Natural Language Processing

2009, 8 Lectures, Michaelmas Term
September 21, 2009

Ann Copestakegac@cl.cam.ac.uk)
http://www.cl.cam.ac.uk/users/aac/

Copyright(© Ann Copestake, 2003—2009

Lecture Synopsis

Aims

This course aims to introduce the fundamental techniquemtfral language processing and to develop an under-
standing of the limits of those techniques. It aims to introgl some current research issues, and to evaluate some
current and potential applications.

e Introduction. Brief history of NLP research, current applications, géniil_P system architecture, knowledge-
basedversusprobabilistic approaches.

¢ Finite-state techniques. Inflectional and derivational morphology, finite-state auata in NLP, finite-state
transducers.

e Prediction and part-of-speech tagging.Corpora, simple n-grams, word prediction, stochastic itaggevalu-
ating system performance.

e Parsing and generation.Generative grammar, context-free grammars, parsing amerggon with context-free
grammars, weights and probabilities.

e Parsing with constraint-based grammars.Constraint-based grammatr, unification.

e Compositional and lexical semanticsSimple compositional semantics in constraint-based gram8emantic
relations, WordNet, word senses, word sense disambiguatio

e Discourse.Discourse relations, anaphora resolution.

e Applications. Demos of some NLP applications.

Objectives

At the end of the course students should

e be able to describe the architecture of and basic designdgenaric NLP system “shell”

e be able to discuss the current and likely future performamiceeveral NLP applications, such as machine
translation and email response

e be able to describe briefly a fundamental technique for msiog language for several subtasks, such as mor-
phological analysis, parsing, word sense disambiguation e

¢ understand how these techniques draw on and relate to atees af (theoretical) computer science, such as
formal language theory, formal semantics of programmimgjleages, or theorem proving

Overview

NLP is a large and multidisciplinary field, so this course oaty provide a very general introduction. The idea is that
this is a ‘taster’ course that gives an idea of the differemffields and shows a few of the huge range of computational
techniques that are used. The first lecture is designed ®ajivoverview including a very brief idea of the main
applications and the methodologies which have been emgployée history of NLP is briefly discussed as a way
of putting this into perspective. The next six lectures déscsome of the main subdisciplines in more detail. The
organisation is roughly based on increased ‘depth’ of meicey, starting with relatively surface-oriented techusis
and progressing to considering meaning of sentences ancimgeaf utterances in context. Most lectures will start off
by considering the subarea as a whole and then go on to descréor more sample algorithms which tackle particular
problems. The algorithms have been chosen because theglatiealy straightforward to describe and because they
illustrate a specific technique which has been shown to bieilubet the idea is to exemplify an approach, not to give
a detailed survey (which would be impossible in the timelatédé). (Lecture 5 is a bit different in that it concentrates
on a data structure instead of an algorithm.) The final lecisimtended to give further context: it will include demos
of some NLP systems. The material in Lecture 8 will not beaiyeexamined.

There are various themes running throughout the lectures. tleme is the connection to linguistics and the tension
that sometimes exists between the predominant view in ¢tieat linguistics and the approaches adopted within NLP.
A somewhat related theme is the distinction between knayddshsed and probabilistic approaches. Evaluation will
be discussed in the context of the different algorithms.

Because NLP is such a large area, there are many topics @dt touched on at all in these lectures. Speech
recognition and speech synthesis is almost totally ignotatbrmation retrieval and information extraction are the
topic of a separate course.

Feedback on the handout, lists of typos etc, would be greatyeciated.

Recommended Reading

Recommended Book:

Jurafsky, Daniel and James MartBpeech and Language ProcessiRgentice-Hall, 2008 (second edition): referenced
as J&M throughout this handout. In most cases, the firstadis still suitable, but the second edition has a much
clearer description of the material covered in lecture 3cti®a references given in these notes are to the second
edition.

Background:

These books are about linguistics rather that NLP/comjmutal linguistics. They are not necessary to understand the
course, but should give readers an idea about some of theniexpof human languages that make NLP interesting
and challenging, without being technical.

Pinker, S.,The Language InstincPenguin, 1994.

This is a thought-provoking and sometimes controversiaptgar’ introduction to linguistics.
Matthews, Petet,inguistics: a very short introductigrDUP, 2003.

The title is accurate .. .

Background/reference:

The Internet Grammar of Englishttp://www.ucl.ac.uk/internet-grammar/home.htm
Syntactic concepts and terminology.

Study and Supervision Guide

The handouts and lectures should contain enough informaticenable students to adequately answer the exam
guestions, but the handout is not intended to substituta fextbook (or for thought). In most cases, J&M go into a
considerable amount of further detail: rather than putddtsuggestions for further reading in the handout, in gdnera
| have assumed that students will look at J&M, and then follgmthe references in there if they are interested. The
notes at the end of each lecture give details of the sectibd&M that are relevant and details of any discrepancies

with these notes.

Supervisors ought to familiarise themselves with the rmatéyparts of Jurafsky and Martin (see notes at the end of each
lecture). However, good students should find it quite easyotoe up with questions that the supervisors (and the
lecturer) can’'t answer! Language is like that . ..

Generally I'm taking a rather informal/example-based apph to concepts such as finite-state automata, context-fre
grammars etc. The assumption is that students will havadreovered this material in other contexts and that this
course will illustrate some NLP applications.

This course inevitably assumes some very basic linguistisedge, such as the distinction between the major parts
of speech. It introduces some linguistic concepts that woafamiliar to all students: since I'll have to go through
these quickly, reading the first few chapters of an introdgctinguistics textbook may help students understand the
material. The idea is to introduce just enough linguistisrotivate the approaches used within NLP rather than
to teach the linguistics for its own sake. At the end of thiadaut, there are some mini-exercises to help students
understand the concepts: it would be very useful if thesesvatiempted before the lectures as indicated. There are
also some suggested post-lecture exercises.

Exam questions won't rely on students remembering the ldethiany specific linguistic phenomenon. As far as
possible, exam questions will be suitable for people whakgenglish as a second language. For instance, if a
guestion relied on knowledge of the ambiguity of a particiaglish word, a gloss of the relevant senses would be
given.

Model answers to past examination questions are availaldegervisors via student admin in the usual way.

Of course, I'll be happy to try and answer questions aboutthese or more general NLP questions, preferably by
email.

Changes to the course since previous years

Most of the text in the handout for Lecture 8 has been cut f@9200. The lecture will include some demos of NLP
systems: slides etc will be available on the website afefdhture.

One significant change to the course in 2009-10 comparedetaqus years is that the Lappin and Leass algorithm,
previously described in Lecture 7, has been replaced by erigéen of pronoun resolution using a classifier. This
means that 2004 Paper 9 Question 14 is no longer applicdtiieugh an analogous question could be asked based
on the approach described in the current lectures.

| have added an end of sentence symbdal3r8 and revised the notation used in the equations in Le@turerder to
be consistent with J&M.

Most of the other changes to previous versions of these riotet/e putting in more examples rather than any real

changes. In 2005/2006 there was one change in terminologyate the notes easier to follow: current notes use
subject (SUBJ) and object (OBJ) for syntactic roles in lexth and 6 rather than specifier (SPR) and complement
(COMP) as in the versions prior to 2005/2006. This meansahatxam question for 2005 needs minor modification

to be usable with this version of the notes: this should béousy but let me know of problems.

URLs

Nearly all the URLSs given in these notes should be linked from
http://www.cl.cam.ac.uk/ ~aacl0/stuff.html
(apart from this one of course ...). If any links break, | vpillt corrected versions there, if available.

1 Lecture 1: Introduction to NLP

The aim of this lecture is to give students some idea of theatbbjes of NLP. The main subareas of NLP will be
introduced, especially those which will be discussed inent®tail in the rest of the course. There will be a preliminary
discussion of the main problems involved in language prEingdy means of examples taken from NLP applications.
This lecture also introduces some methodological disbnstand puts the applications and methodology into some
historical context.

1.1 Whatis NLP?

Natural language processing (NLP) can be defined as the datignal modelling of human language. The term
‘NLP’ is sometimes used rather more narrowly than that, roftgcluding information retrieval and sometimes even
excluding machine translation. NLP is sometimes contdasith ‘computational linguistics’, with NLP being thought
of as more applied. Nowadays, alternative terms are oftefeped, like ‘Language Technology’ or ‘Language Engi-
neering’. The term ‘language’ is often used in contrast sheech’ (e.g., Speech and Language Technology). But
I’'m going to simply refer to NLP and use the term broadly.

NLP is essentially multidisciplinary: it is closely relatéo linguistics (although the extent to which NLP overthads

on linguistic theory varies considerably). Like NLP, foritiaguistics deals with the development of models of human
languages, but the currently dominant approaches in Igtigsireject the validity of statistical techniques, whasie
seen as an essential part of computational linguistics. &l&® has links to research in cognitive science, psychology
philosophy and maths (especially logic). Within CS, it tetato formal language theory, compiler techniques, threore
proving, machine learning and human-computer interactdhcourse it is also related to Al, though nowadays it's
not generally thought of as part of Al.

1.2 Some linguistic terminology

The course is organised so that there are six lectures pomeing to different NLP subareas, moving from relatively
‘shallow’ processing to areas which involve meaning andneations with the real world. These subareas loosely
correspond to some of the standard subdivisions of linigsist

1. Morphology: the structure of words. For instanaapsuallycan be thought of as composed of a prefix, a
stemusual and an affixly. composeds composeplus the inflectional affixed a spelling rule means we end
up with composedather tharcomposeedMorphology will be discussed in lecture 2.

2. Syntax: the way words are used to form phrases. e.qg., @rtsgp English syntax that a determiner (a word such
asthe) will come before a noun, and also that determiners are atdiy with certain singular nouns. Formal
and computational aspects of syntax will be discussed tnies 3, 4 and 5.

3. Semantics. Compositional semantics is the constructianeaning (generally expressed as logic) based on
syntax. This is contrasted to lexical semantics, i.e., teamng of individual words. Compositional and lexical
semantics are discussed in lecture 6.

4. Pragmatics: meaning in context. This will come into leetid, although linguistics and NLP generally have
very different perspectives here.

1.3 Why is language processing difficult?

Consider trying to build a system that would answer email bgicustomers to a retailer selling laptops and accessories
via the Internet. This might be expected to handle queriek as the following:

e Has my order number 4291 been shipped yet?
e Is FD5 compatible with a 505G?
e What is the speed of the 505G?

Assume the query is to be evaluated against a databaseringtproduct and order information, with relations such
as the following:

ORDER

Order number Date ordered Date shipped
4290 2/2/09 2/2/09

4291 2/2/09 2/2/09

4292 2/2/09

USER: Has my order number 4291 been shipped yet?
DB QUERY: order(number=4291,dathipped="?)
RESPONSE TO USER: Order number 4291 was shipped on 2/2/09

It might look quite easy to write patterns for these querimg, very similar strings can mean very different things,
while very different strings can mean much the same thingnd 2 below look very similar but mean something
completely different, while 2 and 3 look very different bigisentially mean the same in this context.

1. How fast is the TZ?
2. How fast will my TZ arrive?

3. Please tell me when | can expect the TZ | ordered.

While some tasks in NLP can be done adequately without haviggart of account of meaning, others require that
we can construct detailed representations which will reflee underlying meaning rather than the superficial string.

In fact, in natural languages (as opposed to programminguiages), ambiguity is ubiquitous, so exactly the same
string might mean different things. For instance in the guer

Do you sell Sony laptops and disk drives?

the user may or may not be asking about Sony disk drives. Thiscplar ambiguity may be represented by different
bracketings:

Do you sell (Sony laptops) and (disk drives)?
Do you sell (Sony (laptops and disk drives))?

We’'ll see lots of examples of different types of ambiguitythese lectures.

Natural language has properties which are essential to eonmation which are not found in formal languages, such
as predicate calculus, computer programming languagesargéec web languages and so on. Natural language is
incredibly flexible. It is learnable, but compact. Natumhyuages are emergent, evolving systems. Ambiguity and
synonymy are inherent to flexibility and learnability. D&smmbiguity, natural language can be indefinitely precise
ambiguity is largely local (at least for humans) and natural languages accommodaté Yemal additions.

Often humans have knowledge of the world which resolves aiplesambiguity, probably without the speaker or
hearer even being aware that there is a potential ambiguyt hand-coding such knowledge in NLP applications
has turned out to be impossibly hard to do for more than vemjtdid domains: the terrAl-completeis sometimes
used (by analogy to NP-complete), meaning that we'd havelie ghe entire problem of representing the world
and acquiring world knowledgé The term Al-complete is intended jokingly, but conveys viéatobably the most
important guiding principle in current NLP: we're lookingrfapplications which don’t require Al-complete solutions
i.e., ones where we can either work with very limited domain@approximate full world knowledge by relatively
simple techniques.

1j.e., immediate context resolves the ambiguity: examples sfutiil be discussed in later lectures.

21'll use hearergenerally to mean the person who is on the receiving end, absggar of the modality of the language transmission: i.e. ridgss
of whether it's spoken, signed or written. Similarly, I'll @speakerfor the person generating the speech, text etcuatatanceto mean the speech
or text itself. This is the standard linguistic terminologgich recognises that spoken language is primary and texaieadevelopment.

3In this course, | will uselomainto mean some circumscribed body of knowledge: for instancerrimition about laptop orders constitutes a
limited domain.

1.4 Some NLP applications

The following list is not complete, but useful systems hagerbbuilt for:

¢ spelling and grammar checking
e optical character recognition (OCR)
e screen readers for blind and partially sighted users

e augmentative and alternative communication (i.e., systaraid people who have difficulty communicating
because of disability)

e machine aided translation (i.e., systems which help a hunaaslator, e.g., by storing translations of phrases
and providing online dictionaries integrated with word ggesors, etc)

e lexicographers’ tools

e information retrieval

e document classification (filtering, routing)
e document clustering

¢ information extraction

e guestion answering

e summarization

e text segmentation

e exam marking

e report generation (possibly multilingual)
e machine translation

¢ natural language interfaces to databases
e email understanding

e dialogue systems

Several of these applications are discussed briefly belamugRly speaking, they are ordered according to the com-
plexity of the language technology required. The applaraitowards the top of the list can be seen simply as aids to
human users, while those at the bottom are perceived assagehtir own right. Perfect performance on any of these

applications would be Al-complete, but perfection isn’tassary for utility: in many cases, useful versions of these
applications had been built by the late 70s. Commercialesghas often been harder to achieve, however.

1.5 Sentiment classification

Politicians want to know what people think about them. Coniggwant to know what users think about their prod-
ucts. Extracting this sort of information from the Web is agbwand lucrative business but much of the work is still
done by humans who have to read through the relevant docsraadtclassify them by hand, although automation is
increasingly playing a role. The full problem involves findiall the references to an entity from some document set
(e.g., all newspaper articles appearing in September 2@08)then classifying them as positive, negative or neutral
Customers want to see summaries of the data (e.g., to sebevipetpularity is going up or down), but may also want
to see actual examples (text snippets). Companies may warg-grained classification of aspects of their product
(e.g., laptop batteries, MP3 player screens).

The full problem involves retrieving relevant text, rec@gn of named entitiege.g.,Sony 505GHilary Clinton, 2,4-
dinitrotolueng and of parts of the text that refer to them. But academicaiebers have looked at a simpler version of
sentiment classification by starting from a set of documetiish are already known to be opinions about a particular
topic or entity (e.g., reviews) and where the problem is faswork out whether the author is expressing positive or
negative opinions. This still turns out to be hard for congpsitthough generally easy for humans, especially if neutra
reviews are excluded from the data set (as is often done).hMtithe work has been done on movie reviews. The
rating associated with each review is known (5 stars, 1 stahatever), so there is an objective standard as to whether
the review is positive or negative. The research problera @uess this automatically over the entire corpus.

The most basic technique is to look at the words in the revieisdlation of each other, and to classify the document
on the basis of whether those words generally indicate igesit negative reviews. This isteag of wordgechnique:
we model the document as an unordered collection of wdydg riather than set because there will be repetition). A
document with more positive words than negative ones shioeild positive review. In principle, this could be done
by using human judgements of positive/negative words, bimgumachine learning techniques works bétteumans
don’t consider many words that turn out to be useful indicgtoHowever, the accuracy of the classification is only
around 80% (for a problem where there is a 50% chance sucateg8 One source of errors is negation: (e Ridley
Scott has never directed a bad filma positive statement). Another problem is that the machéarning technique
may match the data too closely: e.g., if the machine leas&mained on reviews which include a lot of films from
before 2005, it may decide thRidleyis a strong positive indicator but then tend to misclassfyiews for ‘Kingdom

of Heaven’. More subtle problems arise from not trackingabetrasts in the discourse:

This film should be brilliant. It sounds like a great plot, thetors are first grade, and the supporting cast
is good as well, and Stallone is attempting to deliver a garflppmance. However, it can't hold up.

Another example:

AN AMERICAN WEREWOLF IN PARIS is a failed attempt . . . Julie [pglis far too good for this movie.
She imbues Serafine with spirit, spunk, and humanity. Thisriscessarily a good thing, since it prevents
us from relaxing and enjoying AN AMERICAN WEREWOLF IN PARIS ascompletely mindless,
campy entertainment experience. Delpys injection of cliatssan otherwise classless production raises
the specter of what this film could have been with a bettepsend a better cast ... She was radiant,
charismatic, and effective . ..

Both examples are from Pang et al (2002).

Unfortunately, although in principle NLP techniques caaldeith syntax, semantics and discourse and thus address
these sort of problems, doing this in a way that can signifigamprove performance over the simple system turns
out to be (very) hard. To understand whether a statementsisiy@or negative is ultimately Al-complete: the real
guestion is whether automatic methods are good enough aathecases to be useful.

1.6 Information retrieval, information extraction and que stion answering

Information retrieval involves returning a set of docunseint response to a user query: Internet search engines are a
form of IR. However, one change from classical IR is that imé¢ search now uses techniques that rank documents
according to how many links there are to them (e.g., Goo§lageRank) as well as the presence of search terms.

Information extraction involves trying to discover specifinformation from a set of documents. The information
required can be described as a template. For instance, fiopay joint ventures, the template might have slots for
the companies, the dates, the products, the amount of mowelyed. The slot fillers are generally strings.

Question answering attempts to find a specific answer to afgpeeestion from a set of documents, or at least a short
piece of text that contains the answer.

1) What is the capital of France?
Paris has been the French capital for many centuries.

4A corpus(plural corpora) is the technical term for a body of text that has been cailéfor some purpose, s§8.1.

5Classifiers are discussed in more detail in lecture 7.

6pang, Lee and Vaithyanatha (200Zhumbs up? Sentiment Classification using Machine Learfaafniquesn Proceedings of the 2002
Conference on Empirical Methods in Natural Language Prang$EMNLP).

There are some question-answering systems on the Web, lstitus® very basic techniques. One common approach
involves employing a large staff of people who search the todnd pages which are answers to potential questions.
The question-answering system performs very limited maaifon on the actual input to map to a known question.
The same basic technique is used in many online help systems.

1.7 Machine translation

MT work started in the US in the early fifties, concentratingRussian to English. A prototype system was publicly
demonstrated in 1954 (remember that the first electronicpeen had only been built a few years before that). MT
funding got drastically cut in the US in the mid-60s and cdasebe academically respectable in some places, but
Systran was providing useful translations by the late 60gstr8n is still going (updating it over the years is an
amazing feat of software engineering): Systran powers Baehttp://babelfish.yahoo.com/ and many
other translation services on the web. Systran was used dst of the language pairs available from Google until
about 2007/2008, but Google now usestatistical MTsystem which was developed in-house, exploiting Google’s
access to the huge amountpzfrallel textavailable on the web (i.e., source documents which areabtaillongside
translations).

Until the 80s, the utility of general purpose MT systems wasesely limited by the fact that text was not available in
electronic form: Systran originally used teams of skillggists to input Russian documents.

None of these systems are a substitute for human transldtiey are useful because they allow people to get an idea
of what a document is about, and maybe decide whether itésesting enough to get translated properly. This is
much more important now that documents are available on e W

Spoken language translation is viable for limited domaiasearch systems include Verbmobil, SLT and CSTAR.

1.8 Natural language interfaces and dialogue systems

Natural language interfaces were the ‘classic’ NLP probierthe 70s and 80s. LUNAR is the classic example of
a natural language interface to a database (NLID): its dalsconcerned lunar rock samples brought back from the
Apollo missions. LUNAR is described by Woods (1978) (butenotost of the work was done several years earlier): it
was capable of translating elaborate natural languageessjams into database queries.

SHRDLU (Winograd, 1973) was a system capable of partiangdti a dialogue about a microworld (the blocks world)
and manipulating this world according to commands issudghiglish by the user. SHRDLU had a big impact on the
perception of NLP at the time since it seemed to show that coenp could actually ‘understand’ language: the
impossibility of scaling up from the microworld was not riseld.

LUNAR and SHRDLU both exploited the limitations of one pauiar domain to make the natural language under-
standing problem tractable, particularly with respectrtauity. To take a trivial example, if you know your databas
is about lunar rock, you don't need to consider the music orenmeent senses obck when you're analysing a query.

There have been many advances in NLP since these systemduiktrenatural language interface systems have
become much easier to build, and somewhat easier to uséadyustill haven't become ubiquitous. Natural Language
interfaces to databases were commercially available inatee1970s, but largely died out by the 1990s: porting to
new databases and especially to new domains requires veriatipt skills and is essentially too expensive (automati
porting was attempted but never successfully developedgrdJgenerally preferred graphical interfaces when these
became available. Speech input would make natural langmégrgaces much more useful: unfortunately, speaker-
independent speech recognition still isn’t good enougleden 1970s scale NLP to work well. Techniques for dealing
with misrecognised data have proved hard to develop. In seays, current commercially-deployed spoken dialogue
systems are using pre-SHRDLU technology.

1.9 Some more history

Before the 1970s, most NLP researchers were concentratingToas an application (see above). NLP was a very
early application of computer science and started abowgdhee time as Chomsky was publishing his first major works
in formal linguistics (Chomskyan linguistics quickly b&sa dominant, especially in the US). In the 1950s and early

1960s, ideas about formal grammar were being worked oubhgulstics, and algorithms for parsing natural language
were being developed at the same time as algorithms formmamibgramming languages. However, most linguists
were uninterested in NLP and the approaches that Chomslglat®d turned out to be only somewhat indirectly
useful for NLP.

NLP in the 1970s and first half of the 1980s was predominardaled on a paradigm where extensive linguistic and
real-world knowledge was hand-coded. There was contrgvaseut how much linguistic knowledge was necessary
for processing, with some researchers downplaying syntaparticular, in favour of world knowledge. NLP re-
searchers were very much part of the Al community (especialihe US and the UK), and the debate that went on in
Al about the use of logic vs other meaning representatioresaf’ vs ‘scruffy’) also affected NLP. By the 1980s, several
linguistic formalisms had appeared which were fully forimarounded and reasonably computationally tractable, and
the linguistic/logical paradigm in NLP was firmly estabksh Unfortunately, this didn't lead to many useful systems,
partly because many of the difficult problems (disambigaraétc) were seen as somebody else’s job (and mainstream
Al was not developing adequate knowledge representat@miques) and partly because most researchers were con-
centrating on the ‘agent-like’ applications and neglagtine user aids. Although the symbolic, linguistically-bas
systems sometimes worked quite well as NLIDs, they provegketof little use when it came to processing less re-
stricted text, for applications such as IE. It also becanpmaemt that lexical acquisition was a serious bottleneck fo
serious development of such systems.

Statistical NLP became the most common paradigm in the 1380sast in the research community. By this point,
there was a huge divide between mainstream linguists andltRecommunity. Chomsky had declared:

But it must be recognized that the notion ‘probability of atemce’ is an entirely useless one, under any
known interpretation of this term. (Chomsky 1969)

Certain linguistics journals would not even review themadtlinguistics papers which had a quantitative component
But speech and NLP researchers wanted results:

Whenever | fire a linguist our system performance improvesedBelinek, said at a workshop in 1988
(probably), various forms of the quotation have been agtkdtle has said he never actually fired anyone.)

Speech recognition had demonstrated that simple stafiséchniques worked, given enough training data. NLP
systems were built which required very limited hand-codedvdedge, apart from initial training material. Most
applications were much shallower than the earlier NLID4,the switch to statistical NLP coincided with a change
in US funding, which started to emphasise speech recognitiw |IE. There was also a general realization of the
importance of serious evaluation and of reporting results way that could be reproduced by other researchers. US
funding emphasised competitions with specific tasks anglggptest material, which encouraged this, although there
was a downside in that some of the techniques developed eeydask-specific. It should be emphasised that there
had been computational work on corpora for many years (méittby linguists): it became much easier to do corpus
work by the late 1980s as disk space became cheap and maehtethle text became ubiquitous. Despite the shift
in research emphasis to statistical approaches, most conahnsystems remained primarily based on hand-coded
linguistic information.

More recently the symbolic/statistical split has beconss lronounced, since most researchers are interestedif bot
There is considerable emphasis on machine learning in genmecluding machine learning for symbolic processing.
Linguistically-based NLP has made something of a comebaith,increasing availability of open source resources,
and the realisation that at least some of the classic stafis¢chniques seem to be reaching limits on performance,
especially because of difficulties of acquiring trainingadand in adapting to new types of text. However, modern
linguistically-based NLP approaches are making use of imadbkarning and statistical processing.

The dotcom boom and bust at the turn of the millenium conaldgraffected NLP in industry but interest increased

again more recently. The ubiquity of the Internet has comeplechanged the space of interesting NLP applications
since the early 1990s, and the vast amount of text availadrepotentially be exploited, especially for statistical

techniques.

At least, there are only a few researchers who avoid stistiechniques as a matter of principle and all statisticatesys have a symbolic
component!

1.10 Generic ‘deep’ NLP application architecture

Many NLP applications can be adequately implemented wittively shallow processing. For instance, spelling
checking only requires a word list and simple morphologydaiseful. I'll use the term ‘deep’ NLP for systems that
build a meaning representation (or an elaborate syntagpieesentation), which is generally agreed to be required fo
applications such as NLIDs and email question answering.

The most important principle in building a successful NLBteyn is modularity. NLP systems are often big software
engineering projects — success requires that systems dampbeved incrementally.

The input to an NLP system could be speech or text. It could laésgesture (multimodal input or perhaps a Sign
Language). The output might be non-linguistic, but mostesyps need to give some sort of feedback to the user, even
if they are simply performing some action (issuing a tickegtying a bill, etc). However, often the feedback can be
very formulaic.

There’s general agreement that the following system comptsncan be described semi-independently, although as-
sumptions about the detailed nature of the interfaces leetteem differ. Not all systems have all of these components:

e input preprocessing: speech recogniser or text preprocéssn-trivial in languages like Chinese or for highly
structured text for any language) or gesture recognisezh Systems might themselves be very complex, but |
won't discuss them in this course — we’ll assume that thetiblpthe main NLP component is segmented text.

e morphological analysis: this is relatively well-understidfor the most common languages that NLP has consid-
ered, but is complicated for many languages (e.g., TurlBsisque).

e part of speech tagging: not an essential part of most deegepsing systems, but sometimes used as a way of
cutting down parser search space.

e parsing: this includes syntax and compositional semantibich are sometimes treated as separate components.
e disambiguation: this can be done as part of parsing, orighigitleft to a later phase.
e context module: this maintains information about the cetafier anaphora resolution, for instance.

e text planning: the part of language generation that's coregbwith deciding what meaning to convey (I won't
discuss this in this course).

e tactical generation: converts meaning representatiossritegs. This may use the same grammar and leficon
as the parser.

e morphological generation: as with morphological analysis is relatively straightforward for English.

e output processing: text-to-speech, text formatter, ets.wikh input processing, this may be complex, but for
now we’'ll assume that we're outputting simple text.

Application specific components: for NL interfaces, emaiswwering and so on, we need an interface between the
semantic representation output by the parser (or acceptétetgenerator) and the underlying knowledge base. Other
types of application have different requirements.

It is also very important to distinguish between the knowkedources and the programs that use them. For instance,
a morphological analyser has access to a lexicon and a seirphwlogical rules: the morphological generator might
share these knowledge sources. The lexicon for the morpgh@pstem may be the same as the lexicon for the parser
and generator.

Other things might be required in order to construct theddath components and knowledge sources:

e lexicon acquisition

e grammar acquisition

8The termlexiconis generally used for the part of the NLP system that contictionary-like information — i.e. information about indilial
words.

10

e acquisition of statistical information

For a component to be a true module, it obviously needs aawefified set of interfaces. What's less obvious is that it
needs its own evaluation strategy and test suites: devsloged to be able to work somewhat independently.

In principle, at least, components arusablein various ways: for instance, a parser could be used witltiphel
grammars, the same grammar can be processed by differesgrpamd generators, a parser/grammar combination
could be used in MT or in a natural language interface. Howefee a variety of reasons, it is not easy to reuse
components like this, and generally a lot of work is requii@deach new application, even if it's based on an existing
grammar or the grammar is automatically acquired.

We can draw schematic diagrams for applications showingthewnodules fit together.
1.11 Natural language interface to a knowledge base

KB

KB INTERFACE/CONTEXT MODULE KB OUTPUT/TEXT PLANNING

A
Y
PARSING TACTICAL GENERATION
A
Y
MORPHOLOGY MORPHOLOGY GENERATION
A
Y
INPUT PROCESSING OUTPUT PROCESSING
user input output

In such systems, the context module generally gets incladgzhrt of the KB interface because the discourse state is
quite simple, and contextual resolution is domain spec8imilarly, there’s often no elaborate text planning requir
ment, though this depends very much on the KB and type of ggiénwolved.

In lectures 2—7, various algorithms will be discussed whiolld be parts of modules in this generic architecture,
although most are also useful in less elaborate contexttutee8 will discuss a few applications in some more detail.

1.12 General comments
e Even ‘'simple’ NLP applications need complex knowledge sesifor some problems.
e Applications cannot be 100% perfect, because full real dvibnlowledge is not possible.
e Applications that are less than 100% perfect can be usefuméms aren’'t 100% perfect anyway).

e Applications that aid humans are much easier to constractaipplications which replace humans. It is difficult
to make the limitations of systems which accept speech gulage obvious to naive human users.

11

NLP interfaces are nearly always competing with a non-laggubased approach.

Currently nearly all applications either do relatively Bba processing on arbitrary input or deep processing on
narrow domains. MT can be domain-specific to varying exteMis on arbitrary text still isn’t very good, but
can be useful.

Limited domain systems require extensive and expensiverégp to port. Research that relies on extensive
hand-coding of knowledge for small domains is now genenma@farded as a dead-end, though reusable hand-
coding is a different matter.

The development of NLP has been driven as much by hardwarsddtwiare advances, and societal and infras-
tructure changes as by great new ideas. Improvements in dithihigues are generally incremental rather than
revolutionary.

12

2 Lecture 2: Morphology and finite-state techniques

This lecture starts with a brief discussion of morphologn@entrating mainly on English morphology. The concept
of a lexicon in an NLP system is discussed with respect to haggical processing. Spelling rules are introduced
and the use of finite state transducers to implement spdilites is explained. The lecture concludes with a brief
overview of some other uses of finite state techniques in NLP.

2.1 A very brief and simplified introduction to morphology

Morphology concerns the structure of words. Words are assulmbe made up ahorphems, which are the minimal
information carrying unit. Morphemes which can only ocauconjunction with other morphemes afixes: words
are made up of a stem (more than one in the case of compourtigeemor more affixes. For instana®ngis a stem
which may occur with the plural suffixs i.e.,dogs The compoundbookshophas two stemshipokandshop: most
English compounds are spelled with a space, however. Engtily has suffixes (affixes which come after a stem) and
prefixes (which come before the stem — in English these ariédihto derivational morphology), but other languages
haveinfixes(affixes which occur inside the stem) and circumfixes (affixb&ch go around a stem, such as thestin
Germangekauf}. For instance, Arabic has stems (root forms) suck_aib, which are combined with infixes to form
words (e.g.katabg he wrote kotoh books). Some English irregular verbs show a relic of infatby infixation (e.g.
sing sang sung but this process is no longproductive(i.e., it won't apply to any new words, such pisg).°

Note the requirement that a morpheme can be regarded as & beit are cases where there seems to be a similarity
in meaning between some clusters of words with similar gt e.g. slink, slide, slither, slip. But such examples
cannot be decomposed (i.e., there isshanorpheme) because the rest of the word does not stand as a unit

2.2 Inflectional vs derivational morphology

Inflectional and derivational morphology can be distingeid, although the dividing line isn't always sharp. The
distinction is of some importance in NLP, since it meansedéht representation techniques may be appropriate.
Inflectional morphology can be thought of as setting valdfedats in somegaradigm(i.e., there is a fixed set of slots
which can be thought of as being filled with simple valuesfieltional morphology concerns properties such as tense,
aspect, number, person, gender, and case, although nanglldges code all of these: English, for instance, has very
little morphological marking of case and gender. Derivasibaffixes, such asn-, re-, anti- etc, have a broader range
of semantic possibilities (there seems no principled liomtwhat they can mean) and don't fit into neat paradigms.
Inflectional affixes may be combined (though not in Englistidwever, there are always obvious limits to this, since
once all the possible slot values are ‘set’, nothing elsel@ppen. In contrast, there are no obvious limitations on
the number of derivational affixeartidisestablishmentarianisrantidisestablishmentarianismizatijpand they may
even be applied recursivelaiftiantimissilg. In some languages, such as Inuit, derivational morphoiegften used
where English would use adjectival modification or othertagtic means. This leads to very long ‘words’ occurring
naturally and is presumably responsible for the (mistakdain that ‘Eskimo’ has hundreds of words for snow.

Inflectional morphology is generally close to fully prodwet in the sense that a word of a particular class will
generally show all the possible inflections although theacdffix used may vary. For instance, an English verb will
have a present tense form, a 3rd person singular preseetfiems, a past participle and a passive participle (theratte
two being the same for regular verbs). This will also applaty new words which enter the language: eextas

a verb —texts texted Derivational morphology is less productive and the classfevords to which an affix applies
is less clearcut. For instance, the suffeeis relatively productive texteesounds plausible, meaning the recipient
of a text message, for instance), but doesn’t apply to abvé®noree Jogee ropeg. Derivational affixes may
change the part of speech of a word (e-tpg-ize converts nouns into verbglural, pluralise). However, there are
also examples of what is sometimes calkio derivation where a similar effect is observed without an affix: e.g.
tangq waltzetc are words which are basically nouns but can be used as.verb

Stems and affixes can be individually ambiguous. There esdsential for ambiguity in how a word form is split into
morphemes. For instancenionisedcould beunion -ise -edr (in chemistry)un- ion -ise -ed This sort of structural
ambiguity isn’'t nearly as common in English morphology asyntax, however. Note thain- ionis not a possible

9Arguably, though, spoken English has one productive irifixgprocess, exemplified tabsobloodylutely

13

form (becausein- can't attach to a noun). Furthermore, although there is fixoua- that can attach to verbs, it nearly
always denotes a reversal of a process (eugtig), whereas thein- that attaches to adjectives means ‘not’, which is
the meaning in the case ah- ion -ise -ed Hence the internal structure ah- ion -ise -echas to bgun- ((ion -ise)
-ed)).

2.3 Spelling rules

English morphology is essentially concatenative: i.e.,oan think of words as a sequence of prefixes, stems and
suffixes. Some words have irregular morphology and theieatitbnal forms simply have to be listed. However, in
other cases, there are regular phonological or spellinggdsassociated with affixation. For instance, the sedfig
pronounced differently when it is added to a stem which endsx or zand the spelling reflects this with the addition
of ane (boxesetc). For the purposes of this course, I'll just talk abouwlbpg effects rather than phonological effects:
these effects can be captureddpelling ruleg(also known asrthographic rules.

English spelling rules can be described independentlyeptrticular stems and affixes involved, simply in terms of
the affix boundary. The ‘e-insertion’ rule can be describgdbdlows:

S
e—e/ ¢ X s
z

In such rules, the mapping is always given from the ‘undadyform to the surface form, the mapping is shown to
the left of the slash and the context to the right, with thiadicating the position in questios.is used for the empty
string and" for the affix boundary. This particular rule is read as sayhag the empty string maps to ‘e’ in the context
where itis preceded by an s,x, or z and an affix boundary afalfet! by an s. For instance, this mds< sto boxes
This rule might look as though it is written in a context séimeigrammar formalism, but actually we’'ll see §2.7
that it corresponds to a finite state transducer. Becauseildnés independent of the particular affix, it applies egual
to the plural form of nouns and the 3rd person singular priefem of verbs. Other spelling rules in English include
consonant doubling (e.gat, ratted, though note, notduditted and y/ie conversionparty, parties.°

2.4 Applications of morphological processing

It is possible to use &ill-form lexiconfor English NLP: i.e., to list all the inflected forms and teat derivational
morphology as non-productive. However, when a new word bdsettreated (generally because the application is
expanded but in principle because a new word has enteredirtigedge) it is redundant to have to specify (or learn)
the inflected forms as well as the stem, since the vast mgjofitvords in English have regular morphology. So a
full-form lexicon is best regarded as a form of compilatiddany other languages have many more inflectional forms,
which increases the need to do morphological analysisr#the full-form listing.

IR systems usstemmingather than full morphological analysis. For IR, what isuigd is to relate forms, not to
analyse them compositionally, and this can most easily h&eaed by reducing all morphologically complex forms
to a canonical form. Although this is referred to as stemmihg canonical form may not be the linguistic stem. The
most commonly used algorithm is tRerter stemmerwhich uses a series of simple rules to strip endings (see,J&M
section 3.8) without the need for a lexicon. However, stengndoes not necessarily help IR. Search engines now
generally do inflectional morphology, but this can be daagsr For instance, searching farpusas well asorpora
when given the latter as input (as some search engines snasetio) results in a large number of spurious results
involving Corpus Christiand similar terms.

In most NLP applications, however, morphological analysia precursor to some form of parsing. In this case, the
requirement is to analyse the form into a stem and affixes abthie necessary syntactic (and possibly semantic)
information can be associated with it. Morphological asalys often calledlemmatization For instance, for the part

of speech tagging application which | will discuss in the tnexture, muggedwould be assigned a part of speech
tag which indicates it is a verb, thoughugis ambiguous between verb and noun. For full parsing, asusésd

10Note the use of * (‘star’) above: this notation is used in lifggics to indicate a word or sentence which is judged (byatltior, at least) to be
incorrect. ? is generally used for a sentence which is queslile, or at least doesn’t have the intended interpretatias used for a pragmatically
anomalous sentence.

14

in lectures 4 and 5, we’ll need more detailed syntactic amdeseic information. Morphological generation takes a
stem and some syntactic information and returns the cofoect. For some applications, there is a requirement that
morphological processing tEdirectionat that is, can be used for analysis and generation. The fitgite sansducers
we will look at below have this property.

2.5 Lexical requirements for morphological processing
There are three sorts of lexical information that are neddeflill, high precision morphological processing:

o affixes, plus the associated information conveyed by the affi
e irregular forms, with associated information similar tatlor affixes

e stems with syntactic categories (plus more detailed in&diom if derivational morphology is to be treated as
productive)

One approach to an affix lexicon is for it to consist of a pgrof affix and some encoding of the syntactic/semantic
effect of the affix!! For instance, consider the following fragment of a suffiidex (we can assume there is a separate
lexicon for prefixes):

ed PAST_VERB
ed PSP_VERB
s PLURAL_NOUN

HerePAST_VERBPSP_VERBandPLURAL_NOUMre abbreviations for some bundle of syntactic/semantar-in
mation and form the interface between morphology and theasgysemantics: I'll discuss this briefly §b.7.

A lexicon of irregular forms is also needed. One approacloigHis to just be a triple consisting of inflected form,
‘affix information’ and stem, where ‘affix information’ casponds to whatever encoding is used for the regular affix.
For instance:

began PAST_VERB begin
begun PSP_VERB begin

Note that this information can be used for generation as agetinalysis, as can the affix lexicon.

In most cases, English irregular forms are the same for akbe® of a word. For instancegn is the past ofrun
whether we are talking about athletes, politicians or nosgss argues for associating irregularity with particular
word forms rather than particular senses, especially sioogpounds also tend to follow the irregular spelling, even
non-productively formed ones (e.g., the pluraldafrmouseis dormice. However, there are exceptions: e.ghe
washing was hung/*hanged out to drgthe murderer was hanged

Morphological analysers also generally have access toieolexf regular stems. This is needed for high precision:
e.g. to avoid analysingorpusascorpu -s we need to know that there isn’'t a wozdrpu There are also cases where
historically a word was derived, but where the base form isomger found in the language: we can avoid analysing
unkemptasun- kemptfor instance, simply by not havingemptin the stem lexicon. Ideally this lexicon should have
syntactic information: for instancéedcould befee -ed but sinceeeis a noun rather than a verb, this isn't a possible
analysis. However, in the approach I'll assume, the momdioll analyser is split into two stages. The first of these
only concerns morpheme forms and returns bieth -edand feedgiven the inputfeed A second stage which is
closely coupled to the syntactic analysis then ruledesitedbecause the affix and stem syntactic information are not
compatible (seg5.7 for one approach to this).

If morphology was purely concatenative, it would be very giento write an algorithm to split off affixes. Spelling
rules complicate this somewhat: in fact, it's still possibd do a reasonable job for English with ad hoc code, but a
cleaner and more general approach is to use finite stateitge®

113&M describe an alternative approach which is to make the sintmformation correspond to a level in a finite state trares. However, at
least for English, this considerably complicates the traneds.

15

2.6 Finite state automata for recognition

The approach to spelling rules that I'll describe involves tise of finite state transducers (FSTs). Rather than jignpin
straight into this, I'll briefly consider the simpler finitéede automata and how they can be used in a simple recogniser.
Suppose we want to recognise dates (just day and month paitgn in the format day/month. The day and the
month may be expressed as one or two digits (e.g. 11/2, 1£)2 Ehis format corresponds to the following simple
FSA, where each character corresponds to one transition:

0,1,2,3 digit / 01 01,2

RoRoRo

digit digit

O,

Accept states are shown with a double circle. This is a ndardenistic FSA: for instance, an input starting with the
digit 3 will move the FSA to both state 2 and state 3. This apamds to docal ambiguity i.e., one that will be
resolved by subsequent context. By convention, there neusbbleft over’ characters when the system is in the final
state.

To make this a bit more interesting, suppose we want to rasegncomma-separated list of such dates. The FSA,
shown below, now has a cycle and can accept a sequence ofhiteléfngth (note that this is iteration and not full
recursion, however).

Both these FSAs will accept sequences which are not valabsdatich as 37/00. Conversely, if we use them to generate
(random) dates, we will get some invalid output. In geneaaystem which generates output which is invalid is said
to overgenerateln fact, in many language applications, some amount ofgaregration can be tolerated, especially if
we are only concerned with analysis.

2.7 Finite state transducers

FSAs can be used to recognise particular patterns, but,don'themselves, allow for any analysis of word forms.
Hence for morphology, we use finite state transducers (F&f&h allow the surface structure to be mapped into the
list of morphemes. FSTs are useful for both analysis andrgéine, since the mapping is bidirectional. This approach
is known agwo-level morphology

To illustrate two-level morphology, consider the followiST, which recognises the affiz allowing for environ-
ments corresponding to the e-insertion spelling rule shimwj2.3 and repeated beloW4.

2pctually, I've simplified this slightly so the FST works coaty but the correspondence to the spelling rule is not exa&M give a more
complex transducer which is an accurate reflection of thdisgelle. They also use an explicit terminating characteilevhprefer to rely on the
‘use all the input’ convention, which results in simpler mile

16

x
¥

e — e/

e:e
other : other

e:e
other : other

Transducers map between two representations, so eacltitartrresponds to a pair of characters. As with the
spelling rule, we use the special charactéitd correspond to the empty character aridto correspond to an affix
boundary. The abbreviation ‘other : other means that argratter not mentioned specifically in the FST maps to
itself.13 As with the FSA example, we assume that the FST only accegtspanif the end of the input corresponds
to an accept state (i.e., no ‘left-over’ characters arengdlt).

For instance, with this FST, the surface fooakeswould start from 1 and go through the transitions/states) (t;
(a:a) 1, (kk) 1, (e:e) 1,&(7) 2, (s:s) 3 (accept, underlyingpke™ s) and also (c:c) 1, (a:a) 1, (kik) 1, (e:e) 1, (s:s) 4
(accept, underlyingake3. ‘dogs'mapsto‘dog s’, foxes'mapstofox s'andto‘foxe” s’ and'buzz
es'mapsto‘'buzZ s’and‘buzz€ s.* When the transducer is run in analysis mode, this means thensysn
detect an affix boundary (and hence look up the stem and tixdraffie appropriate lexicons). In generation mode, it
can construct the correct string. This FST is non-detestimi

Similar FSTs can be written for the other spelling rules faghksh (although to do consonant doubling correctly, in-
formation about stress and syllable boundaries is reqaingithere are also differences between British and American
spelling conventions which complicate matters). Morplglsystems are usually implemented so that there is one
FST per spelling rule and these operate in parallel.

One issue with this use of FSTs is that they do not allow foriatgrnal structure of the word form. For instance, we
can produce a set of FSTs which will resultunionisedbeing mapped intoin”ion"ise”ed, but as we've seen, the
affixes actually have to be applied in the right order andigri&d modelled by the FSTs.

2.8 Some other uses of finite state techniques in NLP

e Grammars for simple spoken dialogue systems. Finite stateniques are not adequate to model grammars of
natural languages: I'll discuss this a little§d.12. However, for very simple spoken dialogue systems,itefin

13The solution notes for the 2003 FST question are slightlyngrim that they should have y : y as well as other : other on aesttion.
14In all cases they also map to themselves: e.g., ‘b uz z e s’ mapaita z e s’ without the affix marker: this is necessary becausdswending
in ‘s’ and ‘es’ are not always inflected forms. e.§lpses

17

state grammar may be adequate. More complex grammars carnittenas context free grammars (CFGs) and
compiled into finite state approximations.

e Partial grammars for named entity recognition (briefly dssed ir§4.12).

e Dialogue models for spoken dialogue systems (SDS). SDSiakegde models for a variety of purposes: in-
cluding controlling the way that the information acquiredrh the user is instantiated (e.g., the slots that are
filled in an underlying database) and limiting the vocabularachieve higher recognition rates. FSAs can be
used to record possible transitions between states in desidiglogue. For instance, consider the problem of
obtaining a date expressed as a day and a month from a usee dieefour possible states, corresponding to
the user input recognised so far:

1. No information. System prompts for month and day.
2. Month only is known. System prompts for day.

3. Day only is known. System prompts for month.

4. Month and day known.

The FSA is shown below. The loops that stay in a single stategpond to user responses that aren’t recognised
as containing the required informatiomgmbleis the term generally used for an unrecognised input).

mumble

mumble mumble

2.9 Probabilistic FSAs

In many cases, it is useful to augment the FSA with inforrmatibout transition probabilities. For instance, in the
SDS system described above, it is more likely that a userspékify a month alone than a day alone. A probabilistic
FSA for the SDS is shown below. Note that the probabilitiesh@noutgoing arcs from each state must sumto 1.

2.10 Further reading

Chapters 2 and 3 of J&M. Much of Chapter 2 should be familianfrother courses in the CST. Chapter 3 uses more
elaborate transducers than I've discussed.

18

3 Lecture 3: Prediction and part-of-speech tagging

This lecture introduces some simple statistical techrécurel illustrates their use in NLP for prediction of words and
part-of-speech categories. It starts with a discussiomgdara, then introduces word prediction. Word predictian ¢

be seen as a way of (crudely) modelling some syntactic irdition (i.e., word order). Similar statistical techniques
can also be used to discover parts of speech for uses of woedsdrpus. The lecture concludes with some discussion
of evaluation.

3.1 Corpora

A corpus(corpora is the plural) is simply a body of text that has beellected for some purpose. Balanced
corpuscontains texts which represent different genres (newspafetion, textbooks, parliamentary reports, cooking
recipes, scientific papers etc etc): early examples werBittven corpus (US English) and the Lancaster-Oslo-Bergen
(LOB) corpus (British English) which are each about 1 milliwords: the more recent British National Corpus (BNC)
contains approx 100 million words and includes 20 millionrds of spoken English. Corpora are important for
many types of linguistic research, although mainstreaguiists have in the past tended to dismiss their use in favour
of reliance on intuitive judgements about whether or not #iarance is grammatical. A corpus can only (directly)
provide positive evidence about grammaticality. Many lirsgs are gradually coming round to their use. Corpora are
essential for most modern NLP research, though NLP reseexdtave often used newspaper text (particularly the
Wall Street Journal) rather than balanced corpora.

Distributed corpora are often annotated in some way: thd mggortant type of annotation for NLP is part-of-speech
tagging (POS tagging), which I'll discuss further below.

Corpora may also be collected for a specific task. For ingtawben implementing an email answering application,
it is essential to collect samples of representative emé&its interface applications in particular, collecting aps
requires a simulation of the actual application: genertily is done by aVizard of Ozexperiment, where a human
pretends to be a computer.

Corpora are needed in NLP for two reasons. Firstly, we hawevéduate algorithms on real language: corpora are
required for this purpose for any style of NLP. Secondlypowa provide the data source for many machine-learning
approaches.

3.2 Prediction

The essential idea of prediction is that, given a sequeneals, we want to determine what's most likely to come
next. There are a number of reasons to want to do this: the impsirtant is as a form ofanguage modellindgor
automatic speech recognition. Speech recognisers canoatagely determine a word from the sound signal for that
word alone, and they cannot reliably tell where each wordstnd finished® So the most probable word is chosen
on the basis of the language model, which predicts the magylivord, given the prior context. The language models
which are currently most effective work on the basisejrams(a type ofMarkov chair), where the sequence of the
prior n — 1 words is used to predict the next. Trigram models use thesgliag 2 words, bigram models the preceding
word and unigram models use no context at all, but simply weorkhe basis of individual word probabilities. Bigrams
are discussed below, though | won't go into details of eydwtiw they are used in speech recognition.

Word prediction is also useful in communication aids: isgstems for people who can’t speak because of some form
of disability. People who use text-to-speech systems koltatause of a non-linguistic disability usually have some
form of general motor impairment which also restricts thaility to type at normal rates (stroke, ALS, cerebral
palsy etc). Often they use alternative input devices, sischdapted keyboards, puffer switches, mouth sticks or
eye trackers. Generally such users can only construct textfew words a minute, which is too slow for anything
like normal communication to be possible (normal speechaarad 150 words per minute). As a partial aid, a word
prediction system is sometimes helpful: this gives a listaofdidate words that changes as the initial letters areexhte
by the user. The user chooses the desired word from a menuitdggoears. The main difficulty with using statistical

151n fact, although humans are better at doing this than spesxdgnisers, we also need context to recognise words, edigegords likethe
anda. If a recording is made of normal, fluently spoken, speech aadélgments correspondingtt®anda are presented to a subject in isolation,
it's generally not possible to tell the difference.

19

prediction models in such applications is in finding enougtadto be useful, the model really has to be trained on an
individual speaker’s output, but of course very little ofstiis likely to be available. Training a conversational ard o
newspaper text can be worse than using a unigram model fremsr's own data.

Prediction is important in estimation of entropy, inclugliestimations of the entropy of English. The notion of engrop
is important in language modelling because it gives a méirithe difficulty of the prediction problem. For instance,
speech recognition is vastly easier in situations wherspleaker is only saying two easily distinguishable words. (e.
when a dialogue system prompts by sayamgwer ‘yes’ or ‘no) than when the vocabulary is unlimited: measurements
of entropy can quantify this, but won't be discussed furihehis course.

Other applications for prediction include optical chaexaecognition (OCR), spelling correction and text segmen-
tation for languages such as Chinese, which are convefiffomatten without explicit word boundaries. Some ap-
proaches to word sense disambiguation, to be discussectimdes, can also be treated as a form of prediction.

3.3 bigrams

A bigram model assigns a probability to a word based on theique word alone: i.e P(w,, |w,—_1) (the probability

of w,, conditional onw,,_1) wherew,, is the nth word in some string. For application to commundizagids, we

are simply concerned with predicting the next word: onceuber has made their choice, the word can't be changed.
However, for speech recognition and similar applicatioms, require the probability of some string of wor@gw?)
which is approximated by the product of the bigram probtbsi

P(wi) = [T P(wklwi-)
k=1

We acquire these probabilities from a corpus. For examplgpase we have the following tiny corpus of utterances:

good morning
good afternoon
good afternoon
it is very good
itis good

I'll use the symbok(s) to indicate the beginning of the sentence &fsiito indicate the end, so the corpus really looks
like:

(s) good morning(/s) (s) good afternoor/s) (s) good afternoori/s) (s) it is very good(/s) (s} it is good
(Is)
The bigram probabilities are given as
C(wp—1wy,)
Zw C(wn—lw)
i.e. the count of a particular bigram, normalised by divigliy the total number of bigrams starting with the same

word (which is equivalent to the total number of occurrenoéshat word, except in the case of the last token, a
complication which can be ignored for a reasonable size gfus).

sequence count bigram probability
<s> 5

<s> good 3 .6

<s> it 2 4

good 5

good morning 1 2

good afternoon 2 4

good </s> 2 4

20

morning 1
morning </s> 1 1
afternoon 2

afternoon </s> 2 1
it 2

it is 2 1
is 2
is very 1
is good 1
very 1
very good 1
</s> 5
</s><s> 4

This yields a probability of 0.24 for the strings) good(/s)’ and also for {s) good afternoon/s)’.

For speech recognition, the n-gram approach is applied tdmise the likelihood of a sequence of words, hence
we're looking to find the most likely sequence overall. Netibat we can regard bigrams as comprising a simple
deterministic weighted FSA. Théiterbi algorithm an dynamic programming technique for efficiently applymg
grams in speech recognition and other applications to finchighest probability sequence (or sequences), is usually
described in terms of an FSA.

The probability of {s) very good(/s)’ based on this corpus is 0, since the conditional probgtulitvery’ given ‘(s)’

is 0 since we haven't found any examples of this in the trgmata. In general, this is problematic because we will
never have enough data to ensure that we will see all possilets and so we don’t want to rule out unseen events
entirely. To allow forsparse datave have to usemoothing which simply means that we make some assumption
about the ‘real’ probability of unseen or very infrequerglsen events and distribute that probability appropriatily
common approach is simply to add one to all counts: th&ig-one smoothing/hich is not sound theoretically, but

is simple to implement. A better approach in the case of migrés tobackoffto the unigram probabilities: i.e., to
distribute the unseen probability mass so that it is propoal to the unigram probabilities. This sort of estimatisn
extremely important to get good results from n-gram techegy but | won't discuss the details in this course.

3.4 Part of speech tagging

Sometimes we are interested in a form of prediction thathr@assigning classes to items in a sequence rather than
predicting the next item. One important application is totymd-speech tagging (POS tagging), where the words in a
corpus are associated with a tag indicating some syntadfticnation that applies to that particular use of the word.
For instance, consider the example sentence below:

They can fish.

This has two readings: one (the most likely) about abilitfigh and other about putting fish in caffishis ambiguous
between a singular noun, plural noun and a verb, wtidleis ambiguous between singular noun, verb (the ‘put in
cans’ use) and modal verb. Howevtireyis unambiguously a pronoun. (I am ignoring some less likelgsibilities,
such as proper names.) These distinctions can be indicgte®B tags:

they PNP
can VMO VVB VVI NN1
fish NN1 NN2 VVB VVI

There are several standard tagsets used in corpora and itelg@iBg experiments. The one I'm using for the examples
in this lecture is CLAWS 5 (C5) which is given in full in Figure®bin J&M. The meaning of the tags above is:

NN1 singular noun

NN2 plural noun
PNP personal pronoun

21

VMO modal auxiliary verb
VVB base form of verb (except infinitive)
VVI infinitive form of verb (i.e. occurs with ‘to’ and in simi lar contexts)

A POS tagger resolves the lexical ambiguities to give thetiilady set of tags for the sentence. In this case, the right
tagging is likely to be:

They PNP canVMO fish_VVI._PUN

Note the tag for the full stop: punctuation is treated as urigonous. POS tagging can be regarded as a form of very
basic word sense disambiguation.

The other syntactically possible reading is:
They PNP canVVB fish_.NN2 ._.PUN

However, POS taggers (unlike full parsers) don’t attempirtmduce globally coherent analyses. Thus a POS tagger
might return:

They.PNP canVMO fish_.NN2 ._.PUN

despite the fact that this doesn’t correspond to a posséalding of the sentence.

POS tagging is useful as a way of annotating a corpus bectumskes it easier to extract some types of information
(for linguistic research or NLP experiments). It also agsaasis for more complex forms of annotation. Named
entity recognisers (discussed in lecture 4) are generatlyon POS-tagged data. POS taggers are sometimes run as
preprocessors to full parsing, since this can cut down theckespace to be considered by the parser. They can also
be used as part of a method for dealing with words which arémtbie parser’s lexicon (unknown words).

3.5 Stochastic POS tagging using Hidden Markov Models

One form of POS tagging uses a technique knowrHaklen Markov ModellingHMM). It involves an n-gram
technique, but in this case the n-grams are sequences ofd@@#ther than of words. The most common approaches
depend on a small amount of manually tagtrathing datafrom which POS n-grams can be extractédl illustrate

this with respect to another trivial corpus:

They used to can fish in those towns. But now few people fishaselareas.
This might be tagged as follows:

They_PNP used_VVD to_TOO can_VVI fish_NN2 in_PRP those_DT 0 towns_NN2 ._PUN
But_CJC now_AVO few DTO people_ NN2 fish_VVB in_PRP these_ DTO areas_NN2 . PUN

This yields the following counts and probabilities:

sequence count bigram probability
AVO 1

AVO DTO 1 1
cJC 1

CJC AVO 1 1
DTO 3

DTO NN2 3 1

181t is possible to build POS taggers that work without a haagtjed corpus, but they don’t perform as well as a systemeiiaim even a 1,000
word corpus which can be tagged in a few hours. Furthermoesgthlgorithms still require a lexicon which associatesiptestags with words.

22

NN2 4

NN2 PRP 1 0.25
NN2 PUN 2 0.5
NN2 VVB 1 0.25
PNP 1

PNP VVD 1 1
PRP 1

PRP DTO 2 1
PUN 1

PUN CJC 1 1
TOO 1

TOO VVI 1 1
VVB 1

VVB PRP 1 1
VVD 1

VVD TOO 1 1
VVI 1

VVI NN2 1 1

| have used the correct PUN CJC probability, allowing forfihal PUN. We can also obtain a lexicon from the tagged
data:

word tag count

they PNP 1
used VVD 1
to TOO 1
can VI 1
fish NN2 1
VVB 1
in PRP 2
those DTO 1
towns NN2 1
. PUN 1
but cJC 1
now AVO 1
few DTO 1
people NN2 1
these DTO 1
areas NN2 1

The idea of stochastic POS tagging is that the tag can benasklgased on consideration of the lexical probability
(how likely it is that the word has that tag), plus the seqeeoicprior tags. For a bigram model, we only look at a
single previous tag. This is more complicated than the weoediption case because we have to take into account both
words and tags.

We wish to produce a sequence of tags which have the maximoibabpility given a sequence of words. | will follow
J&M'’s notation: the hat,, means “estimate of”, sff means “estimate of the sequencenafigs”, andargmax f (z)
x

23

means “the x such that f(x) is maximized”. Hence:

" = argmax P(t7|w?)
24

We can't estimate this directly (mini-exercise: explainywiot). By Bayes theorem:

P(wi|t7) P(t1)
P(t7|wy) =
(1 |w1) P(U}ln)
Since we're looking at assigning tags to a particular seqeef words,P(w?) is constant, so for a relative measure
of probability we can use:
" = argmax P(w|t})P(t})
ty

We now have to estimat®(¢}) and P(w}|t}). If we make the bigram assumption, then the probability o&@ t
depends on the previous tag, hence the tag sequence istestiasaa product of the probabilities:

P(t?) ~ H P(ti|ti_1)
i=1

We will also assume that the probability of the word is indegent of the words and tags around it and depends only
on its own tag:

P(wi|ty) ~ [] Pwilt:)
=1
These values can be estimated from the corpus frequenceesurSinal equation for the HMM POS tagger using
bigrams is:

tA? = argmaXH P(wl|tl)P(tz|tl_1)

"
|2 -

Note that we end up multiplyind(¢;|t;—1) with P(w;]t;) (the probability of the word given the tag) rather than
P(t;|w;) (the probability of the tag given the word). For instancewé're trying to choose between the tags NN2
and VVB forfishin the sentencthey fish we calculateP(NN2|PNP), P(fishiINN2), P(VVB|PNP) and P(fish|VVB)
(assuming PNP is the only possible tag thoey).

As the equation above indicates, in order to POS tag a sentere maximise the overall tag sequence probability
(again, this can be implemented efficiently using the Vitaigorithm). So a tag which has high probability consid-
ering its individual bigram estimate will not be chosen iflites not form part of the highest probability path. For
example:

they PNP canVVB fish_NN2

they PNP canVMO fish_VVI

The product ofP(VVI|VMO) and P(fish|VVI) may be lower than that aP(NN2|VVB) and P(fishINN2) but the
overall probability depends also di(canVVB) versusP(carlVMO0) and the latter (modal) use has much higher
frequency in a balanced corpus.

In fact, POS taggers generally use trigrams rather tharabiig— the relevant equations are given in J&M, 5.5.4. As
with word prediction, backoff (to bigrams) and smoothing arucial for reasonable performance because of sparse
data.

When a POS tagger sees a word which was not in its training @Wataged some way of assigning possible tags to the
word. One approach is simply to use all possitgpen classags, with probabilities based on the unigram probabditie
of those tags. Open class words are ones for which we can gieess complete list for a living language, since words
are always being added: i.e., verbs, nouns, adjectives @vettzs. The rest are considered closed class. A better
approach is to use a morphological analyser (without a &jito restrict this set: e.g., words ending-@dare likely

to be VVD (simple past) or VVN (past participle), but can't¥¥9'G (-ing form).

24

3.6 Evaluation of POS tagging

POS tagging algorithms are evaluated in terms of percerdfgerrect tags. The standard assumption is that every
word should be tagged with exactly one tag, which is scoredoa®ect or incorrect: there are no marks for near
misses. Generally there are some words which can be taggedione way, so are automatically counted as correct.
Punctuation is generally given an unambiguous tag. Thexdfte success rates of over 95% which are generally
quoted for POS tagging are a little misleading: the basalinghoosing the most common tag based on the training
set often gives 90% accuracy. Some POS taggers return haukigs in cases where more than one tag has a similar
probability.

It is worth noting that increasing the size of the tagset dustsnecessarily result in decreased performance: this
depends on whether the tags that are added can generallgigepexsunambiguously or not. Potentially, adding more
fine-grained tags could increase performance. For instaugmpose we wanted to distinguish between present tense
verbs according to whether they were 1st, 2nd or 3rd persath the C5 tagset, and the stochastic tagger described,
this would be impossible to do with high accuracy, becauk@rahouns are tagged PRP, hence they provide no
discriminating power. On the other hand, if we taggesthdweas PRP1youas PRP2 and so on, the n-gram approach
would allow some discrimination. In general, predictingtbe basis of classes means we have less of a sparse data
problem than when predicting on the basis of words, but we lalse discriminating power. There is also something
of a tradeoff between the utility of a set of tags and theifuisess in POS tagging. For instance, C5 assigns separate
tags for the different forms dfe which is redundant for many purposes, but helps make digstims between other
tags in tagging models such as the one described here wieecenltext is given by a tag sequence alone (i.e., rather
than considering words prior to the current one).

POS tagging exemplifies some general issues in NLP evatuatio

Training data and test data The assumption in NLP is always that a system should work aelraata, therefore
test data must be kept unseen.

For machine learning approaches, such as stochastic PQiigathe usual technique is to spilt a data set into
90% training and 10% test data. Care needs to be taken thistheata is representative.

For an approach that relies on significant hand-coding gbiedata should be literally unseen by the researchers.
Development cycles involve looking at some initial datayedeping the algorithm, testing on unseen data,
revising the algorithm and testing on a new batch of data.sE®® data is kept for regression testing.

Baselines Evaluation should be reported with respect to a baselingwk normally what could be achieved with a
very basic approach, given the same training data. Fomnstahe baseline for POS tagging with training data
is to choose the most common tag for a particular word on tiséshad the training data (and to simply choose
the most frequent tag of all for unseen words).

Ceiling Itis often useful to try and compute some sort of ceiling far performance of an application. This is usually
taken to be human performance on that task, where the césliting percentage agreement found between two
annotatorsifiterannotator agreemehptFor POS tagging, this has been reported as 96% (which nead&ting
POS taggers look impressive since some perform at higheraog). However this raises lots of questions:
relatively untrained human annotators working indepetigleften have quite low agreement, but trained an-
notators discussing results can achieve much higher pegioce (approaching 100% for POS tagging). Human
performance varies considerably between individualsigHiatcan cause errors, even with very experienced
annotators. In any case, human performance may not be stieakiling on relatively unnatural tasks, such as
POS tagging.

Error analysis The error rate on a particular problem will be distributedyenevenly. For instance, a POS tagger
will never confuse the tag PUN with the tag VVN (past partie)pbut might confuse VVN with AJO (adjective)
because there’s a systematic ambiguity for many forms, (@ixen). For a particular application, some errors
may be more important than others. For instance, if one ikitgpfor relatively low frequency cases of de-
nominal verbs (that is verbs derived from nouns — ecgnoe tangq fork used as verbs), then POS tagging is
not directly useful in general, because a verbal use witaaitaracteristic affix is likely to be mistagged. This
makes POS-tagging less useful for lexicographers, whofaea specifically interested in finding examples of
unusual word uses. Similarly, in text categorisation, s@mers are more important than others: e.g. treating
an incoming order for an expensive product as junk email imeamworse error than the converse.

25

Reproducibility If at all possible, evaluation should be done on a generaliylable corpus so that other researchers
can replicate the experiments.

3.7 Further reading

N-grams are described in Chapter 4 of J&M, POS tagging in @ The description in the second edition is
considerably clearly than that in the first edition.

26

4 Lecture 4. Parsing and generation

In this lecture, I'll discuss syntax in a way which is muchs#o to the standard notions in formal linguistics than
POS-tagging is. To start with, I'll briefly motivate the idefa generative grammar in linguistics, review the notion
of a context-free grammar and then show a context-free gi@nfion a tiny fragment of English. We’'ll then see how
context free grammars can be used to implement generatdrpansers, and discuss chart parsing, which allows
efficient processing of strings containing a high degreerobiguity. Finally we’ll briefly touch on probabilistic
context-free approaches.

4.1 Generative grammar

Since Chomsky’s work in the 1950s, much work in formal lirggigs has been concerned with the notion geaera-

tive grammar— i.e., a formally specified grammar that can generate allanythe acceptable sentences of a natural
language. It's important to realise that nobody has agtuatitten a complete grammar of this type for any natural
language or even come close to doing so: what most linguisteally interested in is the principles that underly such
grammars, especially to the extent that they apply to alinahtanguages. NLP researchers, on the other hand, are at
least sometimes interested in actually building and usangg-scale detailed grammars.

The formalisms which are of interest to us for modelling syrdissign internal structure to the strings of a language,
which can be represented by bracketing. We already saw seidenee of this in derivational morphology (the
unionisedexample), but here we are concerned with the structure @fsgs: For instance, the sentence:

the big dog slept
can be bracketed
((the (big dog)) slept)

The phrasebig dog is an example of aonstituen{i.e. something that is enclosed in a pair of brackets: big dog
is also a constituent, buahe bigis not. Constituent structure is generally justified by angats about substitution
which | won't go into here: J&M discuss this briefly, but seeiminoductory syntax book for a full discussion. In this
course, | will simply give bracketed structures and hopt tiira constituents make sense intuitively, rather thamgyyi
to justify them.

Two grammars are said to bgeakly-equivalentf they generate the same strings. Two grammarssamngly-
equivalentf they assign the same bracketings to all strings they gaaer

In most, but not all, approaches, the internal structuresgaren labels. For instancthe big dogis anoun phrase
(abbreviated NP)slept slept in the parkandlicked Sandyareverb phrase (VPs). The labels such as NP and VP
correspond to non-terminal symbols in a grammar. In thiuleg I'll discuss the use of simple context-free grammars
for language description, moving onto a more expressivadtism in lecture 5.

4.2 Context free grammars

The idea of a context-free grammar (CFG) should be famit@mfformal language theory. A CFG has four compo-
nents, described here as they apply to grammars of natugliéaes:

1. a set of non-terminal symbols (e.g., S, VP), conventignailitten in uppercase;
2. aset of terminal symbols (i.e., the words), conventilgnatitten in lowercase;

3. a set of rules (productions), where the left hand side rftbéher) is a single non-terminal and the right hand
side is a sequence of one or more non-terminal or terminabsygr(the daughters);

4. a start symbol, conventionally S, which is a member of #t@&non-terminal symbols.

27

The formal description of a CFG generally allows producsiavith an empty righthandside (e.g., Det ¢). Itis
convenient to exclude these however, since they complatng algorithms, and a weakly-equivalent grammar can
always be constructed that disallows sachpty productions

A grammar in which all nonterminal daughters are the lefthadasighter in a rule (i.e., where all rules are of the form
X — Yax), is said to bdeft-associative A grammar where all the nonterminals are rightmogight-associative
Such grammars are weakly-equivalent to regular grammars rammars that can be implemented by FSAs), but
natural languages seem to require more expressive powethisa(see4.12).

4.3 A simple CFG for a fragment of English

The following tiny fragment is intended to illustrate sometlee properties of CFGs so that we can discuss parsing
and generation. It has some serious deficiencies as a rafaten of even this fragment, which I'll ignore for now,
though we’ll see some of them in lecture 5. Notice that fog fragment there is no distinction between main veah

and the modal verban

S > NP VP
VP -> VP PP
VP >V

VP -> V NP
VP -> V VP
NP -> NP PP
PP -> P NP
;;; lexicon

V -> can

V -> fish

NP -> fish

NP -> rivers
NP -> pools
NP -> December
NP -> Scotland
NP -> it

NP -> they

P -> in

The rules with terminal symbols on the right hand side cqoesl to the lexicon. Here and below, comments are
preceded by;;

Here are some strings which this grammar generates, alahghdgir bracketings:

they fish
(S (NP they) (VP (V fish)))

they can fish

(S (NP they) (VP (V can) (VP (V fish))))

;;; the modal verb *are able to’ reading

(S (NP they) (VP (V can) (NP fish)))

;1; the less plausible, put fish in cans, reading

they fish in rivers
(S (NP they) (VP (VP (V fish)) (PP (P in) (NP rivers))))

they fish in rivers in December

(S (NP they) (VP (VP (V fish)) (PP (P in) (NP (NP rivers) (PP (lP(NP December))))))
;;; 1.e. the implausible reading where the rivers are in Deloer

;5 (cfrivers in Scotland)

(S (NP they) (VP (VP (VP (V fish)) (PP (P in) (NP rivers))) (PPiGip (NP December))))
;;; 1.e. the fishing is done in December

28

One important thing to notice about these examples is tleagthlots of potential for ambiguity. In they can fish
example, this is due tlexical ambiguity(it arises from the dual lexical entries cdnandfish), but the last example
demonstrates pureltructural ambiguity In this case, the ambiguity arises from the two possittlachment®f the
prepositional phrase (PR) December it can attach to the NFigers) or to the VP. These attachments correspond
to different semantics, as indicated by the glosses. PEhatiiant ambiguities are a major headache in parsing, since
sequences of four or more PPs are common in real texts andithber of readings increases as the Catalan series,
which is exponential. Other phenomena have similar progggertfor instance, compound nouns (elgng-stay car
park shuttle bus Humans disambiguate such attachments as they hear acgnbat they're relying on the meaning

in context to do this, in a way we cannot currently emulateegt when the sentences are restricted to a very limited
domain.

Notice thatfishcould have been entered in the lexicon directly as a VP, laitthis would cause problems if we were
doing inflectional morphology, because we want to say thifixes like -edapply to Vs. Makingivers etc NPs rather
than nouns is a simplification I've adopted here to keep thengnar smaller.

4.4 Parse trees

Parse trees are equivalent to bracketed structures, batarer to read for complex cases. A parse tree and bracketed
structure for one reading dlfiey can fish in Decembé& shown below. The correspondence should be obvious.

PN

NP VP
VN
they \Y% VP
VRN
can VP PP
N
v P NP
filh iL Decc‘ember
(S (NP they)
(VP (V can)
(VP (VP (V fish))
(PP (P in)

(NP Decemben)))))

4.5 Using a grammar as a random generator

The following simple algorithm illustrates how a grammandee used to generate random sentences.

Expand cat category sentence-recard
Let possibilitiesbe a set containing all lexical items which matategoryand all rules with left-hand sideategory
If possibilitiesis empty,
then fail
else
Randomly select a possibilighoserfrom possibilities
If chosens lexical,

29

then append it teentence-record
elseexpand caton each rhs category rhosen(left to right) with the updatedentence-record
returnsentence-record

For instance:

Expand catS ()
possibilities =S -> NP VP
chosen=S -> NP VP
Expand catNP ()
possibilities = it, they, fish
chosen = fish
sentence-record = (fish)
Expand cat VP (fish)
possibilities =vVP -> V, VP -> V VP, VP -> V NP
chosen /P -> V

Expand catV (fish)
possibilities = fish, can
chosen = fish
sentence-record = (fish fish)

Obviously, the strings generated could be arbitrarily lotfgn this naive generation algorithm, we explored all the
search space rather than randomly selecting a possiblasixpea the algorithm wouldn’t terminate.

Real generation operates from semantic representatidnshwaren’t encoded in this grammar, so in what follows I'll
concentrate on describing parsing algorithms instead. é¥ew it's important to realise that CFGs are, in principle,
bidirectional.

4.6 Chart parsing

In order to parse with reasonable efficiency, we need to keepad of the rules that we have applied so that we don'’t
have to backtrack and redo work that we've done before. Thiksvfor parsing with CFGs because the rules are
independent of their context: a VP can always expand as a \aaNP regardless of whether or not it was preceded
by an NP or a V, for instance. (In some cases we may be able tg tgghniques that look at the context to cut down
the search space, because we can tell that a particulapplieation is never going to be part of a sentence, but this is
strictly a filter: we're never going to get incorrect resuiisreusing partial structures.) This record keeping strate

an application of dynamic programming/memoization whiglhi$ed in processing formal languages too. In NLP the
data structure used for recording partial results is gdlyekaown as achart and algorithms for parsing using such
structures are referred to abart parserst’ Chart parsing strategies are designed tead@plete that is, if there is a
valid analysis according to a grammar, the chart parseffindl it.

A chart is a list ofedges In the simplest version of chart parsing, each edge rec@mide application and has the
following structure:

[id,left.vertex right_vertexmothercategory daughter$
A vertex is an integer representing a point in the input gtras illustrated below:

. they . can . fish .
0 1 2 3

mothercategoryrefers to the rule that has been applied to create the atlgeghterss a list of the edges that acted
as the daughters for this particular rule application: thisre purely for record keeping so that the output of parsing
can be a labelled bracketing.

"Natural languages have vastly higher degrees of ambiguaty pnogramming languages: chart parsing is well-suited & thi

30

For instance, the following edges would be among those famthe chart after a complete parsetiogéy can fish
according to the grammar given above (id numbering is ahyijr

id left right mother daughters

3 1 2 \% (can)
4 2 3 NP (fish)
5 2 3 Y, (fish)
6 2 3 VP (5)

7 1 3 VP (3 6)
8 1 3 VP 3 4)

The daughters for the terminal rule applications are sinipdyinput word strings.

Note that local ambiguities correspond to situations wlagparticular span has more than one associated edge. We'll
see below that we cgpackstructures so that we never have two edges with the sameocaiagd the same span, but
we'll ignore this for the moment (s€@.9). Also, in this chart we're only recording complete rafgplications: this is
passivechart parsing. The more efficieattivechart is discussed below, §4.10.

4.7 A bottom-up passive chart parser

The following pseudo-code sketch is for a very simple charser. Informally, it proceeds by adding the next word
(in left to right order), and adding each lexical categorggible for that word, doing everything it can immediately
after each lexical category is added. The main functioAdd new edgewhich is called for each word in the input
going left to right.Add new edgerecursively scans backwards looking for other daughters.

Parse
Initialise the chart (i.e., clear previous results)
For each wordvord in the input sentence, Ifom be the left vertexto be the right vertex andaughtersbe (vord)
For each categorgategorythat is lexically associated witlord
Add new edgefrom, to, category daughters
Output results for all spanning edges
(i.e., ones that cover the entire input and which have a mathreesponding to the root category)

Add new edgefrom, to, category daughters

Put edge in chart:id,from,to, categorydaughter$

For eaclrule in the grammar of fornths-> cat; ...cat,_,category
Find set of lists of contiguous edged,from, ,to,, cat; , daughters] ... [id,,_1,from,_4,from, cat,_,daughterg_1]
(such thato, = from, etc)
(i.e., find all edges that match a rule)
For each list of edge#ydd new edgefromy, to, |hs, (id; ...id)
(i.e., apply the rule to the edges)

Notice that this means that the grammar rules are indexetdiyrightmost category, and that the edges in the chart
must be indexed by theio vertex (because we scan backward from the rightmost categoonsider:

. they . can . fish .
0 1 2 3

The following diagram shows the chart edges as they are rmtst in order (when there is a choice, taking rules in
a priority order according to the order they appear in thergrer):

id left right mother daughters

1 0 1 NP (they)
2 1 2 \Y, (can)
3 1 2 VP 2

31

4 0 2 S 1 3)
5 2 3 v (fish)
6 2 3 VP (5)

7 1 3 VP 2 6)
8 0 3 S 17
9 2 3 NP (fish)
10 1 3 VP @2 9)
11 0 3 s (1 10)

The spanning edges are 11 and 8: the output routine to givkéted parses simply outputs a left bracket, outputs
the category, recurses through each of the daughters andatiteuts a right bracket. So, for instance, the output from
edge 11 is:

(S (NP they) (VP (V can) (NP fish)))

This chart parsing algorithm iomplete it returns all possible analyses, except in the case whdmes not terminate
because there is a recursively applicable rule.

4.8 A detailed trace of the simple chart parser

Parse

word = they

categories= NP

Add new edge0, 1, NP, (they)

LN, . .

they can fish

Matching grammar rules are:

VP -> V NP
PP -> P NP

No matching edges corresponding to V or P

word = can
categories= V
Add new edgel, 2, V, (can)

o LT T .

they can fish

Matching grammar rules are:
VP > V
set of edge lists= {(2)}

Add new edgel, 2, VP, (2)

they can fish

32

Matching grammar rules are:

S -> NP VP
VP -> V VP

set of edge lists corresponding to NP ¥P{(1,3)}
Add new edge0, 2, S, (1, 3)

1

they can
No matching grammar rules for S

No edges matching V VP
word = fish

categories= V, NP
Add new edge2, 3, V, (fish)

1

they can

Matching grammar rules are:
VP -> V
set of edge lists= {(5)}

Add new edge2, 3, VP, (5)

T Vs

they can

Matching grammar rules are:

S -> NP VP
VP > V VP

No edges match NP
set of edge lists for V VR= {(2,6)}

Add new edgel, 3, VP, (2, 6)

fish

Matching grammar rules are:

S -> NP VP
VP > V VP

set of edge lists for NP VE {(1,7)}
Add new edgeQ, 3, S, (1, 7)

they can fish
No matching grammar rules for S

No edges matching V

Add new edge2, 3, NP, (fish)

7/

S AN\ |

they can fish
Matching grammar rules are:

VP -> V NP
PP -> P NP

set of edge lists corresponding to V NP{(2,9)}

Add new edgel, 3, VP, (2, 9)

Matching grammar rules are:

S -> NP VP
VP > V VP

set of edge lists corresponding to NP ¥P{(1,10)}
Add new edgeQ, 3, S, (1, 10)

.
RN

they can fish
No matching grammar rules for S

No edges corresponding to V VP

No edges corresponding to P NP
No further words in input
Spanning edges are 8 and 11: Output results for 8

(S (NP they) (VP (V can) (VP (V fish))))
Output results for 11

(S (NP they) (VP (V can) (NP fish)))

4.9 Packing

The algorithm given above is exponential in the case wheseetAre an exponential number of parses. The body
of the algorithm can be modified so that it runs in cubic tineugh producing the output is still exponential. The
modification is simply to change the daughters value on ae talje a set of lists of daughters and to make an equality
check before adding an edge so we don’t add one that’s equivid an existing one. That is, if we are about to add
an edge:

[id,left_.vertex right_vertexmothercategory daughter$

and there is an existing edge:

[id-old,left vertex right_vertexmothercategory daughters-old

we simply modify the old edge to record the new daughters:
[id-old,left_vertex right_vertexmothercategory daughters-oldJ daughter}

There is no need to recurse with this edge, because we cogllrany new results.
For the example above, everything proceeds as before umgo%d

id left right mother daughters

1 0 1 NP {(they)}
2 1 2 \% {(can)}
3 1 2 VP {(2)}

4 0 2 S {@ 3)}
5 2 3 Vv {(fish)}
6 2 3 VP {(5)}

7 1 3 VP {2 6)}
8 0 3 S {@ 7
9 2 3 NP {(fish)}

35

However, rather than add edge 10, which would be:

10 1 3 VP (2 9)

we match this with edge 7, and simply add the new daughtehsato t
7 1 3 VP {2 6), (2 9}

The algorithm then terminates. We only have one spanning éeldge 8) but the display routine is more complex
because we have to consider the alternative sets of daadgbteedge 7. (You should go through this to convince
yourself that the same results are obtained as before.pédth in this case, the amount of processing saved is small,
the effects are much more important with longer sentenaass{derhe believes they can fistor instance).

4.10 Active chart parsing

A more minor efficiency improvement is obtained by storing tiesults of partial rule applications. Thisastive
chart parsing, so called because the partial edges aredesedito be active: i.e. they ‘want’ more input to make them
complete. An active edge records the input it expects asagethe daughters it has already seen. Active edges are
stored on the chart as well as passive edges. For instaniteawiactive chart parser, we might have the following
edges when parsing a sentence startiirgy fish

id left right mother expected daughters

1 0 1 NP (they)
2 0 1 S VP a2
3 0 1 NP PP 1,?2)
4 1 2 \Y, (fish)
5 1 2 VP 4)

6 0 2 S (2,5)
7 1 2 VP NP 4,?)
8 1 2 VP VP 4,?)
9 1 2 VP PP (5,?)

Edge 1 is complete (a passive edge). Edge 2 is active: thehtlrugarked as ? will be instantiated by the edge
corresponding to the VP when it is found (e.g., edge 5 inigtted the active part of edge 2 to give edge 6).

Each word gives rise to a passive edge. Each passive edgéegboaC gives rise to active edges corresponding to
rules with leftmost daughter C (although there are varioassjble pruning strategies than can be used to cut down on
spurious active edges). Every time a passive edge is aduedctive edges are searched to see if the new passive edge
can complete an active edge.

I will not give full details of the active chart parser herbete are several possible variants. The main thing to note
is that active edges may be used to create more than one @assgje. For instance, if we have the strihgy fish in
Scotland edge 2 will be completed Hyshand also byfish in ScotlandWhether this leads to a practical improvement
in efficiency depends on whether the saving in time that tefidcause the NP is only combined with the S rule once
outweighs the overhead of storing the edge. Active edgeshegyacked. Active chart parsing is generally more
efficient than passive parsing for feature structure grarareplained in the next lecture) because there is some cost
associated with combining a daughter with a rule.

4.11 Ordering the search space

In the pseudo-code above, the order of addition of edgeseteliart was determined by the recursion. In general,
chart parsers make use of agendaof edges, so that the next edges to be operated on are thehanasd first on the
agenda. Different parsing algorithms can be implementechéking this agenda a stack or a queue, for instance.

So far, we've considerefdottom upparsing: an alternative i®p downparsing, where the initial edges are given by
the rules whose mother corresponds to the start symbol.

36

Some efficiency improvements can be obtained by orderingélaech space appropriately, though which version is
most efficient depends on properties of the individual grammHowever, the most important reason to use an explicit
agenda is when we are returning parses in some sort of grimdier, corresponding to weights on different grammar
rules or lexical entries.

Weights can be manually assigned to rules and lexical aritria manually constructed grammar. However, since the
beginning of the 1990s, a lot of work has been done on autoaitiacquiring probabilities from a corpus annotated
with syntactic trees (&reebanly, either as part of a general process of automatic gramnwuisition, or as auto-
matically acquired additions to a manually constructedrgrer. Probabilistic CFGs (PCFGs) can be defined quite
straightforwardly, if the assumption is made that the plolitées of rules and lexical entries are independent of one
another (of course this assumption is not correct, but tderorgs given seem to work quite well in practice). The
importance of this is that we rarely want to return all parsea real application, but instead we want to return those
which are top-ranked: i.e., the most likely parses. Thissigegially true when we consider that realistic grammars
can easily return many tens of thousands of parses for ssrgearf quite moderate length (20 words or so). If edges
are prioritised by probability, very low priority edges che completely excluded from consideration if there is a
cut-off such that we can be reasonably certain that no eddgksvower priority than the cut-off will contribute to the
highest-ranked parse. Limiting the number of analyses uodiesideration is known dseam searclithe analogy is
that we're looking within a beam of light, correspondinge highest probability edges). Beam search is linear rather
than exponential or cubic. Just as importantly, a good yiordering from a parser reduces the amount of work that
has to be done to filter the results by whatever system is psirog the parser’s output.

4.12 Why can’t we use FSAs to model the syntax of natural langages?

In this lecture, we started using CFGs. This raises the gresf why we need this more expressive (and hence
computationally expensive) formalism, rather than madglyntax with FSAs. One reason is that the syntax of
natural languages cannot be described by an FSA, even ioiggn due to the presence oéntre-embedding.e.
structures which map to:

A — aAp

and which generate grammars of the fagfiv™. For instance:
the students the police arrested complained

has a centre-embedded structure. However, humans hawiltijfiprocessing more than two levels of embedding:
? the students the police the journalists criticised aggsbmplained

If the recursion is finite (no matter how deep), then the ggiaf the language can be generated by an FSA. So it's not
entirely clear whether formally an FSA might not suffice.

There’s a fairly extensive discussion of these issues in J&Mt there are two essential points for our purposes:

1. Grammars written using finite state techniques aloneemehighly redundant, which makes them very difficult
to build and maintain.

2. Without internal structure, we can't build up good senmardgpresentations.

Hence the use of more powerful formalisms: in the next lextUll discuss the inadequacies of simple CFGs from a
similar perspective.

However, FSAs are very useful for partial grammars which'd@guire full recursion. In particular, for information
extraction, we need to recognisamed entitiese.g. Professor Smith, IBM, 101 Dalmatians, the White Hotlse,
Alps and so on. Although NPs are in general recursithe fnan who likes the dog which bites postineelative
clauses are not generally part of named entities. Also ttegrial structure of the names is unimportant for IE. Hence
FSAs can be used, with sequences such as ‘title surnameQ ENP’ etc

CFGs can be automatically compiled into approximatelyesjant FSAs by putting bounds on the recursion. This is
particularly important in speech recognition engines.

37

4.13 Further reading

This lecture has described material which J&M discuss irptdra 12 and 13, though we also touched on PCFGs
(covered in their chapter 14) and issues of language coritplekich they discuss in chapter 16. | chose to concentrate
on bottom-up chart parsing in this lecture, mainly becaufsellit easier to describe than the Earley algorithm and the
full version of chart parsing given in J&M, but also becaude easier to see how to extend this to PCFGs. Bottom-up
parsing also seems to have better practical performantetigtsort of grammars we’ll look at in lecture 5.

There are a large number of introductory linguistics textt®which cover elementary syntax and discuss concepts
such as constituency. For instance, students could ugédok at the first five chapters of Tallerman (1998):
Tallerman, MaggieUnderstanding SyntavArnold, London, 1998

An alternative would be the first two chapters of Sag and Wad®99) — copies should be in the Computer Lab-
oratory library. This has a narrower focus than most othetay books, but covers a much more detailed grammar
fragment. The later chapters (particularly 3 and 4) arevesiefor lecture 5.

Sag, Ivan A. and Thomas Waso8yntactic Theory — a formal introductip@SLI Publications, Stanford, CA, USA,
1999

38

5 Lecture 5: Parsing with constraint-based grammars

The CFG approach which we've looked at so far has some satligficsencies as a model of natural language. In this
lecture, I'll discuss some of these and give an introductma more expressive formalism which is widely used in
NLP, again with the help of a sample grammar. In the first patthe next lecture, | will also sketch how we can use
this approach to do compositional semantics.

5.1 Deficiencies in atomic category CFGs

If we consider the grammar we saw in the last lecture, seyeodllems are apparent. One is that there is no account
of subject-verb agreement, so, for instandefishis allowed by the grammar as well tieey fish'®

We could, of course, allow for agreement by increasing thalmer of atomic symbols in the CFG, introducing NP-sg,
NP-pl, VP-sg and VP-pl, for instance. But this approach wadon become very tedious:

S -> NP-sg VP-sg

S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl
NP-sg -> he

NP-sg -> fish

NP-pl -> fish

Note that we have to expand out the symbols even when theye&smstraint on agreement, since we have no way of
saying that we don't care about the value of number for a caye@.g., past tense verbs).

Another linguistic phenomenon that we are failing to deahvis subcategorizationThis is the lexical property that
tells us how manyargumens a verb can have (among other things). Subcategorizatials te® mirror semantics,
although there are many complications. A verb sucladare for instance, relates two entities and is transitive: a
sentence such a¥im adoredis strange, whil&kim adored Sandis usual. A verb such agiveis ditransitive Kim
gave Sandy an appl@er Kim gave an apple to Sangywithout going into details of exactly how subcategoriaatis
defined, or what an argument is, it should be intuitively ol that we're not encoding this property with our CFG.
The grammar in lecture 4 allows the following, for instance:

they fish fish it
(S (NP they) (VP (V fish) (VP (V fish) (NP it))))

Again this could be dealt with by multiplying out symbols {{jMrans, V-ditrans etc), but the grammar becomes ex-
tremely cumbersome.

Finally, consider the phenomenonlohg-distance dependencjexemplified, for instance, by:

which problem did you say you don’t understand?
who do you think Kim asked Sandy to hit?
which kids did you say were making all that noise?

Traditionally, each of these sentences is said to contgapacorresponding to the place where the noun phrase would
normally appear: the gaps are marked by underscores below:

which problem did you say you don’t understard
who do you think Kim asked Sandy to hft
which kids did you say were making all that noise?

18|n English, the subject of a sentence is generally a noursghsdiich comes before the verb, in contrast to the object,wloitows the verb.
The subject and the verb must (usually) either both have Engwrphology or both have plural mophology: i.e., they magiee There was also
no account otase this is only reflected in a few places in modern English, lihey can theys clearly ungrammatical (as opposedtiey can
them which is grammatical with the transitive verb usecaf).

39

Notice that, in the third example, the verlereshows plural agreement.

Doing this in standard CFGs is possible, but extremely v&ebpotentially leading to trillions of rules. Instead of
having simple atomic categories in the CFG, we want to allowféatures on the categories, which can have values
indicating things like plurality. As the long-distance @gplency examples should indicate, the features need to be
complex-valued. For instance,

* what kid did you say. were making all that noise?

is not grammatical. The analysis needs to be able to reprédsernformation that the gap corresponds to a plural
noun phrase.

In what follows, I will illustrate a simpleonstraint-based grammdormalism, usingeature structuresA constraint-
based grammar describes a language using a set of indeplgrstated constraints, without imposing any conditions
on processing or processing order. A CFG can be taken as améxaf a constraint-based grammar, but usually the
term is reserved for richer formalisms. The simplest wayhiok of feature structures (FSs) is that we're replacing the
atomic categories of a CFG with more complex data structutiefirst illustrate this idea intuitively, using a gramma
fragment like the one in lecture 4 but enforcing agreemélhthén go through the feature structure formalism in more
detail. This is followed by an example of a more complex grammwhich allows for subcategorization (I won't show
how case and long-distance dependencies are dealt with).

5.2 Avery simple FS grammar encoding agreement

In a FS grammar, rules are described as relating FSs: ixécaleentries and phrases are FSs. In these formalisms,
the termsignis often used to refer to lexical entries and phrases coliggt In fact, rules themselves can be treated
as FSs. Feature structures are singly-rooted directediagyaphs, with arcs labelled by features and terminal sode
associated with values. A particular feature in a structnag beatomic-valuegdmeaning it points to a terminal node

in the graph, ocomplex-valuedmeaning it points to a non-terminal node. A sequence ofifeatis known as path

For instance, in the structure below, there are two arc®llkedb with CAT and AGR, and three nodes, with the two
terminal nodes having valu@d® andsg Each of the features is thus atomic-valued.

CAT NP

e —» o
AGR

sg

°

In the graph below, the featureEAD is complex-valued, and the value A6R (i.e., the value of the pathEAD AGR)
is unspecified:

HEAD CAT NP

[] > @ > @
AGR

[]

FSs are usually drawn adtribute-value matriceer AVMs. The AVMs corresponding to the two FSs above are as
follows:

cAT NP
AGR sg

CAT NP

AGR[]

Since FSs are graphs, rather than trees, a particular nogéemccessed from the root by more than one path: this is
known agreentrancy In AVMs, reentrancy is conventionally indicated by boxategers, with node identity indicated

HEAD

40

by integer identity. The actual integers used are arbitrahys is illustrated with an abstract example using featare
anda below:

I Graph | AVM
E ®a
Fa
Non-reentrant| o G @ al |©°
F
N F@Oa
Reentrant L >ea| c@

When using FSs in grammars, structures are combinaghification This means that all the information in the two

structures is combined. The empty square bracl{e}}sih an AVM indicate that a value is unspecified: i.e. this is a
node which can be unified with a terminal node (i.e., an atomige) or a complex value. More details of unification
are given below.

When FSs are used in a particular grammar, all signs will hasendar set of features (although sometimes there
are differences between lexical and phrasal signs). Featwicture grammars can be used to implement a variety of
linguistic frameworks. For the first example of a FS grammag’]l just consider how agreement could be encoded.

Suppose we are trying to model a grammar which is weakly edgmt to the CFG fragment below:

S -> NP-sg VP-sg

S -> NP-pl VP-pl
VP-sg -> V-sg NP-sg
VP-sg -> V-sg NP-pl
VP-pl -> V-pl NP-sg
VP-pl -> V-pl NP-pl

V-pl -> like
V-sg -> likes
NP-sg -> it
NP-pl -> they
NP-sg -> fish
NP-pl -> fish

The FS equivalent shown below replaces the atomic categaiite FSs, splitting up the categories so that the main
category and the agreement values are distinct. In the gearhelow, | have used the arrow notation for rules as an
abbreviation: | will describe the actual FS encoding of stdbortly. The FS grammar just needs two rules. There is a
single rule corresponding to tt&> NP VP rule, which enforces identity of agreement values betwbaerNP and

the VP by means of reentrancy (indicated by the &g The rule corresponding tdP-> V NP simply makes the
agreement values of the V and the VP the same but ignores teeragnt value on the N.The lexicon specifies
agreement values fat, they, like andlikes but leaves the agreement value fishuninstantiated (i.e., underspecified).
Note that the grammar also has a root FS: a structure onlyts@sma valid parse if it is unifiable with the root.

FS grammar fragment encoding agreement

Grammar rules

i _ CAT S CAT NP CAT VP
Subject-verb rule ok } — | e || San

_obhi CAT VP CAT V CAT NP
Verb-object rule {AGR } — [AGR ok |]

19Note that the reentrancy indicators are local to each rake{1] in the subject-verb rule is not the same structure ag1hén the verb-object
rule.

41

Lexicon:
;;; noun phrases

tey ||
fish { o “ﬁ }
v]

;.o verbs

like [ey
likes [onr gg}

Root structure:

{CAT S}

Consider parsinghey like itwith this grammar. The lexical structures fide andit are unified with the corresponding
structure to the right hand side of the verb-object rule.rBaifications succeed, and the structure corresponding to
the mother of the rule is:

CAT VP
AGR pl

The agreement value [d because of the reentrancy with the agreement valdi&ef This structure can unify with
the rightmost daughter of the subject-verb rule. The stmacfor theyis unified with the leftmost daughter. The
subject-verb rule says that both daughters have to havethe agreement value, which is true in this example. Rule
application therefore succeeds and since the result umiftaghe root structure, there is a valid parse.

To see what is going on a bit more precisely, we need to showitbs as FSs. There are several ways of encoding this,
but for current purposes | will assume that rules have festMOTHER, DTR1, DTR2 ...DTRN. So the verb-object
rule, which | informally wrote as:

CAT VP
AGR

CAT V
AGR

il

is actually:

CAT VP

MOTHER [AGR

CAT V
DTR1 [AGR

AGR[}

CAT NP
DTR2

Thus the rules in the CFG correspond to FSs in this formalisthvae can formalise rule application by unification.
For instance, a rule application in bottom-up parsing imeslunifying each of the DTR slots in the rule with the
feature structures for the phrases already in the chart.

Consider parsinthey like itagain.

STEP1.: parsindjke it with the rule above.

Step 1a

The structure fotike can be unified with the value @fTR1 in the rule.

42

CAT VP

MOTHER [AGR

CAT V
AGR pl

DTR1 [CAT V M

AGR

CAT NP
DTR2 [AGR [}

DTR1

Unification means all information is retained, so the resdludes the agreement value frdike:

CAT VP

MOTHER [AGR ol

CAT V
DTRL [AGR

CAT NP
DTR2

AGR[}

Step 1b
The structure foit is unified with the value fobTR2 in the result of Step 1a:

CAT VP
MOTHER | ‘o pl MOTHER [2(/;; V ol }
CAT V
DTR1 CAT NP _ CAT V
[AGR [| bTR2 {AGR sg = | DTRL | 0
CAT NP
CAT NP
DTR2 [AGR { } } DTR2 | o sg

The rule application thus succeeds.

Step 2: application of the subject verb rule.
Step 2a.

The MOTHER value acts as theTR2 of the subject-verb rule. That is:

[car vP
AGR pl

is unified with thedTR2 value of:

MOTHER [CAT S]

AGR

CAT NP

DTRL | ‘o

CAT VP

DTR2 | ‘o

This gives:

CAT S
MOTHER [AGR pl}

CAT NP

DTRL | ‘o

CAT VP

DTR2 | ‘o

Step 2b
The FS fortheyis:

CAT NP
AGR pl

43

The unification of this with the value afTR1 from Step 2a succeeds but adds no new information:

MOTHER [CAT S }

AGR [I pl

CAT NP

DTRL | ‘o

CAT VP

DTR2 | ‘o

Step 3:
Finally, theMOTHER of this structure unifies with the root structure, so this ishd parse.

Note however, that if we had tried to paiiséke it, a unification failure would have occurred at Step 2b, siheaGR
on the lexical entry foit has the valusgwhich clashes with the valya.

| have described these unifications as occurring in a paati@rder, but it is very important to note that order is not
significant and that the same overall result would have béémireed if another order had been used. This means that
different parsing algorithms are guaranteed to give theesgasult. The one proviso is that with some FS grammars,
just like CFGs, some algorithms may terminate while othergak.

5.3 Feature structures in detail

So far, | have been using a rather informal description of A®g following section gives more formal definitions.

FSs can be thought of as graphs which have labelled arcs ciimp@odes (except for the case of the simplest FSs,
which consist of a single node with no arcs) The labels on the are the features. Arcs are regarded as having a
direction, conventionally regarded as pointing into threicure, away from the single root node. The set of features
and the set of atomic values are assumed to be finite.

Properties of FSs

Connectedness and unique roofA FS must have a unique root node: apart from the root nodapdks have one or
more parent nodes.

Unique features Any node may have zero or more arcs leading out of it, but thellan each (that is, the feature)
must be unique.

No cycles No node may have an arc that points back to the root node or tale that intervenes between it and the
root node. (Although some variants of FS formalisms allowiey.)

Values A node which does not have any arcs leading out of it may hawasaociated atomic value.

Finiteness An FS must have a finite number of nodes.

Sequences of features are knowrpais.

Feature structures can be regarded as being ordered byniaion content — an FS is said sabsumeanother if the
latter carries extra information. This is important becue define unification in terms of subsumption.

Properties of subsumptionFS1 subsumes FS2 if and only if the following conditions hold

Path values For every path P in FS1 there is a path P in FS2. If P has an at@ie tin FS1, then P also has value
tin FS2.

Path equivalencesEvery pair of paths P and Q which are reentrant in FS1 (i.eichviead to the same node in the
graph) are also reentrant in FS2.

Unification corresponds to conjunction of information, ahds can be defined in terms of subsumption, which is a
relation of information containment. The unification of tk&s is defined to be the most general FS which contains
all the information in both of the FSs. Unification will fafithe two FSs contain conflicting information. As we saw
with the simple grammar above, this prevenitdike it getting an analysis, because t#er values conflicted.

Properties of unification The unification of two FSs, FS1 and FS2, is the most generalli&wis subsumed by both
FS1 and FS2, if it exists.

44

5.4 A grammar enforcing subcategorization

Although the grammar shown above improves on the simple @FE|l doesn’t encode subcategorization (e.g., the
difference between transitive and intransitive). The graanshown below does this. It moves further away from the
CFG. In patrticular, in the previous grammar thet feature encoded both the part-of-speech (i.e., noun o) aerth
the distinction between the lexical sigh and the phrase (less NP and V vs VP). In the grammar below, thet
feature just encodes the major category (noun vs verb) anghhasal distinction is encoded in terms of whether the
subcategorization requirements have been satisfied.cCRne@ndAGR features are now inside another feathead
Signs have three features at the top-lew#AD, oBJandsuB..

Simple FS grammar fragment encoding subcategorization

Subject-verb rule

HEAD HEAD | AGR HEAD AGR]

0BJ fl}!ﬁd # — B ogsfilled ' | oBJfilled

sugJrtille susJ filled SUBJ
Verb-object rule

HEAD HEAD

ossfiled | — | oBJ » @] osJfilled |

SUBJ SUBJ
Lexicon:

iy oun phrases

CAT noun
they HEAD | o0 pl }
osJfilled
susJfilled

CAT noun
HEAD

fish acr [|

osJ filled
susJfilled

CAT noun
|t HEAD AGR sg :|

osJ filled
suBJfilled

;o verbs
HEAD

AGR pl

CAT verb }
fish o83 filled

SuUBJ |:HEAD [CAT noun} :|

CAT verb
HEAD | ,or [}
can OBJ | HEAD { CAT verb} " aUXIIIary verb
SUBJ |:HEAD [CAT noun}]
CAT verb
HEAD [AGR ol }
can o8y | HEAD | CAT noun | =* transitive verb
osJ filled
SUBJ [HEAD [CAT noun}]
Root structure:
HEAD | CAT verb
oBJ filled
suBJfilled

45

Briefly, HEAD contains information which is shared between the lexicafiem and phrases of the same category:
e.g., nouns share this information with the noun phrase lwbmminates them in the tree, while verbs share head
information with verb phrases and sentencesH8aD is used for agreement information and for category inforomat
(i.e., noun, verb etc). In contrasipJandsuBJare about subcategorization: they contain informatiorualdat can
combine with this sign. For instance, an intransitive veih have a suBJ corresponding to its subject ‘slot’ and

a value offilled for its 0B32° You do not have to memorize the precise details of the featuieture architecture
described here for the exam (questions that assume knogvigiddetails will give an example). The point of giving
this more complicated grammar is that it starts to demotesttee power of the feature structure framework, in a way
that the simple grammar using agreement does not.

The grammar has just two rules, one for combining a verb vidttsiibject and another for combining a verb with its
object.

e The subject rule says that, when building the phrase sth®) value of the second daughter is to be equated
(unified) with the whole structure of the first daughter (zated by[2]). The head of the mother is equated with
the head of the second daught&ll §. The rule also stipulates that theRr values of the two daughters have to
be unified and that the subject has to have a filled object slot.

e The verb-object rule says that, when building the phrasep#u value of the first daughter is to be equated
(unified) with the whole structure of the second daughtati¢iated by[2]). The head of the mother is equated
with the head of the first daughtefl{). The suBJ of the mother is also equated with ts&BJ of the first
daughter (3]): this ensures that any information about the subject ttzat specified on the lexical entry for the
verb is preserved. ThesJvalue of the mother is stipulated as befillpd: this means the mother can't act as
the first daughter in another application of the rule, sifibed won't unify with a complex feature structure.
This is what we want in order to prevent an ordinary transitrerb taking two objects.

These rules are controlled by the lexical entries in the eséimat it's the lexical entries which determine the required
subject and object of a word.

As an example, consider analysitiwgy fish The verb entry fofishcan be unified with the second daughter position
of the subject-verb rule, giving the following partiallystantiated rule:

HEAD iéL vrbl} HEAD ié; nun} HEAD

P — osuJ filled
oBJ filled oBJ filled SUBJ
suBJfilled suBlJfilled

The first daughter of this result can be unified with the strreeforthey, which in this case returns the same structure,
since it adds no new information. The result can be unifietl tiée root structure, so this is a valid parse.

On the other hand, the lexical entry for the ndisth does not unify with the second daughter position of the sitbhje
verb rule. The entry fotheydoes not unify with the first daughter position of the verljegbrule. Hence there is no
other parse.

The rules in this grammar ak@nary: i.e., they have exactly two daughters. The formalism adléov unaryrules (one
daughter) and also faernaryrules (three daughterguaternaryrules and so on. Grammars can be defined using only
unary and binary rules which are weakly equivalent to gramsméhich use rules of higher arity: some approaches
avoid the use of rules with arity of more than 2.

5.5 Parsing with feature structure grammars

Formally we can treat feature structure grammars in ternsubSumption. | won'’t give details here, but the intuition
is that the rule FSs, the lexical entry FSs and the root FScalaa constraints on the parse, which have to be sat-
isfied simultaneously. This means the system has to buildseructure which is subsumed by all the applicable
constraints. However, this description of what it meanssfamething to be a valid parse doesn't give any hint of a
sensible algorithm.

The standard approach to implementation is to use charingarss described in the previous lecture, but the notion
of a grammar rule matching an edge in the chart is more comgfea naive implementation, when application of a

20There are more elegant ways of doing this using lists, butetlaes more complicated. The subcategorisation idea appliethés parts of
speech as well as verbs: e.g.Kim was happy to see hdrappysubcategorises for the infinitival VP.

46

grammar rule is checked, all the feature structures in tlgegdh the chart that correspond to the possible daughters
have to be copied, and the grammar rule feature structugtf issalso copied. The copied daughter structures are
unified with the daughter positions in the copy of the rule] dinification succeeds, the copied structure is assatiate
with a new edge on the chart.

The need for copying is often discussed in terms of the detstrunature of the standard algorithm for unification
(which | won't describe here), but this is perhaps a littleskeading. Unification, however implemented, involves
sharing information between structures. Assume, for imttathat the FS representing the lexical entry of the noun
for fishis underspecified for number agreement. When we parse a serities:

the fish swims

the part of the FS in the result that corresponds to the aldaxical entry will have itsAGR value instantiated. This
means that the structure corresponding to a particular eglgeot be reused in another analysis, because it will aontai
‘extra’ information. Consider, for instance, parsing:

the fish in the lake which is near the town swim
A possible analysis of:

fish in the lake which is near the town

(fish (in the lake) (which is near the town))

i.e., the fish (sg) is near the town. If we instantiate Ak value in the FS fofishas sg while constructing this parse,
and then try to reuse that same FSfishin the other parses, analysis will fail. Hence the need fpyatg, so we can
use a fresh structure each time. Copying is potentiallyeemély expensive, because realistic grammars involve FSs
with many hundreds of nodes.

So, although unification is very near to linear in complexitgive implementations of FS formalisms are very in-
efficient. Furthermore, packing is not straightforwardcéiese two structures are rarely identical in real grammars
(especially ones that encode semantics).

Reasonably efficient implementations of FS formalisms carertheless be developed. Copying can be greatly re-
duced:

1. by doing an efficient pretest before unification, so thaiesare only made when unification is likely to succeed
2. by sharing parts of FSs that aren’t changed

3. by taking advantage d¢dcality principlesin linguistic formalisms which limit the need to percolatédrmation
through structures

Packing can also be implemented: the test to see if a new eddeegacked involves subsumption rather than equality.

As with CFGs, for real efficiency we need to control the seafdice so we only get the most likely analyses. Defining
probabilistic FS grammars in a way which is theoreticallylvmeotivated is much more difficult than defining a PCFG.
Practically it seems to turn out that treating a FS grammasinas though it were a CFG works fairly well, but this is
an active research issue.

5.6 Templates

The lexicon outlined above has the potential to be very rddah For instance, as well as the intransitive vigsh

a full lexicon would have entries fasleep snoreand so on, which would be essentially identical. We avoid thi
redundancy by associating names with particular featutectsires and using those names in lexical entries. For
instance:

fish INTRANS.VERB

47

sleep INTRANSVERB
snore INTRANSVERB
where the template is specified as:

HEAD | ok pl

INTRANS_VERB ogu filled

SUBJ [HEAD [CAT noun}]

CAT verb }

The lexical entry may have some specific information assediwith it (e.g., semantic information, see next lecture)
which will be expressed as a FS: in this case, the templatéharidxical feature structure are combined by unification.

5.7 Interface to morphology

So far we have assumed a full-form lexicon (i.e., one thaemases for all the inflected forms), but we can now return
to the approach to morphology that we saw in lecture 2, and $foov this relates to feature structures. Recall that we
have spelling rules which can be used to analyse a word fometton a stem and list of affixes and that each affix is
associated with an encoding of the information it contisutFor instance, the affsis associated with the template
PLURAL_NOUNvhich would correspond to the following information in agnammar fragment:

{ HEAD | ok pi

CAT noun }

A stem for a noun is generally assumed to be uninstantiatatlimber (i.e., neutral between sg and pl). So the lexical
entry for the nourdogin our fragment would be the structure for the stem:

CAT noun
HEAD | \or []
oBJ filled
suBJfilled

One simple way of implementing inflectional morphology insHS simply to unify the contribution of the affix with
that of the stem. If we unify the FS corresponding to the stendégto the FS folPLURAL_NOUNwve get:

CAT noun
HEAD | “ o0 pl]
oBJ filled
suBlJfilled

This approach assumes that we also have a temBIAIGULAR_NOUNwhere this is associated with a ‘null’ affix.
Notice how this is an implementation of the idea of a morppudal paradigm, mentioned KR.2.

In the case of an example suchfasdincorrectly analysed age -ed discussed i§2.5, the affix information will fail

to unify with the stem, ruling out that analysis.

Note that this simple approach is not, in general, adequatddrivational morphology. For instance, the affize,
which combines with a noun to form a verb (elgmmatizatiol, cannot be represented simply by unification, because
it has to change a nominal form into a verbal one. This refldetdistinction between inflectional and derivational
morphology that we saw i§2.2:while inflectional morphology can be seen as simpletadof information, deriva-
tional morphology converts feature structures into newctrres.

5.8 Further reading

J&M describe feature structures as augmenting a CFG raltlaer ieplacing it, but most of their discussion applies
equally to the FS formalism I've outlined here.

DELPH-IN (http://www.delph-in.net/) distributes Open Source FS grammars for a variety of laggsa
The English Resource Grammar (ERG) is probably the largestyf available bidirectional grammar.

48

6 Lecture 6: Compositional and lexical semantics

This lecture will give a rather superficial account of senanénd some of its computational aspects:

Compositional semantics in feature structure grammars

Meaning postulates

Classical lexical relations: hyponymy, meronymy, syymag, antonymy
Taxonomies and WordNet

Classes of polysemy: homonymy, regular polysemy, vagsgen

o o ~ w N E

Word sense disambiguation

6.1 Simple semantics in feature structures

The grammar fragment below is based on the one in the prelgéotisre. It is intended as a rough indication of how

it is possible to build up semantic representations usiagufe structures. The lexical entries have been augmented

with pieces of feature structure reflecting predicate-argnt structure. With this grammar, the FS foey like fish

will have aseM value of:
PRED and

PRED pron }

ARGL | C o

[PRED and

PRED like_v
ARG1
ARG2

ARG1

ARG2

PRED fish-n
ARG2 [ARGI }

This can be taken to be equivalent to the logical expression(p) A (like_v(z,y) A fish.n(y)) by translating the
reentrancy between argument positions into variable edgmce.

The most important thing to notice is how the syntactic argntpositions in the lexical entries are linked to their
semantic argument positions. This means, for instancefdhthe transitive verllike, the syntactic subject will always
correspond to the first argument position, while the syitaatiject will correspond to the second position.

Simple FS grammar with crude semantic composition

Subject-verb rule

[HEAD
oBJ filled]]
! HEAD | AGR [3 HEAD [1 | AGR [3
suBJfilled filed f‘||
— oBJ fille , | osafille
sEm igg?ad susdJfilled SUBJ [2
EM [@ EM
ARG2 s s
Verb-object rule
[HEAD 1
osJ filled HEAD
SuBJ _, | oB oBJ filled
PRED and SUBJ ! SEM
SEM | ARG1 SEM
ARG2
Lexicon:

49

HEAD [CAT verb }

AGR pl

HEAD | CAT noun
oBJ | oBJfilled
SEM {INDEX }

like ;;; transitive verb

HEAD [CAT noun]
SuUBJ
SEM [INDEX]

ARG1
ARG2

PRED like v
SEM

HEAD

CAT noun
AGR

. osJ filled
fish susJfilled ;;; noun phrase

INDEX
SEM | PRED fish.n
ARG1

HEAD

CAT noun
AGR pl

osJ filled
they sugJfilled ;;; noun phrase

INDEX
SEM | PRED pron
ARG1

Notice the use of the ‘and’ predicate to relate differentpaf the logical form. With very very simple examples as
covered by this grammar, it might seem preferable to use proaph where the nouns are embedded in the semantics
for the verb e.qg., likev(fish_n, fish_n) for fish like fish But this sort of representation does not extend to more ¢emp
sentences.

In these simple examples, syntax and semantics are veslglatated. But this is often not the case. Forinstanci, in
rains, theit does not refer to a real entity (s§2.8), so the semantics should simply be rairMore complex examples
include verbs likeseem for instanceKim seems to sleemeans much the same thing iaseems that Kim sleeps
(contrast this with the behaviour @elievg. There are many examples of this sort that make the syrtadstics
interface much more complex than it first appears: we canngtlg read the compositional semantics off a syntax
tree.

An alternative approach to encoding semantics is to wrigesmantic composition rules in a separate formalism
such astyped lambda calculusThis corresponds more closely to the approach most comnasdumed in formal
linguistics: variants of lambda calculus are sometimesl is&ILP, but | won't discuss this further here.

In general, a semantic representation constructed for e is called théogical form of the sentence. The se-
mantics shown above can be taken to be equivalent to a formedigate calculus without variables or quantifiers:
i.e. the ‘variables’ in the representation actually copesd to constants. It turns out that this very impoverished
form of semantic representation is adequate for many NLHGgtjons: template representations, used in information
extraction or simple dialogue systems can be thought of avaent to this. But for a fully adequate representation
we need something richer — for instance, to do negation phppklinimally we need full first-order predicate cal-
culus (FOPC). FOPC logical forms can be passed to theorerefs in order to do inference about the meaning of a
sentence. However, although this approach has been esdBnsiplored in research work, especially in the 1980s, it
hasn’t so far led to practical systems. There are many red®onhis, but perhaps the most important is the difficulty
of acquiring detailed domain knowledge expressed in FOPErdis also a theoretical Al problem, because we seem
to need some form of probabilistic reasoning for many appiins. So, although most researchers who are working in
computational compositional semantics take support f@rémce as a desideratum, many systems actually use some
form of shallow inference.

FOPC also has the disadvantage that it forces quantifiers ito d particular scopal relationship, and this information
is not (generally) overt in NL sentences. One classic exargl

Every man loves a woman

50

which is ambiguous between:

Vz[mar(z) = Jy[womari(y) A love (z,y)]]
and the less-likely, ‘one specific woman'’ reading:

Jy[womari(y) A Vz[mari(z) = love (z,y)]]

Most current systems construct an underspecified reprasemtwhich is neutral between these readings, if they
represent quantifier scope at all. There are several diffeernative formalisms for underspecification.

6.2 Generation

We can generate from a semantic representation with a suiE® grammar. Producing an output string given an
input logical form is generally referred to asctical generationor realization as opposed tstrategic generation
or text planning which concerns how you might build the logical form in thesfiplace. Strategic generation is an
open-ended problem: it depends very much on the applicatiohl won’t have much to say about it here. Tactical
generation is more tractable, and is useful without a gifatsomponent in some contexts.

Tactical generation can use similar techniques to pardmginstance one approach ébart generatiorwhich uses
many of the same techniques as chart parsing. There has heériess work on generation than on parsing in general,
and building bidirectional grammars is hard: most gramnfiarparsing allow through many ungrammatical strings.
Recently there has been some work on statistical generatiogre n-grams are used to choose between realisations
constructed by a grammar that overgenerates. But evenivediattight’ bidirectional grammars may need to use
statistical techniques in order to generate natural sagndiiterances.

6.3 Meaning postulates

Inference rules can be used to relate open class predicategredicates that correspond to open class words. $his i
the classic way of representing lexical meaning in formataetics within linguisticg?!

Valbachelor(z) < man(x) A unmarried(z)]

Linguistically and philosophically, this gets pretty dabs. Is the current Pope a bachelor? Technically presumably
yes, butbachelorseems to imply someone who could be married: it's a strange wmapply to the Pope under
current assumptions about celibacy. Meaning postulatesiao too unconstrained: | could construct a predicate
‘bachelor-weds-thurs’ to correspond to someone who wasaured on Wednesday and married on Thursday, but this
isn’t going to correspond to a word in any natural languageary case, very few words are as simple to define as
bachelor consider how you might start to defitable, tomatoor thought for instance?

For computational semantics, perhaps the best way of reganteaning postulates is simply as one reasonable way of
linking compositionally constructed semantic represtons to a specific domain. In NLP, we're normally concerned
with implication rather than definition and this is less gdesbatic philosophically:

Vxlbachelor(x) — man(x) A unmarried(x)]

However, the big computational problems with meaning dasts are their acquisition and the control of inference
once they have been obtained. Building meaning postulatearfything other than a small, bounded domain is an
Al-complete problem.

The more general, shallower, relationships that are dabBgidiscussed in lexical semantics are currently moréulse
in NLP, especially for broad-coverage processing.

21Generally, linguists don't actually write meaning postatafor open-class words, but this is the standard assumgimrt ~ow meaning would
be represented if anyone could be bothered to do it!

22There has been a court case that hinged on the precise medniabl@and also one that depended on whether tomatoes were fruits or
vegetables.

51

6.4 Hyponymy: IS-A

Hyponymy is the classical IS-A relation: e.dogis ahyponymof animal To be more precise, the relevant sense
of dogis the hyponym ofanimal (dog can also be a verb or used in a metaphorical and derogatorytavaefer to

a human). As nearly everything said in this lecture is aboortdixsenses rather than words, | will avoid explicitly
qualifying all statements in this way, but this should bebglitly understood.

animalis thehypernynof dog Hyponyms can be arranged intexonomiesclassically these are tree-structured: i.e.,
each term has only orteypernym

Often the term hyponymy is used quite informally, but it clgaelates to ideas which have been formalised in de-
scription logics and used in ontologies and the semantic web

Despite the fact that hyponymy is by far the most importananirgg relationship assumed in NLP, many questions
arise which don’t currently have very good answers:

1. What classes of words can be categorised by hyponymy? Soumesnclassically biological taxonomies, but
also human artifacts, professions etc work reasonably Wéktract nouns, such &sith, don't really work very
well (they are either not in hyponymic relationships at aflyery shallow ones). Some verbs can be treated as
being hyponyms of one another — equrderis a hyponymof kill, but this is not nearly as clear as it is for
concrete nouns. Event-denoting nouns are similar to verlisis respect. Hyponymy is essentially useless for
adjectives.

2. Do differences in quantisation and individuation m&tEor instance, ishair a hyponym offurniture? isbeer
a hyponym ofdrink? iscoina hyponym oimoney

3. Is multiple inheritance allowed? Intuitively, multipparents might be possible: e.goin might bemetal (or
objec?) and alsamoney Artifacts in general can often be described either in teahtheir form or their
function.

4. What should the top of the hierarchy look like? The best @msgems to be to say that there is no single top
but that there are a series of hierarchies.

6.5 Other lexical semantic relations

Meronymy i.e., PART-OF
The standard examples of meronymy apply to physical relatips: e.g.arm is part of abody (armis a
meronymof body); steering wheels a meronym ofcar. Note the distinction between ‘part’ and ‘piece’: if |
attack a car with a chainsaw, | get pieces rather than parts!

Synonymy i.e., two words with the same meaning (or nearly the same imggn
True synonyms are relatively uncommon: most cases of trnergymy are correlated with dialect differences
(e.g.,eggplant/ aubergine boot/ trunk). Often synonymy involves register distinctions, slangasgons: e.g.,
policeman cop, rozzer. . . Near-synonyms convey nuances of meanthin, slim, slender skinny

Antonymy i.e., opposite meaning

Antonymy is mostly discussed with respect to adjectives., ®ig/little, though it's only relevant for some
classes of adjectives.

6.6 WordNet

WordNet is the main resource for lexical semantics for Bsfgthat is used in NLP — primarily because of its very
large coverage and the fact that it's freely available. Waats are under development for many other languages,
though so far none are as extensive as the original.

The primary organisation of WordNet is ingynsetssynonym sets (near-synonyms). To illustrate this, thiofghg
is part of what WordNet returns as an ‘overview'ref:

52

wn red -over
Overview of adj red
The adj red has 6 senses (first 5 from tagged texts)

1. (43) red, reddish, ruddy, blood-red, carmine,
cerise, cherry, cherry-red, crimson, ruby, ruby-red,
scarlet -- (having any of numerous bright or strong
colors reminiscent of the color of blood or cherries
or tomatoes or rubies)

2. (8) red, reddish -- ((used of hair or fur) of a
reddish brown color; "red deer"; reddish hair")

Nouns in WordNet are organised by hyponymy, as illustratethk fragment below:

Sense 6
big cat, cat
=> |eopard, Panthera pardus
=> |eopardess
=> panther
=> snow leopard, ounce, Panthera uncia
=> jaguar, panther, Panthera onca, Felis onca
=> lion, king of beasts, Panthera leo
=> lioness
=> lionet
=> tiger, Panthera tigris
=> Bengal tiger
=> tigress
=> liger
=> tiglon, tigon
=> cheetah, chetah, Acinonyx jubatus
=> saber-toothed tiger, sabertooth
=> Smiledon californicus
=> false saber-toothed tiger

Taxonomies have also been extracted from machine-readatilenaries: Microsoft's MindNet is the best known
example. There has been considerable work on extractirmntamic relationships from corpora, including some
aimed at automatically extending WordNet.

6.7 Using lexical semantics
By far the most commonly used lexical relation is hyponymypbinymy relations can be used in many ways:

e Semantic classification: e.g., for selectional restritdi¢e.g., the object acfathas to be something edible) and
for named entity recognition

e Shallow inference: ‘X murdered Y’ implies ‘X killed Y’ etc

e Back-off to semantic classes in some statistical appraaffbeinstance, WordNet classes can be used in docu-
ment classification).

e Word-sense disambiguation
e Query expansion for information retrieval: if a search ddeseturn enough results, one option is to replace an
over-specific term with a hypernym

53

Synonymy or near-synonymy is relevant for some of theseoreaand also for generation. (However dialect and reg-
ister haven't been investigated much in NLP, so the possiidwance of different classes of synonym for customising
text hasn't really been looked at.)

6.8 Polysemy

Polysemy refers to the state of a word having more than orgeséine standard exampleldank(river bank) vsbank
(financial institution).

This ishomonymy— the two senses are unrelated (not entirely truebfmmk actually, but historical relatedness isn’t
important — it's whether ordinary speakers of the languagd there’s a relationship). Homonymy is the most obvious
case of polysemy, but is relatively infrequent comparedstsuwhich have different but related meanings, sudfaak
(financial institution) vdank(in a casino).

If polysemy were always homonymy, word senses would be eliscitwo senses would be no more likely to share
characteristics than would morphologically unrelated dgor But most senses are actually related. Regular or sys-
tematic polysemy (zero derivation, as mentioned22) concerns related but distinct usages of words, ofteh wi
associated syntactic effects. For instarsteawberry, cherry(fruit / plant), rabbit, turkey, halibutimeat / animal),
tango, waltzZdance (noun) / dance (verb)).

There are a lot of complicated issues in deciding whetherra vggpolysemous or simply general/vague. For instance,
teacheris intuitively general between male and female teacheterahan ambiguous, but giving good criteria as a
basis of this distinction is difficult. Dictionaries are matich help, since their decisions as to whether to split aesens
or to provide a general definition are very often contingenegternal factors such as the size of the dictionary or the
intended audience, and even when these factors are réfativestant, lexicographers often make different decision
about whether and how to split up senses.

6.9 Word sense disambiguation

Word sense disambiguation (WSD) is needed for most NL ap@itaithat involve semantics (explicitly or implicitly).
In limited domains, WSD is not too big a problem, but for large&rage text processing it's a serious bottleneck.

WSD needs depend on the application, but in order to expetimign WSD as a standalone module, there has to be
a standard: most commonly WordNet, because it was the omégnsixe modern resource for English that was freely
available. This is controversial, because WordNet has w fiee granularity of senses and the senses often overlap,
but there’s no clear alternative. Various WSD ‘competitidresse been organised (SENSEVAL).

WSD up to the early 1990s was mostly done by hand-construated (still used in some MT systems). Dahlgren
investigated WSD in a fairly broad domain in the 1980s. Reablyrbroad-coverage WSD generally depends on:

e frequency
e collocations

e selectional restrictions/preferences

What's changed since the 1980s is that various statisticatawhine-learning techniques have been used to avoid
hand-crafting rules.

e supervised learning. Requires a sense-tagged corpugh ghéxtremely time-consuming to construct system-
atically (examples are the Semcor and SENSEVAL corporabbth are really too small). Often experiments
have been done with a small set of words which can be sengeddiy the experimenter. Supervised learning
techniques do not carry over well from one corpus to another.

e unsupervised learning (see below)

e Machine readable dictionaries (MRDs). Disambiguatingidiary definitions according to the internal data in
dictionaries is necessary to build taxonomies from MRDs.DdRave also been used as a source of selectional
preference and collocation information for general WSD t@gsiiccessfully).

54

Until recently, most of the statistical or machine-leamitechniques have been evaluated on homonyms: these are
relatively easy to disambiguate. So 95% disambiguationgn &arowsky’s experiments sounds good (see below),
but doesn't translate into high precision on all words wheaget is WordNet senses (in SENSEVAL 2 the best system
was around 70%).

There have also been some attempts at autorsatise inductiorwhere an attempt is made to determine the clusters
of usages in texts that correspond to senses. In principiejg a very good idea, since the whole notion of a word

sense is fuzzy: word senses can be argued to be artifactstadrdiry publishing. However, so far sense induction

has not been much explored in monolingual contexts, thougbuld be considered as an inherent part of statistical
approaches to MT.

6.10 Collocations

Informally, a collocation is a group of two or more words tleacur together more often than would be expected by
chance (there are other definitions — this is not really aipeagotion). Collocations have always been the most useful
source of information for WSD, even in Dahlgren’s early expents. For instance:

(2) Striped bass are common.

3) Bass guitars are common.

stripedis a good indication that we're talking about the fish (beedtis a particular sort of bass), similarly witjuitar

and music. In botlbass guitamndstriped basswe’'ve arguably got a multiword expression (i.e., a coniaral phrase
that might be listed in a dictionary), but the principle hofdr any sort of collocation. The best collocates for WSD
tend to be syntactically related in the sentence to the watoet disambiguated, but many techniques simply use a
window of words.

The term collocation is sometimes restricted to the situatvhere there is a syntactic relationship between the words
J&M (second edition) define collocation as a position-sfelationship (in contrast tbag-of-wordswhere position
is ignored) but this is not a standard definition.

6.11 Yarowsky’s unsupervised learning approach to WSD

Yarowsky (1995) describes a technique for unsupervisehileg using collocates. A few seed collocates (possibly
position-specific) are chosen for each sense (manuallyaoari MRD), then these are used to accurately identify
distinct senses. The sentences in which the disambiguatses occur can then be used to learn other discriminating
collocates automatically, producing a decision list. Thecpss can then be iterated. The algorithm allows bad
collocates to be overridden. This works because of the gépgnciple of ‘one sense per collocation’ (experimentall
demonstrated by Yarowsky — it's not absolute, but there arg strong preferences).

In a bit more detail, using Yarowsky’s example of disambtinu@gplant (which is homonymous between factory vs
vegetation senses):

1. Identify all examples of the word to be disambiguated gnttlining corpus and store their contexts.
sense| training example

company said that thelantis still operating
although thousands @lantand animal species
zonal distribution oplantlife

company manufacturinglantis in Orlando

etc

NN))

2. Identify some seeds which reliably disambiguate a fewhe$¢ uses. Tag the disambiguated senses automati-
cally and count the rest as residual. For instance, chodgiangt life’ as a seed for the vegetation sense of plant
(sense A) and ‘manufacturing plant’ as the seed for the facense (sense B):

55

sense| training example

W >0

company said that thglantis still operating
although thousands @lantand animal species
zonal distribution oplantlife

company manufacturinglantis in Orlando

etc

This disambiguated 2% of uses in Yarowsky’s corpus, lea98% residual.

. Train adecision listclassifier on the Sense A/Sense B examples. A decision [igbaph gives a list of criteria
which are tried in order until an applicable test is founds ik then applied. The decision list classifier takes a
set of already classified examples and returns criterialwtlistinguish them (e.g., word before / after / within
window). The tests are each associated with a reliabilityrimeThe original seeds are likely to be at the top of
the decision list that is returned, followed by other disdriating terms. e.g. the decision list might include:

reliability | criterion | sense
8.10 plantlife A
7.58 manufacturingplant B
6.27 animalwithin 10 words ofplant | A

etc

Here ‘animalwithin 10 words ofplant is a new criterion, learned by the classifier.

4. Apply the decision list classifier to the training set and all examples which are tagged with greater than a
threshold reliability to the Sense A and Sense B sets.

sense

training example

W > >

company said that thglantis still operating
although thousands @lantand animal species
zonal distribution oplantlife

company manufacturinglantis in Orlando

etc

5. lterate the previous steps 3 and 4 until convergence

6. Apply the classifier to the unseen test data

The following schematic diagrams may help:

Initial state:

Seeds

? ? ?
29 2 5
2 ?5
5 ?
? H
29 2
2 2 2
22 2 2 2
2 ?
2 ‘ 2
? 2

56

? ? B
?? 5 B
? ?
f " 2ymanufact
2 H
? H

??

?
?

Iterating:

Final:

Yarowsky also demonstrated the principle of ‘one sense jsepdrse’. For instance, fflantis used in the botanical
sense in a particular text, then subsequent instangasiaffin the same tense will also tend to be used in the botanical
sense. Again, this is a very strong, but not absolute eff@tlis can be used as an additional refinement for the
algorithm above, assuming we have a way of detecting thedsoigs between distinct texts in the corpus.

Decision list classifiers can be thought of as automatidedined case statements. The experimenter decides on the
classes of test (e.g., word next to word to be disambiguatedd within window 10). The system automatically
generates and orders the specific tests based on the trdetiag

Yarowsky argues that decision lists work better than mahgiostatistical frameworks because no attempt is made to
combine probabilities. This would be complex, because titera are not independent of each other. More details of
this approach are in J&M (section 20.5).

Yarowsky’s experiments were nearly all on homonyms: theseiples probably don't hold as well for sense exten-
sion.

57

6.12 Evaluation of WSD

The baseline for WSD is generally ‘pick the most frequent'sserihis is hard to beat! However, in many applications,
we don't know the frequency of senses.

SENSEVAL and SENSEVAL-2 evaluated WSD in multiple languagéth various criteria, but generally using Word-
Net senses for English. The human ceiling for this task gar@nsiderably between words: probably partly because of
inherent differences in semantic distance between grofipses and partly because of WordNet itself, which some-
times makes very fine-grained distinctions. An interestiagant in SENSEVAL-2 was to do one experiment on WSD
where the disambiguation was with respect to uses requiififigyent translations into Japanese. This has the advan-
tage that it is useful and relatively objective, but somesrthis task requires splitting terms which aren’t polysaso

in English (e.g.water— hot vs cold). Performance of WSD on this task seems a bit ibittde the general WSD
task.

6.13 Further reading

J&M go into quite a lot of detail about compositional semesincluding underspecification.
WordNet is freely downloadable: the website has pointesete@ral papers which provide a good introduction.
Yarowsky'’s paper is well-written and should be understéteta

Yarowsky, David (1995)
Unsupervised word sense disambiguation rivalling supeyimethods
Proceedings of the 33rd Annual Meeting of the AssociatisrClomputational Linguistics (ACL-95) MIT, 189-196

Like many other NLP papers, this can be downloaded via the A@thologyhttp://aclweb.org/anthology-new/

58

7 Lecture 7: Discourse

The techniques we have seen in lectures 2—6 relate to thepiietation of words and individual sentences, but utter-
ances are always understood in a particular context. Ctdependent situations include:

1. Referring expressions: pronouns, definite expressitms e

2. Universe of discourseevery dog barkeddoesn’t mean every dog in the world but only every dog in some
explicit or implicit contextual set.

3. Responses to questions, etc: only make sense in a covthrtcame to the party? Not Sandy.

4. Implicit relationships between eventdax fell. John pushed him-the second sentence is (usually) understood
as providing a causal explanation.

In the first part of this lecture, | give a brief overview dfetorical relationswhich can be seen as structuring text
at a level above the sentence. I'll then go on to talk aboutpangcular case of context-dependent interpretation —
anaphor resolution.

7.1 Rbhetorical relations and coherence
Consider the following discourse:
Max fell. John pushed him.

This discourse can be interpreted in at least two ways:

1. Max fell because John pushed him.

2. Max fell and then John pushed him.

This is yet another form of ambiguity: there are two differ@rterpretations but there is no syntactic or semantic
ambiguity in the interpretation of the individual sentesicEhere seems to be an implicit relationship between the two
original sentences: discourse relatioror rhetorical relation (I will use the terms interchangeably here, though differ-
ent theories use different terminology, and rhetoricahtieh tends to refer to a more surfacy concept than discourse
relation.) In 1 the link is a form of explanation, but 2 is arample of narration. Theories of discourse/rhetorical
relations reify link types such @&xplanationandNarration. The relationship is made more explicit in 1 and 2 than it
was in the original sentencbecauseindand thenare said to beue phrases

7.2 Coherence
Discourses have to have connectivity to be coherent:
Kim got into her car. Sandy likes apples.

Both of these sentences make perfect sense in isolatiotaken together they are incoherent. Adding context can
restore coherence:

Kim got into her car. Sandy likes apples, so Kim thought slgg’do the farm shop and see if she could
get some.

The second sentence can be interpreted as an explanatios fofst. In many cases, this will also work if the context
is known, even if it isn’t expressed.

Strategic generation requires a way of implementing cafere For example, consider a system that reports share
prices. This might generate:

59

In trading yesterday: Dell was up 4.2%, Safeway was down 3E2P6was up 3.1%.
This is much less acceptable than a connected discourse:

Computer manufacturers gained in trading yesterday: Dadl up 4.2% and HP was up 3.1%. But retalil
stocks suffered: Safeway was down 3.2%.

Herebutindicates a Contrast. Not much actual information has bdde@(assuming we know what sort of company
Dell, HP and Safeway are), but the discourse is easier tovfoll

Discourse coherence assumptions can affect interpratatio
John likes Bill. He gave him an expensive Christmas present.

If we interpret this as Explanation, then ‘he’ is most liké@ill. But if it is Justification (i.e., the speaker is prowdj
evidence to justify the first sentence), then ‘he’ is John.

7.3 Factors influencing discourse interpretation

1. Cue phrases. These are sometimes unambiguous, but atlyusig.andis a cue phrase when used in sentential
or VP conjunction.

2. Punctuation (or the way the sentence is said — intonationasd text structure. For instance, parenthetical
information cannot be related to a main clause by Narratibis (generally Explanation), but a list is often
interpreted as Narration:

Max fell (John pushed him) and Kim laughed.
Max fell, John pushed him and Kim laughed.

Similarly, enumerated lists can indicate a form of narnmatio
3. Real world content:
Max fell. John pushed him as he lay on the ground.
4. Tense and aspect.

Max fell. John had pushed him.
Max was falling. John pushed him.

It should be clear that it is potentially very hard to ideytifietorical relations. In fact, recent research that sinusles
cue phrases and punctuation is quite promising. This carohe by hand-coding a series of finite-state patterns, or
by supervised learning.

7.4 Discourse structure and summarization

If we consider a discourse relation as a relationship batvwe phrases, we get a binary branching tree structure for
the discourse. In many relationships, such as Explanatioe,phrase depends on the other: e.g., the phrase being
explained is the main one and the other is subsidiary. Inviectan get rid of the subsidiary phrases and still have
a reasonably coherent discourse. (The main phrase is soegetalled thenucleusand the subsidiary one is the
satellite) This can be exploited in summarization.

For instance, suppose we remove the satellites in the fiet $entences of this subsection:

We get a binary branching tree structure for the discounsendny relationships one phrase depends on
the other. In fact we can get rid of the subsidiary phrasesstiithave a reasonably coherent discourse.

Other relationships, such as Narration, give equal weigbbth elements, so don’t give any clues for summarization.

Rather than trying to find rhetorical relations for arbifraext, genre-specific cues can be exploited, for instance fo
scientific texts. This allows more detailed summaries todrestructed.

60

7.5 Referring expressions

I'll now move on to talking about another form of discourserusture, specifically the link between referring expres-
sions. The following example will be used to illustrate reifey expressions and anaphora resolution:

Niall Ferguson is prolific, well-paid and a snappy dresse¢epBen Moss hated him — at least until he
spent an hour being charmed in the historian’s Oxford st(mlyote taken from the Guardian)

Some terminology:

referent a real world entity that some piece of text (or speech) retfere.g., the two people who are mentioned in
this quote.

referring expressions bits of language used to perform reference by a speakehérmparagraph abovaliall Fergu-
son himandthe historianare all being used to refer to the same person (tuegfe)).

antecedentthe text initially evoking a refereniNiall Fergusonis the antecedent d¢fim andthe historian

anaphora the phenomenon of referring to an antecedairh andthe historianareanaphoricbecause they refer to a
previously introduced entity.

What abouia snappy dress@r Traditionally, this would be described as predicativeat i, it is a property of some
entity (similar to adjectival behaviour) rather than beaggferring expression itself.

Generally, entities are introduced in a discourse (tedilyicevoked by indefinite noun phrases or proper names.
Demonstratives (e.gthis) and pronouns are generally anaphoric. Definite noun phi@sesoften anaphoric (as above),
but often used to bring a mutually known and uniquely idegtbife entity into the current discourse. ethe president

of the US

Sometimes, pronouns appear before their referents amdinted by a proper name or definite description: this is
cataphora E.g., at the start of a discourse:

Although she couldn’t see any dogs, Kim was sure she’'d heanldriy.

both cases ofherefer to Kim - the first is a&ataphot

7.6 Pronoun agreement

Pronouns generally have to agree in number and gender wathdhtecedents. In cases where there’s a choice of
pronoun, such alse'sheor it for an animal (or a baby, in some dialects), then the choisatae consistent.

4) A little girl is at the door — see what she wants, please?
(5) My dog has hurt his foot — he is in a lot of pain.
(6) * My dog has hurt his foot — it is in a lot of pain.

Complications include the gender neuttady(some dialects), use tfieywith everybodygroup nouns, conjunctions
and discontinuous sets:

@) Somebody’s at the door — see what they want, will you?

(8) | don’t know who the new teacher will be, but I'm sure thegake changes to the course.
9 Everybody’s coming to the party, aren't they?

(20) The team played really well, but now they are all vergdir

(11) Kim and Sandy are asleep: they are very tired.

(12) Kim is snoring and Sandy can't keep her eyes open: treepath exhausted.

61

7.7 Reflexives

(13) John cut himself shaving. (himself = John, subscript notation used to irndidais)

(14) # John cut him; shaving. (i j — a very odd sentence)

The informal and not fully adequate generalisation is tlefiexive pronouns must be co-referential with a preced-
ing argument of the same verb (i.e., something it subcaiteggifor), while non-reflexive pronouns cannot be. In
linguistics, the study of inter-sentential anaphora isdin@asbinding theory

7.8 Pleonastic pronouns

Pleonastic pronouns are semantically empty, and don't:refe

(15) It is snowing

(16) It is not easy to think of good examples.
a7 It is obvious that Kim snores.

(18) It bothers Sandy that Kim snores.

Note also:

(19) They are digging up the street again

This is an (informal) use atheywhich, though probably not technically pleonastic, doeapparently refer in the
standard way (they = ‘the authorities’??).

7.9 Salience

There are a number of effects related to the structure of igmodrse which cause particular pronoun antecedents to
be preferred, after all the hard constraints discussedeabm®/taken into consideration.

Recency More recent antecedents are preferred. Only relativelgrdyg referred to entities are accessible.
(20) Kim has a big car. Sandy has a small one. Lee likes to drive
it preferentially refers to Sandy’s car, rather than Kim’s.
Grammatical role Subjects> objects> everything else:
(22) Fred went to the Grafton Centre with Bill. He bought a CD.
heis more likely to be interpreted as Fred than as Bill.
Repeated mention Entities that have been mentioned more frequently are ezfe

(22) Fred was getting bored. He decided to go shopping. Bilitto the Grafton Centre with Fred. He
bought a CD.

He=Fred (maybe) despite the general preference for sughject

Parallelism Entities which share the same role as the pronoun in the sarhefsentence are preferred:
(23) Bill went with Fred to the Grafton Centre. Kim went witinhto Lion Yard.
Him=Fred, because the parallel interpretation is preterre

Coherence effectsThe pronoun resolution may depend on the rhetorical/diszorelation that is inferred.
(24) Bill likes Fred. He has a great sense of humour.

He = Fred preferentially, possibly because the second semtis interpreted as an explanation of the first, and
having a sense of humour is seen as a reason to like someone.

62

7.10 Lexical semantics and world knowledge effects

The made-up examples above were chosen so that the meatirggutferance did not determine the way the pronoun
was resolved. In real examples, world knowledge may ovesalience effects. For instance (from Radio 5):

(25) Andrew Strauss again blamed the batting after Englastdd Australia last night. They now lead the series
three-nil.

Heretheyhas to refer to Australia, despite the general preferenceubjects as antecendents. The analysis required
to work this out is actually non-trivial: you might like toytmwriting down some plausible meaning postulates which
would block the inference thalheyrefers to England. (Note also the plural pronoun with siagaintecedent, which

is normal for sports teams.)

Note, however, that violation of salience effects can gdsid to an odd discourse:

(26) The England football team won last night. Scotland.l@sThey have qualified for the World Cup with a
100% record.

Systems which output natural language disourses, suchasatization systems, have to keep track of anaphora to
avoid such problems.

7.11 Algorithms for resolving anaphora

NLP researchers are interested in all types of coreferdmaernost work has gone into the problem of finding an-
tecedents for pronouns. As well as discourse understanthigyis often important in MT. For instance, Engligh
has to be resolved to translate into German because Gernsagrdnmmatical gender (although if all the candidate
antecedents have the same gender, we don’t need to do amgrfresolution). | will outline an approach to anaphora
resolution using a statistical classifier, but there areynwher approaches.

We can formulate pronoun resolution as a classificationlpropwhich can be implemented using one of the standard
machine learning approaches to supervised classificagixamn{ples of approaches include Naive Bayes, perceptron,
k-nearest neighbour), assuming that we have a suitablef $etiming data. For each pairing of a (non-pleonastic)
pronoun and a candidate antecedent, the classifier has te anblnary decision as to whether the candidate is an
actual antecedent, based on some features associatetievithiting. For simplicity, we can assume that the candidate
antecedents for a pronoun are all the noun phrases withimdowi of the surrounding text consisting of the current
sentence and the preceeding 5 sentences (excluding pliequrasiouns). For example:

Niall Ferguson is prolific, well-paid and a snappy dresseéepBen Moss hated him — at least until he
spent an hour being charmed in the historian’s Oxford study.

Pronounhe, candidate antecedentiall Ferguson a snappy dresseStephen Mosshim, an hour, the
historian, the historian’s Oxford study

Notice that this simple approach leadsawnappy dressebeing included as a candidate antecendent and that a
choice had to be made as to how to treat the possessive. Eladid the possibility of cataphors, although these are
sufficiently rare that they are often excluded.

For each such pairing, we buildf@ature vectot® using features corresponding to some of the factors disclissthe
previous sections. For instance (using t/f rather than d/@inary features for readability):

Cataphoric Binary: tif the pronoun occurs before the candidate antectd
Number agreement Binary: t if the pronoun agrees in number with the candidateeedent.
Gender agreementBinary: t if the pronoun agrees in gender with the candidate@dent.

Same verb Binary: tif the pronoun and the candidate antecedent atmaegts of the same verb (for binding theory).

23The term ‘instance’ is sometimes used in Al, but | prefer ‘featvector’, because we're mainly interested in the naturéefeéatures.

63

Sentence distanceDiscrete:{ 0, 1, 2 ...} The number of sentences between pronoun and candidate.
Grammatical role Discrete:{ subject, object, other The role of the potential antecedent.
Parallel Binary: tif the potential antecedent and the pronoun shHaesame grammatical role.

Linguistic form Discrete:{ proper, definite, indefinite, pronounThis indicates something about the syntax of the
potential antecedent noun phrase.

Taking some pairings from the example above:

pronoun antecedent cataphoric num gen same distance role parallel form
him Niall Ferguson| f t t f 1 subj f prop
him Stephen Moss| f t t t 0 subj f prop
him he t t t f 0 subj f pron
he Niall Ferguson| f t t f 1 subj t prop
he Stephen Moss| f t t f 0 subj t prop
he him f t t f 0 obj f pron

Notice that with this set of features, we cannot model thpéeted mention” effect mentioned §@.9. It would be
possible to model it with a classifier-based system, butqtiires that we keep track of the coreferences that have
been assigned and thus that we maintain a model of the dseasrindividual pronouns are resolved. | will return to
the issue of discourse models below. Coherence effectsesyecomplex to model and world knowledge effects are
indefinitely difficult (Al-complete in the limit), so both dhese are excluded from this simple feature set. Realistic
systems use many more features and values than shown hecaraagproximate some partial world knowledge via
classification of named entities, for instance.

To implement the classifier, we require some knowledge ofagit structure, but not necessarily full parsing. We
could approximately determine noun phrases and gramnhatigaby means of a series of regular expressions over
POS-tagged data instead of using a full parser. Even if asfuitactic parser is available, it may be necessary to
augment it with special purpose rules to detect pleonasticquns.

The training data for this task is produced from a corpus thi&cmarked up by humans with pairings between
pronouns and antecedent phrases. The classifier uses tkedngr pairings as positive examples (class TRUE), and
all other possible pairings between the pronoun and catelmiatecendant as negative examples (class FALSE). For
instance, if the pairings above were used as training daayeuld have:

class cataphoric num gen same distance role parallel form
TRUE | f t t f 1 subj f prop
FALSE | f t t t 0 subj f prop
FALSE | t t t f 0 subj f pron
FALSE | f t t f 1 subj t prop
TRUE | f t t f 0 subj t prop
FALSE | f t t f 0 obj f pron

Note the prelecture exercise which suggests that you aatecin an online experiment to collect training data. lfiyo
do this, you will discover a number of complexities that | @agnored in this account.

In very general terms, a supervised classifier uses tharigpdata to determine an appropriate mapping (hgpoth-
esisin the terminology used in the Part 1B Al course) from feattgetors to classes. This mapping is then used when
classifying the test data. To make this more concrete, if euaing a probabilistic approach, we want to choose the
classc out of the set of classes @ TRUE, FALSE} here) which is most probable given a feature vegtor
¢ = argmax P(c|f)
ceC
(Sees3.5 for the explanation of argmax aagd As with the POS tagging problem, for a realistic featuracsy we will
be unable to model this directly. The Naive Bayes classifidrased on the assumption that we rewrite this formula

64

using Bayes Theorem and then treat the features as corali{iondependent (the independence assumption is the
“naive” part). Thatis:
= P(fle)P(c
plelf) = PUIPE
P(f)

As with the models discussed in Lecture 3, we can ignore them@ator because it is constant, hence:

¢ = argmax P(f]c¢)P(c)
ceC

Treating the features as independent means taking the girofithe probabilities of the individual features jnfor
the class: .
¢ = argmax P(c P(filc
g ()Z_];[1 (file)

In practice, the Naive Bayes model is often found to perforeil wven with a set of features that are clearly not
independent.

There are fundamental limitations on performance causettdating the problem as classification of individual
pronoun-antecedent pairs rather than as building a diseomodel including all the coreferences. Inability to im-
plement ‘repeated mention’ is one such limitation, anotbéhe inability to use information gained from one linkage
in resolving further pronouns. Consider yet another ‘teerample:

(27) Sturt think they can perform better in Twenty20 crickitrequires additional skills compared with older
forms of the limited over game.

A classifier which treats each pronoun entirely separateghtrwell end up resolving thi at the start of the second
sentence t&turtrather than the corrediwenty20 cricketHowever, if we already know thaheycorefers withSturt
coreference witht will be dispreferred because number agreement does nothn(iacall from§7.6 that pronoun
agreement has to be consistent). This type of effect is @dperelevant when general coreference resolution is
considered. One approach is to run a simple classifier liyit@acquire probabilities of links and to use those result
as the input to a second system which clusters the entitiBsd@n optimal solution. | will not discuss this further
here, however.

7.12 Evaluation of pronoun resolution

At first sight it seems that we could require that every (nteepastic) pronoun is linked to an antecedent, and just
measure the accuracy of the links found compared to the &tat dne issue which complicates this concerns the
identification of the pronouns (some may be pleonastic,reth®ey refer to concepts which aren’t expressed in the
text as noun phrases) and also identification of the targat parases, with embedded noun phrases being a particular
issue. We could treat this as a separate problem and assumeegiven data with the non-pleonastic pronouns and
the candidate antecedents identified, but this isn’t fudilistic.

A further range of problems arise essentially because weusirgy the identification of some piece of text as an
antecedent for the pronoun as a surrogate for the real pmbihich is identification of a coreference to a real world
entity. For instance, suppose that, in the example belowatgorithm linkshim to Andrewand also linkshe to
Andrew but the training data has linkddm to Andrewandheto him.

Sally met Andrew in town and took him to the new restaurantwds impressed.

Our algorithm has successfully linked the coreferring esgions, but if we consider the evaluation approach of
comparing the individual links to the test material, it Wik penalised. Of course it is trivial to take the transitive
closure of the links, but it is not easy to develop an evatunatnetric that correctly allows for this and does not, for
example, unfairly reward algorithms that link all the proms together into one cluster. As a consequence of this sort
of issue, it has been difficult to develop agreed metrics ¥aiusation.

65

7.13 Statistical classification in language processing

Many problems in natural language can be treated as claggifiqroblems: besides pronoun resolution, we have seen
sentiment classification and word sense disambiguatioichndre straightforward examples of classification. POS-
tagging is also a form of classification, but there we takddlgesequence of highest probability rather than considerin
each tag separately. As we have seen above, we actuallymeeddider relationships between coreferences to model
some discourse effects.

Pronoun resolution has a more complex feature set than #véopis examples of classification that we've seen and
determination of some of the features requires considenaaicessing, which is itself error prone. A statisticakela
sifier is somewhat robust to this, assuming that the traidiig features have been assigned by the same mechanism
as used in the test system. For example, if the grammati@bssignment is unreliable, the weight assigned to that
feature might be less than if it were perfect.

One serious disadvantage of supervised classificatiotiasice on training data, which is often expensive and difficu
to obtain and may not generalise across domains. Researahsapervised methods is therefore popular.

There are no hard and fast rules for choosing which stadistipproach to classification to use on a given task. Many
NLP researchers are only interested in classifiers as toolsfestigating problems: they may either simply use the
same classifier that previous researchers have tried oriexgat with a range of classifiers using a toolkit such as
WEKA.?4

Performance considerations may involve speed as well asamc if a lot of training data is available, then a classifie
with faster performance in the training phase may enabletonse more of the available data. The research issues
in developing a classifier-based algorithm for an NLP probgenerally center around specification of the problem,
development of the labelling scheme and determinationefdhture set to be used.

7.14 Further reading

J&M discuss the most popular approach to rhetorical retatichetorical structure theorpr RST (section 21.2.1). |
haven't discussed it in detail here, partly because | findtleery very unclear: attempts to annotate text using RST
approaches tend not to yield good interannotator agree(eeatcomments on evaluation in lecture 3), although to be
fair, this is a problem with all approaches to rhetoricabt®lns. The discussion of the factors influencing anaphora
resolution and the description of the classifier approaeth thie given here are partly based on J&M'’s account in
Chapter 21: they discuss a log-linear classifier there, @ivé\Bayes is decribed in 20.2.2 and | have followed that
description.

24http:/ivww.cs.waikato.ac.nz/ml/weka/ lan H. Witten and Eibe Frank (2005) “Data Mining: Practicalamae learning tools
and techniques”, 2nd Edition, Morgan Kaufmann, San Franc3205.

66

8 Lecture 8: Applications

No notes: copies of slides will be made available after totle.

A glossary/index of some of the terms used in the lectures

This is primarily intended to cover concepts which are nargd in more than one lecture. The lecture where the
term is explained in most detail is generally indicated. dms cases, | have just given a pointer to the section in the
lectures where the term is defined. Note that IGE stand§Herinternet Grammar of English
(http://lwww.ucl.ac.uk/internet-grammar/home.htm). There are a few cases where this uses a term
in a slightly different way from these course notes: | haiedtio indicate these.

active chart See§4.10.

adjective See IGE or notes for prelecture exercises in lecture 3.

adjunct Seeargument and also IGE.

adverb See IGE or notes for prelecture exercises in lecture 3.

affix A morpheme which can only occur in conjunction with other pteemes (lecture 2).

Al-complete A half-joking term, applied to problems that would requirs@ution to the problem of representing the
world and acquiring world knowledge (lecture 1).

agreement The requirement for two phrases to have compatible valuegréonmatical features such as number and
gender. For instance, in Englistpgs barkis grammatical butlog barkand dogs barksare not. See IGE.
(lecture 5)

ambiguity The same string (or sequence of sounds) meaning differemgsthContrasted witlkagueness

anaphora The phenomenon of referring to something that was mentigmediously in a text. An anaphor is an
expression which does this, such as a pronoun§gés).

antonymy Opposite meaning: such akananddirty (§6.5).

argument In syntax, the phrases which are lexically required to besgme by a particular word (prototypically a
verb). This is as opposed &aljuncts, which modify a word or phrase but are not required. Fominsg, in:

Kim saw Sandy on Tuesday

Sandyis an argument budn Tuesdays an adjunct. Arguments are specified by siicategorizationof a verb
etc. Also see the IGE. (lecture 5)

aspect A term used to cover distinctions such as whether a verb sig@a event has been completed or not (as
opposed to tense, which refers to the time of an event). Rtairte she was writing a books she wrote a
book

attribute-value matrix A way of drawingfeature structures: see§5.2.
AVM Attribute-value matrix.

backoff Usually used to refer to techniques for dealing with datasg@ess in probabilistic systems: using a more
general classification rather than a more specific one. Fiaite, using unigram probabilities instead of
bigrams; using word classes instead of individual wordst(ie= 3).

bag of words Unordered collection of words in some text.

baseline In evaluation, the performance produced by a simple sysigainat which the experimental technique is
compared §3.6).

67

bidirectional Usable for both analysis and generation (lecture 2).

case Distinctions between nominals indicating their syntacdtile in a sentence. In English, some pronouns show a
distinction: e.g.sheis used for subjects, whilker is used for objects. e.gshe likes hews *her likes she
Languages such as German and Latin mark case much moreieghgns

ceiling In evaluation, the performance produced by a ‘perfect’@ys(such as human annotation) against which the
experimental technique is comparé®.©).

CFG context-free grammar.
chart parsing Seet4.6.

Chomsky Noam Chomsky, professor at MIT. His work underlies most nmodeproaches to syntax in linguistics.
Not so hot on probability theory.

classifier A system which assigns classes to items, usually using aineltdarning approach.

closed classRefers to parts of speech, such as conjunction, for which@lnembers could potentially be enumerated
(lecture 3).

coherence See§7.2
collocation See§6.10
complement For the purposes of this course, amgument other than the subject.

compositionality The idea that the meaning of a phrase is a function of the mgaofi its parts. compositional
semanticsis the study of how meaning can be built up by semantic ruleglwhirror syntactic structure
(lecture 6).

constituent A sequence of words which is considered as a unit in a paatigremmar (lecture 4).

constraint-based grammar A formalism which describes a language using a set of indegatty stated constraints,
without imposing any conditions on processing or procagsialer (lecture 5).

context The situation in which an utterance occurs: includes pritarances, the physical environment, background
knowledge of the speaker and hearer(s), etc etc. Nothing teitth context-free grammar.

corpus A body of text used in experiments (plu@rporg). See§3.1.

cue phrasesPhrases which indicates particutletorical relations.

denominal Something derived from a noun: e.g., the viahgois a denominal verb.
derivational morphology See§2.2

determiner See IGE or notes for prelecture exercises in lecture 3.

deverbal Something derived from a verb: e.g., the adjectueprised

direct object See IGE. Contrashdirect object.

discourse In NLP, a piece of connected text.

discourse relations Seerhetorical relations.

domain Not a precise term, but | use it to mean some restricted sat@fledge appropriate for an application.
error analysis In evaluation, working out what sort of errors are found fagjieen approachs@.6).

expletive pronoun Another term forpleonastic pronoun see§7.8.

68

feature Either: a labelled arc in geature structure
Or: a characteristic property used in machine learning.

feature structure See Lecture 5.

FS Feature structure.

FSA Finite state automaton

FST Finite state transducer

full-form lexicon A lexicon where all morphological variants are explicitigted (lecture 2).

generation The process of constructing strings from some input reptasien. With bidirectional grammars using
compositional semantics, generation can be splitstitategic generation which is the process of deciding on
thelogical form (also known agext planning), andtactical generationwhich is the process of going from the
logical form to the string (also known agalization). §6.2.

generative grammar The family of approaches to linguistics where a natural laagg is treated as governed by rules
which can produce all and only the well-formed utterances:ture 4.

genre Type of text: e.g., newspaper, novel, textbook, lecturesiascientific paper. Note the differencedtmmain
(which is about the type of knowledge): it's possible to htess in different genre discussing the same domain
(e.g., discussion of human genome in newspaper vs textbophper).

grammar Formally, in the generative tradition, the set of rules dmgllexicon. Lecture 4.

head In syntax, the most important element of a phrase.

hearer Anyone on the receiving end of an utterance (spoken, writesigned).§1.3.

Hidden Markov Model See§3.5

HMM Hidden Markov Model

homonymy Instances opolysemywhere the two senses are unrelatgsl §).

hyponymy An ‘IS-A relationship $6.4) More general terms atg/pernyms, more specifitiyponyms.

indirect object The beneficiary in verb phrases ligéve a present to Sandy give Sandy a presenin this case the
indirect object isSandyand thedirect object is a present

interannotator agreement The degree of agreement between the decisions of two or monats with respect to
some categorisatior33.6).

language model A term generally used in speech recognition, for a statistitodel of a natural language (lecture 3).
lemmatization Finding the stem and affixes for words (lecture 2).

lexical ambiguity Ambiguity caused because of multiple senses for a word.

lexicon The part of an NLP system that contains information abouviddal words (lecture 1).

linking Relating syntax and semantics in lexical entrigg 1).

local ambiguity Ambiguity that arises during analysis etc, but which will tesolved when the utterance is com-
pletely processed.

logical form The semantic representation constructed for an uttera6cE)(
long-distance dependencySee§5.1

meaning postulatesinference rules that capture some aspects of the meaningofca

69

meronymy The ‘part-of’ lexical semantic relatior6.5).

modifier Something that further specifies a particular entity or ¢very.,big houseshout loudly
morpheme Minimal information carrying units within a word;@.1).

morphology See§l.2

MT Machine translation

multiword expression A conventional phrase that has something idiosyncraticbib@nd therefore might be listed
in a dictionary.

mumble input Any unrecognised input in a spoken dialogue system (le@ure

n-gram A sequence of, words §3.2).

named entity recognition Recognition and categorisation of person nhames, namesacégl dates etc (lecture 4).
NL Natural language.

NLID Natural language interface to a database.

noun See IGE or notes for prelecture exercises in lecture 3.

noun phrase (NP) A phrase which has a noun as syntatiad See IGE.

ontology In NLP and Al, a specification of the entities in a particulan@hin and (sometimes) the relationships
between them. Often hierarchically structured.

open classOpposite oftlosed class
orthographic rules Same aspelling rules(§2.3)

overgenerate Of a grammar, to produce strings which are invalid, e.g.abee they are not grammatical according
to human judgements.

packing Seeg4.9

passive chart parsing Seet4.7

parse tree Seet4.4

part of speech The main syntactic categories: noun, verb, adjective, dygeposition, conjunction etc.

part of speech tagging Automatic assignment of syntactic categories to the wands fext. The set of categories
used is actually generally more fine-grained than traditigmarts of speech.

pleonastic Non-referring (esp. of pronouns): sge.8

polysemy The phenomenon of words having different sen§6s3)).
POS Part of speech (in the context of POS tagging).
pragmatics See§l.2

predicate In logic, something that takes zero or more arguments andnea truth value. (Used in IGE for the verb
phrase following the subject in a sentence, but | don’t uaetdrminology.)

prefix An affix that precedes thetem
probabilistic context free grammars (PCFGs) CFGs with probabilities associated with rulest(liec4).

realization Another term fortactical generation— seegeneration

70

referring expression See§7.5

relative clause See IGE.
A restrictive relative clauseis one which limits the interpretation of a noun to a subseg: the students who
sleep in lectures are obviously overworkirgfers to a subset of students. Contrash-restrictive, which is a
form of parenthetical comment: e.the students, who sleep in lectures, are obviously ovelingrkeans all
(or nearly all) are sleeping.

selectional restrictions Constraints on the semantic classes of arguments to verthig.gt, the subject ahink is
restricted to being sentient). The tesmlectional preferencas used for non-absolute restrictions.

semantics See§1.2
sign As used in lecture 5, the bundle of properties representingrd or phrase.

smoothing Redistributing observed probabilities to allow fgparse data especially to give a non-zero probability
to unseen events (lecture 2).

sparse data Especially in statistical techniques, data concerning exents which isn’t adequate to give good proba-
bility estimates (lecture 2).

speaker Someone who makes aiterance (§1.3).

spelling rules §2.3

stem A morphemewhich is a central component of a word (contrafitx). §2.1.
stemming Strippingaffixes (se&2.4).

strong equivalence Of grammars, accepting/rejecting exactly the same stramgsassigning the same bracketings
(contrastweak equivalencg. Lecture 4.

structural ambiguity The situation where the same string corresponds to mubigeketings.

subcategorization The lexical property that tells us how maayguments a verb etc can have.

suffix An affix that follows thestem

summarization Producing a shorter piece of text (or speech) that captheegsential information in the original.
synonymy Having the same meaningg.5).

syntax Seeg§l.2

taxonomy Traditionally, the scheme of classification of biologicedanisms. Extended in NLP to mean a hierarchical
classification of word senses. The teomtology is sometimes used in a rather similar way, but ontologied ten
to be classifications of domain-knowledge, without necd@lgdaaving a direct link to words, and may have a
richer structure than a taxonomy.

template In feature structure grammars, see 5.6
tense Past, present, future etc.
text planning Another term forstrategic generation seegeneration

training data Data used to train any sort of machine-learning system. Mesteparated from test data which is kept
unseen. Manually-constructed systems should also us#ystrnseen data for evaluation.

treebank a corpus annotated with trees (lecture 4).

unification See Lecture 5, especialf$.3.

71

weak equivalence Of grammars, accepting/rejecting exactly the same stijogstrasistrong equivalencg. Lecture
4,

Wizard of Oz experiment An experiment where data is collected, generally for a djatosystem, by asking users
to interact with a mock-up of a real system, where some orfah® ‘processing’ is actually being done by a
human rather than automatically.

WordNet Seet6.6

word-sense disambiguationSee§6.9

WSD Word-sense disambiguation

utterance A piece of speech or text (sentence or fragment) generatadspgaker in a particular context.
vaguenessOf word meanings, contrasted widmbiguity : see§6.8.

verb See IGE or notes for prelecture exercises in lecture 3.

verb phrase (VP) A phrase headed by a verb.

72

Exercises for NLP course, 2009

Notes on exercises

These exercises are organised by lecture. They are dividedwo classes: prelecture and postlecture. The prekectur
exercises are intended to review the basic concepts thit yeed to fully understand the lecture. Depending on your
background, you may find these trivial or you may need to rbachbtes, but in either case they shouldn’t take more
than a few minutes. The first one or two examples generallyecaith answers, other answers are at the end (where
appropriate).

Answers to the postlecture exercises are available to gigoes with the supervision notes (where appropriate).s€he
are mostly intended as quick exercises to check understgmdithe lecture, though some are more open-ended.

A Lecturel

A.1 Postlecture exercises

Without looking at any film reviews beforehand, write downw@rds which you think would be good indications of a

positive review (when taken in isolation) and 10 words whjolu think would be negative. Then go through a review
of a film and see whether you find there are more of your positiweds than the negative ones. Are there words in
the review which you think you should have added to yourahitsts?

Have a look ahttp://www.cl.cam.ac.uk/ ~aacl0/stuff.html for pointers to sentiment analysis data
used in experiments.

B Lecture 2

B.1 Prelecture exercises

1. Split the following words into morphological units, ldlimg each as stem, suffix or prefix. If there is any
ambiguity, give all possible splits.

(a) dries
answer: dry (stem), -s (suffix)

(b) cartwheel
answer: cart (stem), wheel (stem)

(c) carries

(d) running

(e) uncaring

(f) intruders

(g) bookshelves
(h) reattaches
(i) anticipated

2. List the simple past and past/passive participle formba@following verbs:

(a) sing
Answer: simple pastang participlesung

(b) carry
(c) sleep

73

(d) see

Note that the simple past is used by itself (ekdm sang well while the participle form is used with an auxiliary (e.g.,
Kim had sung we)l The passive participle is always the same as the pastipdetin English: (e.g.Kim began the
lecture early Kim had begun the lecture earlyhe lecture was begun eajly

B.2 Post-lecture exercises

1. For each of the following surface forms, give a list of thates that the FST given in the lecture notes for
e-insertion passes through, and the corresponding urnidgiflgrms:

(@) cats
(b) corpus
(c) asses
(d) assess
(e) axes

2. Modify the FSA for dates so that it only accepts valid manthurn your revised FSA into a FST which maps
between the numerical representation of months and thbreatations (Jan ... Dec).

C Lecture 3

C.1 Pre-lecture

Label each of the words in the following sentences with tpait of speech, distinguishing between nouns, proper
nouns, verbs, adjectives, adverbs, determiners, prémositpronouns and others. (Traditional classificatiornierof
distinguish between a large number of additional parts eksh, but the finer distinctions won't be important here.)
There are notes on part of speech distinctions below, if yaueproblems.

1. The brown fox could jump quickly over the dog, Rover. Answihe/Det brown/Adj fox/Noun could/Verb(modal)
jump/Verb quickly/Adverb over/Preposition the/Det dogihh, Rover/Proper noun.

2. The big cat chased the small dog into the barn.
3. Those barns have red roofs.

4. Dogs often bark loudly.

5. Further discussion seems useless.

6. Kim did not like him.
7. Time flies.

Notes on parts of speech. These notes are English-spedifirarjust intended to help with the lectures and the exer-
cises: see a linguistics textbook for definitions! Somegmates have fuzzy boundaries, but none of the complicated
cases will be important for this course.

Noun prototypically, nouns refer to physical objects or subséan e.g.aardvark chainsawrice. But they can also
be abstract (e.gtruth, beauty or refer to events, states or processes (elecjsior). If you can saythe Xand
have a sensible phrase, that's a good indication that X isia.no

Pronoun something that can stand in for a noun: ehim, his

Proper noun / Proper name a name of a person, place etc: ekjizabeth Paris

74

Verb Verbs refer to events, processes or states but since nouhadjectives can do this as well, the distinction
between the categories is based on distribution, not seéesaor instance, nouns can occur with determiners
like the (e.g.,the decisioh whereas verbs can't (e.g.,the decidg In English, verbs are often found with
auxiliaries pe haveor do) indicating tense and aspect, and sometime occur with raptile can, could etc.
Auxiliaries and modals are themselves generally treateibslasses of verbs.

Adjective a word that modifies a noun: e.dpig, loud. Most adjectives can also occur after the vbdgand a few
other verbs: e.gthe students are unhappiNumbers are sometimes treated as a type of adjective byisitsy
but generally given their own category in traditional graerm Past participle forms of verbs can also often be
used as adjectives (e.guprriedin the very worried man Sometimes it's impossible to tell whether something
is a participle or an adjective (e.ghe man was worried

Adverb a word that modifies a verb: e.quickly, probably.

Determiner these precede nouns e.the every this. It is not always clear whether a word is a determiner or some
type of adjective.

Preposition e.g.,in, at, with

Nouns, proper nouns, verbs, adjectives and adverbs amptre classesnew words can occur in any of these cate-
gories. Determiners, prepositions and pronouns are clossdes (as are auxiliary and modal verbs).

C.2 Post-lecture

Try out one or more of the following POS tagging sites:

http://alias-i.com/lingpipe/web/demos.html

http://www.lingsoft.fi/demos.html

http://ucrel.lancs.ac.uk/claws/trial.html

http://12r.cs.uiuc.edu/ ~cogcomp/pos _demo.php

The Lingpipe tagger uses an HMM approach as described irethterk, the others use different techniques. Lingsoft
give considerably more information than the POS tag: thetesn uses hand-written rules.

Find two short pieces of naturally occurring English textecof which you think should be relatively easy to tag
correctly and one which you predict to be difficult. Look a¢ttagged output and estimate the percentage of correct
tags in each case, concentrating on the open-class wordsmight like to get another student to look at the same
output and see if you agree on which tags are correct.

D Lecture 4

D.1 Pre-lecture

Put brackets round the noun phrases and the verb phrases follttwing sentences (if there is ambiguity, give two
bracketings):

1. The cat with white fur chased the small dog into the barn.
Answer: ((The cat), with (white fur),,)., chased (the small dog) into (the barn),,
The cat with white fur (chased the small dog into the bgyn)

2. The big cat with black fur chased the dog which barked.
3. Three dogs barked at him.

4. Kim saw the birdwatcher with the binoculars.

75

Note that noun phrases consist of the noun, the determihgrgsent) and any modifiers of the noun (adjective,
prepositional phrase, relative clause). This means thah pihrases may be nested. Verb phrases include the verb
and any auxiliaries, plus the object and indirect objec(ietgeneral, the complements of the verb) and any adverbial
modifiers?® The verb phrase does not include the subject.

D.2 Post-lecture

Using the CFG given in the lecture notes (section 4.3):
1. show the edges generated when parttiey fish in rivers in Decembevith the simple chart parserin 4.7
2. show the edges generated for this sentence if packingd(as described in 4.9)

3. show the edges generated floey fish in riversf an active chart parser is used (as in 4.10)

E Lectureb5

E.1 Pre-lecture

1. A very simple form of semantic representation corresgandnaking verbs one-, two- or three- place logical
predicates. Proper names are assumed to correspond tamsnsihe first argument should always correspond
to the subject of the active sentence, the second to thetdijdeere is one) and the third to the indirect object
(i.e., the beneficiary, if there is one). Give representetifor the following examples:

(a) Kim likes Sandy
Answer: like(Kim, Sandy)

(b) Kim sleeps

(c) Sandy adores Kim

(d) Kimis adored by Sandy (note, this is passive:ltigshould not be represented)
(e) Kim gave Rover to Sandy (the is not represented)

(f) Kim gave Sandy Rover

2. List three verbs that are intransitive only, three whioh simple transitive only, three which can be intransitive
or transitive and three which are ditransitives.

The distinction between intransitive, transitive andatisitive verbs can be illustrated by examples such as:
sleep — intransitive. No object is (generally) possibil&im slept the evening.

adore — transitive. An object is obligatoryKim adored

give —- ditransitive. These verbs have an object and an iodalject.Kim gave Sandy an appler Kim gave
an apple to Sandy

E.2 Post-lecture

1. Give the unification of the following feature structures:

[. . VP
a) |7 unified with | ¢
() AGR LI] AGR [}
CAT VP
MOTHER [AGR

v o i
(b) |omRe [22; unified with [DTR1 [%\LZQ}

CAT NP

o

25A modifieris something that further specifies a particular entity onéve.g.,big houseshout loudly

76

F Ja}

=

a

(d)

EE

(© [} unified with | W w
unified With[ob}
F [Ja}

]
K b
Jb
G{Kb]

unified with [; }

o

unified with

o
==

© |

@

T
=]

M |[co]

=]

unified with

(9)

F [
i

“Tom
=

Ny EE

(h) 7F G]

H @

N
9]

. . F
unified with i ls

]

2. Add case to the initial FS grammar in order to prevent sezge such athey can theyrom parsing.

3. Work though parses of the following strings for the secb&dyrammar, deciding whether they parse or not:

(a) fish fish

(b) they can fish
(c) itfish

(d) they can

(e) they fish it

4. Modify the second FS grammar to allow for verbs which takénairect object as well as an object. Also add a
lexical entry forgive (just do the variant which takes two noun phrases).

F Lecture 6

F.1 Pre-lecture

Without looking at a dictionary, write down brief definitisfior as many senses as you can think of for the following
words:

1. plant
2. shower

3. bass

If possible, compare your answers with another studentiswith a dictionary.

F.2 Post-lecture

1. If you did the exercise associated with the previous kedtoiadd ditransitive verbs to the grammar, amend your
modified grammar so that it produces semantic representatio

2. Give hypernyms and (if possible) hyponyms for the nomgesises of the following words:

(a) horse

77

(b) rice
(c) curtain

3. List some possible seeds for Yarowsky’s algorithm thatialistinguish between the sensessbhbwerand
bassthat you gave in the prelecture exercise.

G Lecture?7

G.1 Pre-lecture

There is an online experiment to collect training data fa@or resolution dittp://anawiki.essex.ac.uk/
phrasedetectives/ . Spending a few minutes on this will give you an idea of theiéssthat arise in anaphora
resolution: there are a series of tasks which are intendiditonew participants which take you through progresgivel
more complex cases. Note that you have to register but thatlga’t have to give an email address unless you want
to be eligible for a prize.

G.2 Post-lecture

Take a few sentences of real text and work out the values yaddaabtain for the features discussed in the lecture.
See if you can identify some other easy-to-implement fegttiat might help resolution.

Try out the Lingpipe coreference systemhdtp://alias-i.com/lingpipe/web/demos.html

H Lecture 8

H.1 Exercises (post- lecture)

Use Systran (vidnttp://babelfish.yahoo.com/) to translate some text and investigate whether the text it
outputs is grammatical and whether it deals well with issdissussed in the course, such as lexical ambiguity and
pronoun resolution. Ideally you would get the help of sonewamo speaks a language other than English for this if
you're not fairly fluent in another language yourself: thedaage pairs that Systran deals with are listed on the site.
Try and compare a Systran translation to one given by Google.

Open ended: Suppose you were supervising undergraduales:weuld it take to build a system that responded to
email requests for supervisions and automatically updatednline diary? To think about this, ideally you should
collect a corpus of emails.

78

| Answers to some of the exercises

.1 Lecture 1 (post-lecture)

Something like this experiment was tried by Pang et al (200p)yovide a baseline for their machine learning system.
The table below shows the accuracy they obtained on moviewe\by counting the positive and negative terms in the
document. The third set was obtained with the help of prelani frequency data: note the inclusion of *?’ and ‘!".

Terms Accuracy
Human 1 positive: dazzling, brilliant, phenomenal, excellent, fantasti&8%
negative:suck, terrible, awful, unwatchable, hideous
Human 2 positive: gripping, mesmerizing, riveting, spectacular, codl,64%

awesome, thrilling, badass, excellent, moving, exciting
negative:bad, cliched, sucks, boring, stupid, slow

Human 3 (with stats)| positive:love, wonderful, best, great, superb, still, beautiful69%
negative:bad, worst, stupid, waste, boring, ?, !

.2 Lecture 2 (pre-lecture)
1. (a) carries
carry (stem) s (suffix)

(b) running
run (stem) ing (suffix)

(c) uncaring
un (prefix) care (stem) ing (suffix)

(d) intruders
intrude (stem) er (suffix) s (suffix)
Note that in- is not a real prefix here

(e) bookshelves
book (stem) shelf (stem) s (suffix)

(f) reattaches
re (prefix) attach (stem) s (suffix)

(g) anticipated
anticipate (stem) ed (suffix)

2. (a) carry
Answer: simple pastarried, past participlecarried

(b) sleep
Answer: simple pastlept past participleslept

(c) see
Answer: simple pastaw past participleseen
1.3 Lecture 3 (pre-lecture)
The/Det big/Adj cat/Noun chased/Verb the/Det small/éoijj/Noun into/Prep the/Det barn/Noun.
Those/Det barns/Noun have/Verb red/Adj roofs/Noun.
Dogs/Noun often/Adverb bark/Verb loudly/Adverb.

Further/Adj discussion/Noun seems/Verb useless/Adj.

a w0 N RE

Kim/Proper noun did/Verb(aux) not/Adverb(or Other)dikerb him/Pronoun.

79

6. Time/Noun flies/\Verb.
Time/Verb flies/Noun. (the imperative!)

.4 Lecture 4 (pre-lecture)

1. The big cat with black fur chased the dog which barked.
((The big cat),, with (black fur),,)., chased (the dog which barkegd)
The big cat with black fur (chased the dog which barkgd)

2. Three dogs barked at him. (Three dogs)arked at (him), Three dogs (barked at hir)

3. Kim saw the birdwatcher with the binoculars.
Analysis 1 (the birdwatcher has the binoculars) (Kig¥aw ((the birdwatchey), with (the binoculars),),
Kim (saw the birdwatcher with the binoculays)
Analysis 2 (the seeing was with the binoculars) (Kim¥aw (the birdwatchey), with (the binoculars),
Kim (saw the birdwatcher with the binoculays)

1.5 Lecture 5 (pre-lecture)

1. Kim sleeps
sleep(Kim)

2. Sandy adores Kim
adore(Sandy, Kim)

3. Kimis adored by Sandy
adore(Sandy, Kim)

4. Kim gave Rover to Sandy
give(Kim, Rover, Sandy)

5. Kim gave Sandy Rover
give(Kim, Rover, Sandy)

Some examples of different classes of verb (obviously yoe lsdmost certainly come up with different ones!)

sleep, snore, sneeze, cough — intransitive only
adore, comb, rub — simple transitive only

eat, wash, shave, dust — transitive or intransitive
give, hand, lend — ditransitive

80

