and so 7 = 7P and the distribution is stationary. O
The conditions m;p;; = m;p;i for all /,j € S are known as the
conditions.

Random walk on a graph

Consider a G consisting of a countable collection of

vertices i € N and a finite collection of edges (i, ) € E joining

(unordered) pairs of vertices. Assume also that G is connected.

A natural way to construct a MC on G uses a random walk through

the vertices. Let v; be the number of edges incident at vertex i. The

random walk then moves from vertex i by selecting one of the v;

edges with equal probability 1/v;. So the transition matrix, P, is

|+ if(i,j)is an edge

Pi=10 otherwise.

11
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Since G is connected, P is irreducible. The local balance conditions
for (i,j) € E are

TiPjj = TjPji
1 1
Tji— = Tj—
IV,' ]Vj
i Vi
oY
Hence,
T X Vi

and the normalization condition ), 7; = 1 gives

Vi

==
Djen Vi

and P is reversible.

Proof

If P is transient then the total number of visits, V;, to i is finite with
probability one, so
Vi(n)
n

&HOZL n—oo.
n Wi

<

Alternatively, if P is recurrent let Y\”) be the r duration between
visits to any given state i. Then ("), Y® _ are non-negative IID
RVs with E(Y{?) = u;.
But
Y_(1) Feet Y_(Vi(”)*1) <n-1
1 I —
since the time of the last visit to i before time n occurs no later than
time n—1 and
Y oy s g
since the time of the first visit to / after time n — 1 occurs no earlier
than time n.

Example: random surfing on web graphs

Consider a web graph, G = (V, E), with vertices given by a finite

collection of web pages i € V and (directed) edges given by (i, j)

whenever there is a hyperlink from page i to page j.

Random walks through the web graph have received much attention

in the last few years.

Consider the following model, let X, € V be the location (that is, web

page visited) by the surfer at time n and suppose we choose Xy, 1

uniformly from the, L(/), outgoing links from /, in the case

where L(i) > 0 and uniformly among all pages in V' if L(i) = 0 (the
case).

Michaelmas 2009

Ergodic results

Ergodic results tell us about the limiting behaviour of averages taken
over time. In the case of Markov Chains we shall consider the
long-run proportion of time spent in a given state.

Let Vi(n) be the then

n—1

Vi(n) = 31X = 1}).

k=0
Thus, Vi(n)/nis the

Theorem (Ergodic theorem)
Let (X,) be a MC with irreducible transition matrix P then

P(Mél as n—>oo>:1
n i

where pj = E(Ti|Xo = i) is the expected return time to state i.

Hence,

YO 4oy
vi(n)

IN

However, by the SLLN,

1
P<Yi()+'”+ Yi(n)
n

— i as n—>00>—1

and for P recurrent we know that P(V;(n) — oo as n—oo) =1.
So,

n
P(W—qu as nﬁoo):‘l

which implies

P(Mﬂl

as n~>oo>:1.
n i

Hence, the transition matrix, P,,-, say, is given by

oy i) eE
bi=1{p ifLi)=0
0 otherwise

where | V] is the number of pages (that is, vertices) in the web graph.
A potential problem remains in that P may not be irreducible or may
be periodic.

12
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We make a further adjustment to ensure irreducibility and aperiodicity
as follows.
For0 <a <1 set o

pff:(1 70‘)pr+ V|

We can interpret this as an model and see
that the transitions take the form of a mixture of two distributions.
With probability 1 — a we follow the randomly chosen outgoing link
(unless the page is dangling in which case we move to a randomly
chosen page) while with probability  we jump to a random page
selected uniformly from the entire set of pages V.

Computing PageRank: the power method

We seek a solution to the system of equations
m=mnP

that is, we are looking for an eigenvector of P (with corresponding
eigenvalue of one). Google’s computation of PageRank is one of the
world’s largest matrix computations.

The power method starts from an initial distribution 7(®),

updating 7(k=1) by the iteration

70— nk=1)p _ . _ (0 pk

Advanced methods from linear algebra can be used to speed up
convergence of the power method and there has been much study of
related MCs, to include web browser back buttons and many other
properties and alternative notions of the of a web page.

A Markov model with hidden states

Suppose we have a MC with transition matrix P but that the states i of
the chain are not directly observable. Instead, we suppose that on
visiting any state / at time n there is a randomly chosen output value
or token, Yy, that is observable.
The probability of observing the output token t when in state i is given
by some distribution b;, depending on the state i that is visited.
Thus,

P(Y, = t| X, = i) = (bi):

where (b)); is the t!1 component of the distribution b;.

For an excellent introduction to HMM, see “A Tutorial on Hidden Markov
Models and Selected Applications in Speech Recognition” Lawence R.
Rabiner. Proceedings of the IEEE, Vol 77, No 2, February 1988.
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PageRank

Brin et al (1999) used this approach to define PageRank through the
limiting distribution of this Markov Chain, that is 7; where the vector =
satisfies

m=maP

They report typical values for « of between 0.1 and 0.2.
The ergodic theorem now tells us that the random surfer in this model
spends a proportion 7; of the time visiting page /i — a notion in some
sense of the of page i.
Thus, two pages i/ and j can be ranked according to the total order
defined by

i>j ifandonlyif m;>m;.

See, “The PageRank Citation Ranking: Bring Order to the Web” Sergey Brin,
Lawrence Page, Rajeev Motwani and Terry Winograd (1999) Technical
Report, Computer Science Department, Stanford University.
http://dbpubs.stanford.edu:8090/pub/1999-66

Hidden Markov Models

An extension of Markov Chains is provided by
(HMM) where a statistical model of observed data is constructed from
an underlying but usually hidden Markov Chain.
Such models have proved very popular in a wide variety of fields
including

» speech and optical character recognition

» natural language processing

» bioinformatics and genomics.

We shall not consider these applications in any detail but simply
introduce the basic ideas and questions that Hidden Markov Models
address.

Three central questions

There are many variants of this basic setup but three central
problems are usually addressed.

Definition (Evaluation problem)
Given a sequence ys, ¥, . . ., ¥ of observed output tokens and the
parameters of the HMM (namely, P, b; and the distribution for the
initial state Xp) how do we compute

P(Y: =y1, Yo = yo,..., Yy = yo|HMM parameters)

that is, the probability of the observed sequence given the model?
Such problems are solved in practice by the

13
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A second problem that may occur in an application is the

Definition (Decoding problem)

Given an observed sequence of output tokens y1, ys, ..., ¥, and the
full description of the HMM parameters, how do we find the best fitting
corresponding sequence of (hidden) states i, iz, . . . , ip of the MC?
Such problems are solved in practice by a dynamic programming
approach called the .

Applications of Markov Chains

These and other applications of Markov Chains are important topics
in a variety of Part Il courses, including

» Artificial Intelligence Il
» Bioinformatics
» Computer Systems Modelling

180

Michaelmas 2009

The third important problem is the

Definition (Learning problem)

Given an observed sequence of output tokens y1, ya, ..., ¥n, how do
we adjust the parameters of the HMM to maximize

P(Y: =y1, Y2 =Yo,..., Yo = yo|HMM parameters)

The observed sequence used to adjust the model parameters is
called a . Learning problems are crucial in most
applications since they allow us to create the models in real
observed processes.

Iterative procedures, known as the
solve this problem in practice.

, are used to

14



§2: Limits and inequalities

1.

Suppose that X is a random variable with the U(—1, 1) distribution. Find the exact value
of P(]X| > a) for each @ > 0 and compare it to the upper bounds obtained from the
Markov and Chebychev inequalities.

. Let X be the random variable giving the number of heads obtained in a sequence of n fair

coin flips. Compare the upper bounds on P(X > 3n/4) obtained from the Markov and
Chebychev inequalities.

. Let A; (i = 1,2,...,n) be a collection of random events and set N = Y I  I(4;). By

considering Markov’s inequality applied to P(N > 1) show Boole’s inequality, namely,

P (U1 4i) < Zn: P(A:)
i=1

. Let h: R — [0,00) be a non-negative function. Show that

E(h(X))

a

P(h(X) > a) < for all a>0.

By making suitable choices of h(z), show that we may obtain the Markov and Chebychev
inequalities as special cases.

. Show the following properties of the moment generating function.

(a) If X has mgf Mx(t) then Y = aX + b has mgf My (t) = e Mx (at).
(b) If X and Y are independent then X + Y has mgf My y(t) = Mx (t) My (t).
(c) E(X™) = M)(?)( 0) where M( ") is the n'? derivative of My.

)

(d) If X is a discrete random variable taking values 0, 1,2, ... with probability generating
function Gx(z) = E(z%) then Mx(t) = Gx/(e').

. Let X be a random variable with moment generating function Mx (¢) which you may

assume exists for any value of t. Show that for any a > 0

P(X <a) <e ™Mx(t) for all t<0.

Show that, if X,, = X, where X is a degenerate random variable (that is, P(X = p) =1

for some constant u) then X, X,

. Suppose that you estimate your monthly phone bill by rounding all amounts to the nearest

pound. If all rounding errors are independent and distributed as U(—0.5,0.5), estimate
the probability that the total error exceeds one pound when your bill has 12 items. How
does this procedure suggest an approximate method for constructing Normal random
variables?
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83: Markov chains

1. Suppose that (X,,) is a Markov chain with n-step transition matrix, P™) and let /\l(-n) =
P(X,, = i) be the elements of a row vector A(® (n=0,1,2,...). Show that

(a) Pmtn) = pm) p() for m, n =0,1,2,...
(b) A = XOPp™) for n=0,1,2,....

2. Suppose that (X,,) is a Markov chain with transition matrix P. Define the relations
“state j is accessible from state i” and “states ¢ and j communicate”. Show that the
second relation is an equivalence relation and define the communicating classes as the
equivalence classes under this relation. What is meant by the terms closed class, absorbing
class and irreducible?

3. Show that
Pij(z) = 6ij + Fij(2) P} (2)

where

Py(2) =Y p2" Fy(x) =Y f0en
n=0 n=0

and d;; = 1 if i = j and 0 otherwise. [You should assume that pgl) and fi(]n) are as defined

in lectures with pl(.?) = 0;; and fi(;)) = 0 for all states i, j.]

4. Suppose that (X)) is a finite state Markov chain and that for some state ¢ and for all
states j
lim p(n)

. = 74
n—oo" 4 J

for some collection of numbers (7;). Show that 7 = (7;) is a stationary distribution.

5. Consider the Markov chain with transition matrix

p_ (0128 0872
— 10663 0.337

for Markov’s example of a chain on the two states {vowel, consonant} for consecutive
letters in a passage of text. Find the stationary distribution for this Markov chain. What
are the mean recurrence times for the two states?

6. Define what is meant by saying that (X,,) is a reversible Markov chain and write down the
local balance conditions. Show that if a vector 7 is a distribution over the states of the
Markov chain that satisfies the local balance conditions then it is a stationary distribution.

7. Consider the Erhenfest model for m balls moving between two containers with transition
matrix . .
i i

Diit1 =1——, Piji—1= —

m m

where ¢ (0 < i < m) is the number of balls in a given container. Show that the Markov

chain is irreducible and periodic with period 2. Derive the stationary distribution.



8. Consider a random walk, (X,,), on the states i = 0, 1,2, ... with transition matrix

pii-1=p =12
pi;i-‘rl:l_p 220717
Poo =P
where 0 < p < 1. Show that the Markov chain is irreducible and aperiodic. Find

a condition on p to make the Markov chain positive recurrent and find the stationary
distribution in this case.

9. Describe PageRank as a Markov chain model for the motion between nodes in a graph.
Explain the main mathematical results that underpin PageRank’s connection to a notion
of web page “importance”.
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