
Object Oriented Programming
Dr Robert Harle

IA NST CS and CST
Lent 2009/10

Handout 1

OO Programming

 This is a new course this year that absorbs what
was “Programming Methods” and provides a
more formal look at Object Oriented
programming with an emphasis on Java

 Four Parts
 Computer Fundamentals

 Object-Oriented Concepts

 The Java Platform

 Design Patterns and OOP design examples

Java Ticks

 This course is meant to complement your practicals in
Java

 Some material appears only here

 Some material appears only in the practicals

 Some material appears in both: deliberately!

 A total of 7 workbooks to work through
 Everyone should attend every week

 CST: Collect 7 ticks

 NST: Collect at least 5 ticks

Books and Resources

 OOP Concepts
 Look for books for those learning to first program in an

OOP language (Java, C++, Python)

 Java: How to Program by Deitel & Deitel (also C++)

 Thinking in Java by Eckels

 Java in a Nutshell (O' Reilly) if you already know another
OOP language

 Lots of good resources on the web

 Design Patterns

 Design Patterns by Gamma et al.

 Lots of good resources on the web

Books and Resources

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/0910/OOProg/

Computer Fundamentals

What can Computers Do?

 The computability problem
 Given infinite computing 'power' what can we do?

How do we do it? What can't we do?
 Option 1: Forget any notion of a physical machine

and do it all in maths
 Leads to an abstract mathematical programming approach

that uses functions
 Gets us Functional Programming (e.g. ML)

 Option 2: Build a computer and extrapolate what it
can do from how it works
 Not so abstract. Now the programming language links

closely to the hardware
 This leads naturally to imperative programming (and

on to object-oriented)

λ

What can Computers Do?

 The computability problem
 Both very different (and valid)

approaches to understanding computer
and computers
 Turns out that they are equivalent
 Useful for the functional programmers since

if it didn't, you couldn't put functional
programs on real machines...

Imperative

 This term you transition from functional (ML)
to imperative (Java)

 Most people find imperative more natural, but
each has its own strengths and weaknesses

 Because imperative is a bit closer to the
hardware, it does help to have a good
understanding of the basics of computers.
 All the CST Students have this

 All the NST students don't... yet.

Bits, Bytes, Compilers and Languages

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

1P

X

Y

Z
ALU

CPU

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

63

2P

X

Y

Z
ALU

CPU

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

12

63

3P

X

Y

Z
ALU

CPU

Dumb Model of a Computer

L6X L7Y AXYZ SZ8

Registers

Memory

63 12

0 1 2 3 4 5 6 7 8

75

12

63

4P

X

Y

Z
ALU

CPU

Memory (RAM)

 You probably noticed we view memory as a series of
slots
 Each slot has a set size (1 byte or 8 bits)
 Each slot has a unique address

 Each address is a set length of n bits
 Mostly n=32 or n=64 in today’s world
 Because of this there is obviously a maximum number of

addresses available for any given system, which means a
maximum amount of installable memory

Memory

0 1 2 3 4 5 6 7 8

Big Numbers

 So what happens if we can’t fit the data into 8
bits e.g. the number 512?

 We end up distributing the data across
(consecutive) slots

 Now, if we want to act on the number as a whole,
we have to process each slot individually and
then combine the result

 Perfectly possible, but who wants to do that every
time you need an operation?

Memory

0 1 2 3 4 5 6 7 8

High Level Languages

 Instead we write in high-level languages that are
human readable (well, compsci-readable anyway)

High-Level Source
Code (e.g. C++,

Java)

Binary executable
(i.e. CPU-speak)

Compiler

Machine Architectures

 Actually, there’s no reason for e.g ARM and Intel to
use the same instructions for anything – and they
don’t!

 The result? Any set of instructions for one processor
only works on another processor if they happen to
use the same instruction set...
 i.e. The binary executable produced by the compiler is CPU-

specific

 We say that each set of processors that support a
given set of instructions is a different architecture
 E.g. x86, MIPS, SPARC, etc.

 But what if you want to run on different
architectures??

Compilation

 So what do we have? We need to write code
specifically for each family of processors...
Aarrggh!

 The ‘solution’:

Source Code (e.g. C+
+)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86

Enter Java

 Sun Microcomputers came up with a different
solution
 They conceived of a Virtual Machine – a sort of idealised

computer.
 You compile Java source code into a set of instructions for

this Virtual Machine (“bytecode”)
 Your real computer runs a program (the “Virtual machine”

or VM) that can efficiently translate from bytecode to local
machine code.

 Java is also a Platform
 So, for example, creating a window is the same on any

platform
 The VM makes sure that a Java window looks the same on a

Windows machine as a Linux machine.

 Sun sells this as “Write Once, Run Anywhere”

Types and Variables

 We write code like:

 The high-level language has a series of primitive
(built-in) types that we use to signify what’s in the
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many

languages. It’s usually a 32-bit signed integer

 A variable is a name used in the code to refer to a
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

[See practicals]

Reference Types (Classes)

 Lets imagine you’re creating a program that stores
info about someone doing CS

 You might create a set of variables (instances of
types) as follows:

 Now you need to represent two people so you add:

 Now you need to add more – this is getting rather
messy

 Better if we could create our own type – call it a
“Person”
 Let it contain two values: forename and surname

String forename = “Kay”;
String surname = “Oss”;

String forename2 = “Don”;
String surname2 = “Keigh”;

Reference Types (Classes)

 In Java we create a class which acts as a
blueprint for a custom type

 A class:
 Has attributes (things it is assigned e.g. name, age)
 Has methods (things it can do e.g. walk, think)

 When we create an instance of a class we:
 Assign memory to hold the attributes
 Assign the attributes

 We call the instance an object
 As in object-oriented programming

public class Person {
 String forename;
 String surname;
}

Definitions

 Class
 A class is a grouping of conceptually-related attributes

and methods

 Object
 An object is a specific instance of a class

Practicalities

 So you’ve written a Java source file
(MyProgram.java)

 First you need to compile it
 javac MyProgram.java
 This creates MyProgram.class, which is the bytecode

version (i.e. A set of instructions that make sense to a
virtual machine).

 Now we need to run a virtual machine to actually
use it
 java MyProgram

 Easy!

Pointers and References

Pointers

 In some languages we have variables that hold
memory addresses.

 These are called pointers

 A pointer is just the memory address of the first
memory slot used by the object

 The pointer type tells the compiler how many
slots the whole object uses

xptr2

xxptr1
MyType x;
MyType *xptr1 = &x;
MyType *xptr2 = xptr1;

C++

Java’s Solution?

 You can’t get at the memory directly.
 So no pointers, no jumping around in memory, no

problem.
 Great for teaching. 

 It does, however, have references
 These are like pointers except they are guaranteed to

point to either an object in memory or “null”.
 So if the reference isn’t null, it is valid

 In fact, all objects are accessed through
references in Java
 Variables are either primitive types or references!

References

P1 (50)

P2 (50)
Person object
(name=“Bob”)

r2

r1

P1 (50)

P2 (73)
Person object

(name=“Steve”)

r2

r1

int p1 = 50;
int p2 = p1;

Person r1 = new Person();
r1.name=“Bob”;
Person r2 = p;

p2 = 73;

r2.name=“Steve”;

Pass By Value and By Reference

A. “70 Bob”
B. “70 Alice”
C. “71 Bob”
D. “71 Alice”

void myfunction(int x, Person p) {
 x=x+1;
 p.name=“Alice”;
}

void static main(String[] arguments) {
 int num=70;
 Person person = new Person();
 person.name=“Bob”;

 myfunction(num, p);
 System.out.println(num+” “+person.name)
}

Object Oriented Concepts

Modularity

 A class is a custom type

 We could just shove all our data into a class

 The real power of OOP is when a class corresponds to a
concept

 E.g. a class might represent a car, or a person

 Note that there might be sub-concepts here

 A car has wheels: a wheel is a concept that we might
want to embody in a separate class itself

 The basic idea is to figure out which concepts are useful,
build and test a class for each one and then put them all
together to make a program

 The really nice thing is that, if we've done a good job,
we can easily re-use the classes we have specified
again in other projects that have the same concepts.

 “Modularity”

State and Behaviour

 An object/class has:

 State
 Properties that describe that specific

instance
 E.g. colour, maximum speed, value

 Behaviour/Functionality
 Things that it can do
 These often mutate the state
 E.g. accelerate, brake, turn

Identifying Classes

 We want our class to be a grouping of conceptually-
related state and behaviour

 One popular way to group is using English grammar
 Noun → Object
 Verb → Method

“The footballer kicked the ball”

Representing a Class Graphically (UML)

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The “has-a” Association

College Student1 0...*

 Arrow going left to right says “a College has zero or
more students”

 Arrow going right to left says “a Student has exactly 1
College”

 What it means in real terms is that the College class
will contain a variable that somehow links to a set of
Student objects, and a Student will have a variable
that references a College object.

 Note that we are only linking classes: we don't start
drawing arrows to primitive types.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties
that an object has such as
colour or size)

Class behaviour (actions
an object can do)

'Magic' start point
for the program
(named main by
convention)

Create an object of
type MyFancyClass in
memory and get a
reference to it

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour

'Magic' start point
for the program

Create an object of
type MyFancyClass

Let's Build up Java Ourselves

 We'll start with a simple language that looks like
Java and evolve it towards real Java
 Use the same primitives and Java and the similar

syntax. E.g.

class MyFancyClass {

int someNumber;
String someText;

void someMethod() {

}

}

void main() {
MyFancyClass c = new

MyFancyClass();
}

Encapsulation

 Here we create 3 Student
objects when our program runs

 Problem is obvious: nothing
stops us (or anyone using our
Student class) from putting in
garbage as the age

 Let's add an access modifier
that means nothing outside the
class can change the age

class Student {
 int age;
}

void main() {
 Student s = new Student();
 s.age = 21;

 Student s2 = new Student();
 s2.age=-1;

 Student s3 = new Student();
 s3.age=10055;
}

Encapsulation

 Now nothing outside the class
can access the age variable
directly

 Have to add a new method to
the class that allows age to be
set (but only if it is a sensible
value)

 Also needed a GetAge()
method so external objects can
find out the age.

class Student {
 private int age;

 boolean SetAge(int a) {
 if (a>=0 && a<130) {

age=a;
return true;

 }
 return false;
 }

 int GetAge() {return age;}
}

void main() {
 Student s = new Student();
 s.SetAge(21);

}

Encapsulation

 We hid the state implementation to the outside world
(no one can tell we store the age as an int without
seeing the code), but provided mutator methods to...
errr, mutate the state

 This is data encapsulation

 We define interfaces to our objects without
committing long term to a particular implementation

 Advantages

 We can change the internal implementation
whenever we like so long as we don't change the
interface other than to add to it (E.g. we could decide
to store the age as a float and add GetAgeFloat())

 Encourages us to write clean interfaces for things to
interact with our objects

Inheritance

class Student {
 public int age;
 public String name;
 public int grade;
}

class Lecturer {
 public int age;
 public String name;
 public int salary;
}

 There is a lot of duplication here

 Conceptually there is a hierarchy that
we're not really representing

 Both Lecturers and Students are
people (no, really).

 We can view each as a kind of
specialisation of a general person
 They have all the properties of a

person
 But they also have some extra stuff

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance

class Person {
 public int age;
 Public String name;
}

class Student extends Person {
 public int grade;
}

class Lecturer extends Person {
 public int salary;
}

 We create a base class (Person)
and add a new notion: classes
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of

Lecturer and Student
 Lecturer and Student

subclass Person

Representing Inheritance Graphically

Student Lecturer

Person

Also known as an “is-a”
relation

As in “Student is-a Person”

Casting/Conversions

 As we descend our inheritance tree we specialise by adding
more detail (a salary variable here, a dance() method
there)

 So, in some sense, a Student object has all the information
we need to make a Person (and some extra).

 It turns out to be quite useful to group things by their
common ancestry in the inheritance tree

 We can do that semantically by expressions like:

Student s = new Student();
Person p = (Person)s;

Person p = new Person();
Student s = (Student)p;

This is a widening conversion (we
move up the tree, increasing
generality: always OK)

This would be a narrowing
conversion (we try to move down
the tree, but it's not allowed here
because the real object doesn't
have all the info to be a Student)x

Variables + Inheritance

class Person {
 public String mName;
 protected int mAge;
 private double mHeight;
}

class Student extends Person {

 public void do_something() {
 mName=”Bob”;
 mAge=70;
 mHeight=1.70;
 }

}

Student inherits this as a
public variable and so can
access it

Student inherits this as a
protected variable and so can
access it

Student inherits this as a private
variable and so cannot access it

Variables + Inheritance: Shadowing

class A {
 public int x;
}

class B extends A {
 public int x;
}

class C extends B {
 public int x;

 public void action() {
 // Ways to set the x in C
 x = 10;
 this.x = 10;

 // Ways to set the x in B
 super.x = 10;
 ((B)this).x = 10;

 // Ways to set the x in A
 ((A)this.x = 10;
 }
}

In memory, you will find three allocated
integers for every object of type C. We say
that variables in parent classes with the
same name as those in child classes are
shadowed.

Note that the variables are being
shadowed: i.e. nothing is being replaced.
This is contrast to the behaviour with
methods...

Methods + Inheritance: Overriding

 We might want to require that every Person can dance. But
the way a Lecturer dances is not likely to be the same as
the way a Student dances...

class Person {
 public void dance() {
 jiggle_a_bit();
 }
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
}

Person defines a
'default'
implementation of
dance()

Lecturer just
inherits the default
implementation and
jiggles

Student overrides
the default

(Subtype) Polymorphism

 Assuming Person has a default
dance() method, what should
happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 Option 1
 Compiler says “p is of type Person”
 So p.dance() should do the default dance() action in

Person

 Option 2
 Compiler says “The object in memory is really a

Student”
 So p.dance() should run the Student dance() method

Polymorphic behaviour

The Canonical Example

 A drawing program that can draw
circles, squares, ovals and stars

 It would presumably keep a list of all
the drawing objects

 Option 1
 Keep a list of Circle objects, a list

of Square objects,...
 Iterate over each list drawing

each object in turn
 What has to change if we want to

add a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example

 Option 2
 Keep a single list of Shape

references
 Figure out what each object really

is, narrow the reference and then
draw()

 What if we want to add a new
shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 If (s is really a Circle)
 Circle c = (Circle)s;
 c.draw();
 Else if (s is really a Square)
 Square sq = (Square)s;
 sq.draw();
 Else if...

The Canonical Example

 Option 3 (Polymorphic)
 Keep a single list of Shape

references
 Let the compiler figure out what

to do with each Shape reference

 What if we want to add a new
shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
 s.draw();

Implementations

 Java
 All methods are polymorphic. Full stop.

 Python

 All methods are polymorphic.

 C++
 Only functions marked virtual are polymorphic

 Polymorphism is an extremely important concept that you need to
make sure you understand...

Abstract Methods

 There are times when we have a
definite concept but we expect every
specialism of it to have a different
implementation (like the draw()
method in the Shape example). We
want to enforce that idea without
providing a default method

 E.g. We want to enforce that all
objects that are Persons support a
dance() method
 But we don't now think that there's

a default dance()

 We specify an abstract dance
method in the Person class
 i.e. we don't fill in any

implementation (code) at all in
Person.

class Person {
 public void dance();
}

class Student extends Person {
 public void dance() {
 body_pop();
 }
}

class Lecturer extends Person {
 public void dance() {
 jiggle_a_bit();
 }
}

Abstract Classes
 Before we could write Person p = new Person()

 But now p.dance() is undefined

 Therefore we have implicitly made the class abstract ie. It cannot be
directly instantiated to an object

 Languages require some way to tell them that the class is meant to be
abstract and it wasn't a mistake:

 Note that an abstract class can contain state variables that get inherited as
normal

 Note also that, in Java, we can declare a class as abstract despite not
specifying an abstract method in it!!

public abstract class Person {
 public abstract void dance();
}

class Person {
 public:
 virtual void dance()=0;
}

Java C++

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the
class or method is
abstract

Multiple Inheritance

Student Lecturer

StudentLecturer

 What if we have a Lecturer who studies
for another degree?

 If we do as shown, we have a bit of a
problem

 StudentLecturer inherits two
different dance() methods

 So which one should it use if we
instruct a StudentLecturer to
dance()?

 The Java designers felt that this kind of
problem mostly occurs when you have
designed your class hierarchy badly

 Their solution? You can only extend
(inherit) from one class in Java

 (which may itself inherit from
another...)

 This is a Java oddity (C++ allows
multiple class inheritance)

Interfaces (Java only)
 Java has the notion of an interface which is like a class except:

 There is no state whatsoever

 All methods are abstract

 For an interface, there can then be no clashes of methods or
variables to worry about, so we can allow multiple inheritance

<<interface>>
 Drivable

+ turn()
+ brake()

Car

<<interface>>
 Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
 public void turn();
 public void brake();
}

Interface Identifiable {
 public void getIdentifier();
}

class Bicycle implements Drivable {
 public void turn() {...}
 public void brake() {… }
}

class Car implements Drivable, Identifiable {
 public void turn() {...}
 public void brake() {… }
 Public void getIdentifier() {...}
}

abstract
assumed for
interfaces

Recap

 Important OOP concepts you need to
understand:

 Modularity (classes, objects)
 Data Encapsulation
 Inheritance
 Abstraction
 Polymorphism

Lifecycle of an Object

Constructors

 You will have noticed that the RHS looks rather like a
function call, and that's exactly what it is.

 It's a method that gets called when the object is
constructed, and it goes by the name of a constructor
(it's not rocket science).

 We use constructors to initialise the state of the class
in a convenient way.
 A constructor has the same name as the class
 A constructor has no return type specified

MyObject m = new MyObject();

Examples

public class Person {
 private String mName;

 // Constructor
 public Person(String name) {
 mName=name;
 }

 public static void main(String[] args) {
 Person p = new Person(“Bob”);
 }

}

class Person {
 private:
 std::string mName;

 public:
 Person(std::string &name) {
 mName=name;
 }
};

int main(int argc, char ** argv) {
 Person p (“Bob”);
}

Java C++

Default Constructor

public class Person {
 private String mName;

 public static void main(String[] args) {
 Person p = new Person();
 }

}

 If you specify no constructor
at all, the Java fills in an
empty one for you

 The default constructor
takes no arguments

Multiple Constructors

public class Student {
 private String mName;
 private int mScore;

 public Student(String s) {
 mName=s;
 mScore=0;
 }
 public Student(String s, int sc) {
 mName=s;
 mScore=sc;
 }

 public static void main(String[] args) {
 Student s1 = new Student("Bob");
 Student s2 = new Student("Bob",55);
 }
 }

 You can specify as many
constructors as you like.

 Each constructor must have
a different signature
(argument list)

Constructor Chaining

 When you construct an object of a type with
parent classes, we call the constructors of all
of the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed

 Allows us to release any resources (open files, etc) or
memory that we might have created especially for the
object

class FileReader {
 public:

 // Constructor
 FileReader() {
 f = fopen(“myfile”,”r”);
 }

 // Destructor
 ~FileReader() {
 fclose(f);
 }

 private :
 FILE *file;
}

int main(int argc, char ** argv) {

 // Construct a FileReader Object
 FileReader *f = new FileReader();

 // Use object here
 ...

 // Destruct the object
 delete f;

}

C++

Cleaning Up

 A typical program creates lots of objects, not all
of which need to stick around all the time

 Approach 1:
 Allow the programmer to specify when objects

should be deleted from memory
 Lots of control, but what if they forget to delete

an object?
 Approach 2:

 Delete the objects automatically (Garbage
collection)

 But how do you know when an object is
finished with if the programmer doesn't
explicitly tell you it is?

Cleaning Up (Java)

 Java reference counts. i.e. it keeps track of how many
references point to a given object. If there are none,
the programmer can't access that object ever again so
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Cleaning Up (Java)

 Good:
 System cleans up after us

 Bad:
 It has to keep searching for objects with

no references. This requires effort on
the part of the CPU so it degrades
performance.

 We can't easily predict when an object
will be deleted

Cleaning Up (Java)

 So we can't tell when a destructor would run – so
Java doesn't have them!!

 It does have the notion of a finalizer that gets
run when an object is garbage collected
 BUT there's no guarantee an object will ever

get garbage collected in Java...
 Garbage Collection != Destruction

Class-Level Data

Class-Level Data and Functionality
 Imagine we have a class ShopItem. Every

ShopItem has an individual core price to
which we need to add VAT

 Two issues here:

1. If the VAT rate changes, we need to find
every ShopItem object and run
SetVATRate(...) on it. We could end up
with different items having different VAT
rates when they shouldn't...

2. It is inefficient. Every time we create a
new ShopItem object, we allocate another
32 bits of memory just to store exactly the
same number!

public class ShopItem {
 private float price;
 private float VATRate = 0.175;

 public float GetSalesPrice() {
 return price*(1.0+VATRate);
 }

 public void SetVATRate(float rate) {
 VATRate=rate;
 }

}

 What we have is a piece of information that is class-level not object level

 Each individual object has the same value at all times

 We throw in the static keyword:

public class ShopItem {
 private float price;
 private static float VATRate;

}

Variable created only once
and has the lifetime of the
program, not the object

Class-Level Data and Functionality
 We now have one place to update

 More efficient memory usage

17.5

17.5

17.5

17.5

17.5

17.5

 Can also make methods static too

 A static method must be instance independent i.e. it can't rely on member
variables in any way

 Sometimes this is obviously needed. E.g

public class Whatever {
 public static void main(String[] args) {
 ...
 }
}

Must be able to run this
function without creating an
object of type Whatever
(which we would have to do in
the main()..!)

Why use other static functions?
 A static function is like a function in ML – it can depend only

on its arguments

 Easier to debug (not dependent on any state)

 Self documenting

 Allows us to group related methods in a Class, but not
require us to create an object to run them

 The compiler can produce more efficient code since no
specific object is involved

public class Math {
 public float sqrt(float x) {…}
 public double sin(float x) {…}
 public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
 public static float sqrt(float x) {…}
 public static float sin(float x) {…}
 public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

Vector2D Example

 We will create a class that represents a 2D vector

Vector2D

- mX: float
- mY : float

+ Vector2D(x:float, y:float)
+ GetX() : float
+ GetY() : float
+ Add(Vector2D v) : void

