Operating Systems
(Handout 1)

Course Aims

* This course aims to:

— give you a general understanding of how a
computer works,

— explain the structure and functions of an
operating system,

— illustrate key operating system aspects by
concrete example, and

— prepare you for future courses. . .
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Course Objectives

e At the end of the course you’ll be able to:
— describe the fetch-execute cycle of a computer

— understand the different types of information
which may be stored within a computer memory

— compare and contrast CPU scheduling algorithms

— explain the following: process, address space, file.
— distinguish paged and segmented virtual memory.

— discuss the relative merits of Unix and NT. . .

Course Qutline

* Part I: Computer Organization
— Computer Foundations
— Operation of a Simple Computer
— Input / Output
— MIPS Assembly Language
* Part ll: Operating System Functions
— Introduction to Operating Systems.
— Processes & Scheduling.
— Memory Management.
— |/O & Device Management.
— Filing Systems.
e Part lll: Case Studies
— Unix.
— Windows NT.
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Recommended Reading

» Structured Computer Organization (3rd Ed),
Tannenbaum, Prentice-Hall 1990.

 Computer Organization & Design (2rd Ed), Patterson
and Hennessy, Morgan Kaufmann 1998.

e Operating Systems, Bacon and Harris, Addison Wesley
2003

* Operating Systems Concepts (5th Ed.), Silberschatz,
Peterson and Galvin, Addison Wesley 1998.

* The Design and Implementation of the 4.3BSD UNIX
Operating System, Leffler, Addison Wesley 1989

* Windows Internals (4th Edition), Solomon and
Russinovich, Microsoft Press 2005

A Chronology of Early Computing

* (several BC): abacus used for counting

e 1614: logarithms discovered (John Napier)

e 1622: invention of the slide rule (Robert Bissaker)
* 1642: First mechanical digital calculator (Pascal)

* Charles Babbage (U. Cambridge) invents:
— 1812: “Difference Engine”
— 1833: “Analytical Engine”

e 1890: First electro-mechanical punched card data-
processing machine (Hollerith)

e 1905: Vacuum tube/triode invented (De Forest)
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The War Years...

& Berry)

— 30 tons, 1000 square feet, 140 kW,
— 18K vacuum tubes, 20x10-digit accumulators,

— 100KHz, circa 300 MPS.

— Used to calculate artillery firing tables.
— (1946) blinking lights for the media. . .

The Von Neumann Architecture

1935: the relay-based IBM 601 reaches 1 MPS.
1939: ABC - first electronic digital computer (Atanasoff

1941: Z3 - first programmable computer (Zuse)
Jan 1943: the Harvard Mark | (Aiken)
Dec 1943: Colossus built at ‘Station X’ — Bletchley Park
1945: ENIAC (Eckert & Mauchley, U. Penn):

But “programming” is via plug-board: tedious and slow

Memory

L

Control
Unit

M

Input

o] —
j—

* 1945: von Neumann drafts “EDVAC” report

Arithmetic
Logical Uni‘t/

7

p—— -

Accumulator

Ouitput

— design for a stored-program machine

— Eckert & Mauchley mistakenly unattributed

z
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Further Progress...

1947: “point contact” transistor invented
(Shockley, Bardeen & Brattain)

1949: EDSAC, the world’s first stored-program
computer (Wilkes & Wheeler)

— 3K vacuum tubes, 300 square feet, 12 kW,

— 500KHz, circa 650 IPS, 225 MPS.

— 1024 17-bit words of memory in mercury
ultrasonic delay lines — early DRAM ;-)

— 31 word “operating system” (!)
1954: TRADIC, first electronic computer
without vacuum tubes (Bell Labs)
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The Silicon Age

1954: first silicon (junction) transistor (TI)
1959: first integrated circuit (Kilby & Noyce, Tl)
1964: IBM System/360, based on ICs.

1971: Intel 4004, first micro-processor (Ted
Hoff):

— 2300 transistors, 60 KIPS.

1978: Intel 8086/8088 (used in IBM PC).
1980: first VLSI chip (> 100,000 transistors)

Today: ~800M transistors, 45nm, ~3 GHz.



Languages and Levels

ML/Java

reveld Bytecode

H -
Level4  C/C++ Source interpret

compile
Level 3 |—~ ASM Source
assemble Other Object
Level 2 |—~ Object File Files ("Libraries")
link
Level 1 Executable File execute
eve ("Machine Code")

* Computers programmable with variety of different languages.
— e.g. ML, java, C/C++, python, perl, FORTRAN, Pascal, . ..

* Can describe the operation of a computer at a number of
different levels; however all levels are functionally equivalent

* Levels relate via either (a) translation, or (b) interpretation.

Layered Virtual Machines

High-Level Language, e.g. ML Virtual Machine M5 (Language L5)

Compiled Language (e.g. C++) Virtual Machine M4 (Language L5)
Assembly Language Programs Virtual Machine M3 (Language L3)
Operating System Level Virtual Machine M2 (Language L2) Software

Computer Organization Level Virtual Machine M1 (Language L1) Hardware
Digital Logic Level “Actual” Machine MO (Language LO) \l,

* Consider a set of machines MO, M1, ... Mn, each built
on top of one another

— Machine Mi understands only machine language Li
— Levels 0, -1 covered in Digital Electronics, Physics
* This course focuses on levels 1 and 2 (and a little 3)

* NB: all levels useful; none “the truth”.




A (Simple) Modern Computer

Processor
Bus

Registel‘ File Adedress Data Control
(including PC)
Memory
C]{;}};E?l EX:?;?OH e.g. 1 GByte
- 2°30x 8=
J 8.589.934,592bits
Reset
Hard Disk
Framebuffer
Super I/O
Sound Card
>

A (Simple) Modern Computer

Processor (CPU): Memory: stores

programs & data

executes programs
prog Processor

Bus

Register File Address Data Control

(including PC)
Memory

C{}}]ﬁ?l Exe[cyzu_tlon ¢.o. 1 GByte
- mut 2°30x 8=
J 8.589,934,592bits
Reset Bus: connects
Hard Disk everything together

Devices: for input

and output Framebuffer

Super I/O

Sound Card
@




Registers and the Register File

ROO Ox5A RO8 OxXEAOQ02D1F
RoO1 0x102034 R0O9 0x1001D
RO2 | 0x2030ADCB R10 | OXFFFFFFFF
RO3 0x0 R11| 0Ox1020FC8
RO4 0x0 R12 0xFF0000
RO5 0x2405 R13 0x37B1CD
RO6 0x102038 R14 0Ox1
RO7 0x20 R15| 0x20000000

Computers all about operating on information:
— information arrives into memory from input devices
— memory is a large “byte array” which can hold anything we want

Computer conceptually takes values from memory, performs
whatever operations, and then stores results back

In practice, CPU operates on registers:

— aregister is an extremely fast piece of on-chip memory

— modern CPUs have between 8 and 128 registers, each 32/64 bits

— data values are loaded from memory into registers before operation
— result goes into register; eventually stored back to memory again.

Memory Hierarchy

CPU

Cache (SRAM)

Ereeuti i~ Main Memory
Hecution ata
Unit < » Cache

1GB
DRAM

Control Instruction L =
Unit )
| Cache 64K ROM

Address

Register File

Bus Interface Unit

Data

Control

Bus
Use cache between main memory & registers to hide “slow” DRAM

Cache made from faster SRAM: more expensive, and hence smaller.
— holds copy of subset of main memory.

Split of instruction and data at cache level:
— “Harvard” architecture.

Cache <-> CPU interface uses a custom bus.

Today have ~8MB cache, ~4GB RAM.



Static RAM (SRAM)

w0 T T
fead D abe

* Relatively fast (currently 5 - 20ns).
* Logically an array of (transparent) D-latches
* In reality, only cost ~6 transistors per bit.

SRAM Reality

e Data held in cross-coupled

verters. SRAM Cell (6T)

* One word line, two bit lines.

* Toread: word

— precharge both bit and bit, and
then strobe word :>c

— bit discharged if there was a 1 in
the cell;

— bit discharged if there was a 0. :I
* To write:

— precharge either bit (for “1”) or
bit (for “0”),
— strobe word.

— L4 ¢TI 1Ly




Dynamic RAM (DRAM)

Bit0 Bit 1 Bit N-2 Bit N-1

Wword 0 ——teur—pr—r—tpt—-p—"m————- - - -

Word 1

1y oy

Word 2

Tyl g

Iy

Sense Amplifiers & Latches |

Use a single transistor to store a bit.

Write: put value on bit lines, strobe word line.
Read: pre-charge, strobe word line, amplify, latch.
“Dynamic”: refresh periodically to restore charge.
Slower than SRAM: typically 50ns — 100ns.

DRAM Decoding
5
=
Addr -
"
O
B
A
— 10 17
| COLUMN LATCHES |
gy 1]
] COLUIViN MUX |

Two stage: row, then column.
Usually share address pins: RAS & CAS select decoder or mux.
FPM, EDO, SDRAM faster for same row reads.



The Fetch-Execute Cycle

Register File

Control Unit

o
Iiiél
A 2

* A special register called pPc holds a memory address
— onreset, initialized to 0.

Instruction fetched from memory address held in PC into instruction buffer (IB)

* Then:
1.
2. Control Unit determines what to do: decodes instruction
3. Execution Unit executes instruction
4. PC updated, and back to Step 1

* Continues pretty much forever...

The Execution Unit

| Register File |
HRA b
HRD mmmmmp|  Execution
HRA Unit > PC
Fn K\.

K

* The “calculator” part of the processor.
* Broken into parts (functional units), e.g.

Arithmetic Logic Unit (ALU).
Shifter/Rotator.

Multiplier.

Divider.

Memory Access Unit (MAU).
Branch Unit.

* Choice of functional unit determined by signals from control unit.



Arithmetic Logic Unit (ALU)

An N-bit ALU

Function ky
Code /

| Carry In

input a

cutput (d)

input b

Carry Out

Part of the execution unit.

Inputs from register file; output to register file.
Performs simple two-operand functions:
—a+b;a—b;aAND b; a OR b; etc

Typically perform all possible functions; use
function code to select (mux) output.

Number Representation

00002 | 04 01105 | 615 11004 C'i6
0001, 16 0111, 716 11015 Dig
00109 216 100045 816 11105 FEig
0011, 316 10015 916 11115 Fig
0100, 446 10109 Ae 100004 10414
01012 | 516 10115 | Big 100019 1116

n-bit register b,_;b,_, ... b,;b, can represent 2" different values.
Call b,_, the most significant bit (msb), b, the least significant bit (Isb).
Unsigned numbers: val=b,_,2"1+b, ,2"2+. .- +b ;21 + b 20
— e.g.1101,=23+22+20=8+4+1=13.
Represents values from 0 to 2"1 inclusive.
For large numbers, binary is unwieldy: use hexadecimal (base 16).
To convert, group bits into groups of 4, e.g.
— 1111101010, = 0011|1110|1010, = 3EA,.
Often use “Ox” prefix to denote hex, e.g. 0x107.

Can use dot to separate large numbers into 16-bit chunks, e.g.
— Ox3FF.FFFF



Signed Numbers

* What about sighed numbers? Two main options:
e Sign & magnitude:
— top (leftmost) bit flags if negative; remaining bits make value.
— e.g. byte 10011011, > -0011011, = -27.
— represents range —-(2"1 - 1) to +(2"1-1) ...
— ... and the bonus value -0 (!)
* 2’s complement:
— to get —-x from x, invert every bit and add 1.
— e.g. +27 = 00011011, = -27 = (11100100, + 1) = 11100101,.
— treat 1000. .. 000, as -2"1
— represents range -2"1 to +(2"1 - 1)
* Note:
— in both cases, top-bit means “negative”.
— both representations depend on n;

* In practice, all modern computers use 2’s complement...

Unsigned Arithmetic

* Unsigned addition (using 5-bit registers)
01110/m 11100 Wrong!

11110 (by 32=2°)

00101 5
100101

001100 12
* Carry bits C, (=C,,), C,,C,, ... C, (=C_ ;)
— usually refer to C, as C, the carry flag

— In addition, if Cis 1, we got the wrong answer

e Unsigned subtraction: if Cis 0, we “borrowed”

Wrong!
0110 .
Miﬂgo 30 00111 7 GG
700101 -7 +10110 -10
100011 3 011101 29



Signed Arithmetic

In signed arithmetic, C on its own is useless...
— Instead use overflow flag, V = C. ®C,_ ,

C,andC_, are
01110 different => V=1 1100 W
00101 5 1010 10

+00111 7 + 00111 7 SRUEEES

001100 @®10001 -15
...but answer
10000 Is correct @1100
01010 10110 -10
+11001 +10110 -10
100011 @o01100 12

— Negative flag N = C_, (i.e. msb) flips on overflow

Arithmetic and Logical Instructions
mm

and d«—a,b d = a & b; addd<—aqg, b d = a + b;

xor d—a b d = a A b; subd<«a b d =a - b;
orrd«—ab d=a | b; rshd«—ab d=Db - a;
bis d—a b d = a | b; shl d—ag b d = a << b;
bicd—ab d=2a & (~b); shrd«—agb d=2a >> b;

* Both d and a must be registers; b can be a register or, in most
machines, can also be a (small) constant

e Typically also have addc and subc, which handle carry or borrow
(for multi-precision arithmetic), e.g.
add do, a0, b0 // compute "lTow" part
addc d1, al, bl // compute "high" part
* May also get:
— Arithmetic shifts: asrand as1(?)
— Rotates: ror and rol



1-bit ALU Implementation

1-Bit ALU
Sub ol Fn

in

»1res

..........................................................................

8 possible functions:
1. aANDb,aAND D
2. aORb,aORb
3. a+b,a+bwithcarry
4. a-b,a-bwith borrow
To make n-bit ALU bit, connect together (use carry-lookahead on adders)

Conditional Execution

Seen C,N,V flags; now add Z (zero), logical NOR of all bits in output.
Can predicate execution based on (some combination) of flags, e.g.

subs d, a, b // compute d = a - b
beq procl // if equal, goto procl
br proc2 // otherwise goto proc?2

— Java equivalent approximately:

if (a==b) procl() else proc2();
On most computers, mainly limited to branches; but on ARM (and
IA64), everything conditional, e.g.

sub d, a, b // compute d =a - b
moveq d, #5 // if equal, d = 5;
movne d, #7 // otherwise d = 7;

— Javaequivalent:d = (a==b) ? 5 : 7;

“Silent” versions useful when don’t really want result, e.g. teq, cmp



Condition Codes

Used to compare
unsigned numbers
(recall C==0 means

we borrowed)

Used to compare
signed numbers
(note must check

both N and V)

SuoWeaning______|Fes

EQ, Z Equal, zero Z==

NE, NZ Not equal, non-zero Z==

Ml Negative N ==

PL Positive (incl. zero) N ==

CS, HS Carry, higher or same Ce==

CC, LO No carry, lower C==

HI Higher C==18&&7Z==
Lower or same C==0) ||| Z=
Overflow \ ==
No overflow V ==
Greater than or equal N ==
Greater than N==V&&7Z-==
Less than NI=V

LE Less than or equal NI=V||Z==

Loads and Stores

* Have variable sized values, e.g. bytes (8-bits), words (16-bits),
longwords (32-bits) and quadwords (64-bits).

* Load or store instructions usually have a suffix to determine the

size, e.g. ‘b’ for byte, ‘w’ for word,

III

for |

ongword.

* When storing > 1 byte, have two main options: big endian and little
endian; e.g. storing OXDEADBEEF into memory at address Ox4

Big Endian

00 | 01 ] 02

03 | Ox0000.0000

EF | BE| AD

DE | Ox0000.0004

\

Little Endian

03 02|01 |00

DE| AD| BE | EF

Big Endian

DE|AD | BE

EF

00 01 02 02 04 05 06

07

EF | BE|AD

DE

Little Endian

N
ol

* If read back a byte from address 0x4, get OxDE if big-endian, or OXEF
if little-endian.

— If you always load and store things of the same size, things are fine.

* Today have x86 little-endian; Sparc big-endian; Mips & ARM either.

* Annoying. .. and burns a considerable number of CPU cycles on a

daily basis. . .



Accessing Memory

To load/store values need the address in memory.

Most modern machines are byte addressed: consider memory a big
array of 2” bytes, where A is the number of address lines in the bus.

Lots of things considered “memory” via address decoder, e.g.

14/

A[0:13] -
Al4 >o
ROM /CS
AlS
——— RAM /CS
} UART /CS

Typically devices decode only a subset of low address lines, e.g.

oo i __oue o

1024 bytes 32-bit A[2:9]
RAM 16384 bytes  32-bit A[2:13]
UART 256 bytes 8-bit A[0:7]

Addressing Modes

An addressing mode tells the computer where the data for an
instruction is to come from.

Get a wide variety, e.g.

— Register: add rl, r2, r3
— Immediate: add rl, r2, #25
— PC Relative: beq 0x20

— Register Indirect: 1dr rl1, [r2]

— ” + Displacement: str rl, [r2, #8]

— Indexed: movl rl, (r2, r3)

— Absolute/Direct: mov1 rl, $0xF1EA0130

— Memory Indirect: add1 rl1, ($0xF1EA0130)

Most modern machines are load/store = only support first five:
— allow at most one memory ref per instruction

— (there are very good reasons for this)

Note that CPU generally doesn’t care what is being held within the
memory — up to programmer to interpret whether data is an
integer, a pixel or a few characters in a novel...



Representing Text

e Two main standards:

1. ASCII: 7-bit code holding (English) letters, numbers,
punctuation and a few other characters.

2. Unicode: 16-bit code supporting practically all international
alphabets and symbols.

e ASCII default on many operating systems, and on the early
Internet (e.g. e-mail).

* Unicode becoming more popular (especially UTF-8!)

* In both cases, represent in memory as either strings or
arrays: e.g. “Pub Time!” in ACSII:

N (here 2) bytes

. ,
String Array hold length,
followed by
20 | 62 | 75 | 50 | Ox351A.25E4 | 75 | 50 | 00 characters
Byte per character, 65 | 6D | 69 | 54 | Ox351A.25E8 | 69 | 54 | 20

terminated with 0 _|
XX | xxX [ 00 | 21 | Ox351A.25EC XX | 21 | 65 | 6D

} 5

Floating Point

* In many cases need very large or very small numbers
* Use idea of “scientific notation”, e.g. n = m x 10¢
— mis called the mantissa

— e s called the exponent.
e.g. C=3.01x 108 m/s.

* For computers, use binary i.e. n = m x 2¢, where m includes
a “binary point”.
 Both m and e can be positive or negative; typically
— sign of mantissa given by an additional sign bit, s
— exponent is stored in a biased (excess) format
= use n = (-1)’m x 2¢=°, where 0 <= m < 2, and b is the bias
* e.g. with a 4-bit mantissa and a 3-bit bias-3 exponent, you
can represent positive range [0.001, x 273, 1.111, x 24]
=[(1/8)(1/8), (15/8)(16)] = [1/64,30]



IEEE Floating Point

* To avoid redundancy, in practice modern computers use IEEE
floating point with normalised mantissam = 1.xx. . .Xx,

= n = (-1)5((1 + m) x 2¢7?)
Both single precision (32 bits) and double precision (64 bits)

31|30 23|22 0

S | Exponent (8) Mantissa (23)

Bias-1023 Bias-127

63|62 E2(51 0

S Exponent (11) Mantissa (52)

IEEE fp reserves e = 0 and e = max:

— 0 (N): both e and m zero.
— too; e = max, m zero.
— NaNs: € = max, m non-zero.

— denorms: e =0, m non-zero

Normal positive range [27126, ~2128] for single, or [2-1022, ~21024] for
double precision.

NB: still only 232/254 values — just spread out.

Data Structures

* Records / structures: each field stored as an offset from a
base address

* Variable size structures: explicitly store addresses (pointers)

inside structure, e.g.
datatype rec = node of int * int * rec
| Teaf of int;
val example = node(4, 5, node(6, 7, leaf(8)));

* Imagine example is stored at address 0x1000:

Address | Value Comment
0x0F30t 0xFFFF | Constructor tag for a leaf
UxOF34 | 8 Integer 8

“leaf” tag says

) :
we're done... 0xO0F3C | OxFFFE | Constructor tag for a node

0x0F40 | 6 Integer 6
0x0F44 | 7 Integer 7

magic “node” _
0x0F48 | 0x0F30 | Address of inner node

tag => 4 words

0x1000T~0xFFFE | Constructor tag for a node
”points" to 0x1004 4 |nteger 4
0x1008 | & Integer 5

2 —0x0F3C | Address of inner node

next node




Instruction Encoding

* An instruction comprises:

a. anopcode: specifies what to do.
b. zero or more operands: where to get values

* Old machines (and x86) use variable length encoding for

low code density; most other modern machines use fixed
length encoding for simplicity, e.g. ARM ALU instructions:

31 28 27 26 25 24 21 20 19 16 15 12 11

Cond 00 | Opcode S Ra Rd Operand 2

and rl3, ri13, #255
1110 00 1 0000 O 1101 1101 000011111111

bic r03, ro3, ro02
1110 00 O 1110 O 0011 0011 000000000010

cmp rol, ro02
1110 00 O 1010 1 0001 0000 000000000010

Fetch-Execute Cycle Revisited

DU A wWN

Control Unit

Execution Unit

Register File
g
a
4
&
9]
Q
&
| & |

CU fetches & decodes instruction and generates (a) control signals and (b) operand
information.

In EU, control signals select functional unit (“instruction class”) and operation.

If ALU, then read 1-2 registers, perform op, and (probably) write back result.

If BU, test condition and (maybe) add value to PC.

If MAU, generate address (“addressing mode”) and use bus to read/write value.
Repeat ad infinitum



A (Simple) Modern Computer

Devices: for input

and output

Processor

Register File
(including PC)

Bus
Address Data Control

Memory

Control | | Execution

Unit Unit
A

J

Reset

e.g. 1 GByte
2"30x 8=
8.589.934,592bits

Hard Disk

Framebuffer

Super I/O

Sound Card

Input/Output Devices

* Devices connected to processor via a bus (e.g. PCI)

* Includes a wide range:

— Mouse,

— Keyboard,

— Graphics Card,

— Sound card,

— Floppy drive,

— Hard-Disk,

— CD-Rom,
Network card,
Printer,
Modem
etc.

e Often two or more stages involved (e.g. USB, IDE, SCSI,

RS-232, Centronics, etc.)



UARTSs

———1 D [0 x] |———— Serial Output
A— T [0 : 7] 4—————— Serial Input
Baud
T/ m—| read/write Rate
/s mm=———())| chip select Generator

UART = Universal Asynchronous Receiver/Transmitter:
— stores 1 or more bytes internally

— converts parallel to serial

— outputs according to RS-232

Various baud rates (e.g. 1,200 — 115,200)
Slow and simple. . . and very useful.
Make up “serial ports” on PC

Max throughput 14.4KBytes; variants up to 56K (for
modems).

Hard Disks

actuator

Whirling bits of
(magnetized) metal. . . track
Bit like a double-sided
record player: but
rotates 3,600-12,000
times a minute ;-)

spindle

/

read-write
head

‘-‘“‘ "’4'-.
Tt

"* |“""‘.
TEERRS

To read/write data:

— move arms to cylinder > -
— wait for sector cylinder

— activate head

Today capacities are
around ~500 GBytes
(=500 x 230 bytes)




Graphics Cards

Framebuffer
vom CPU Dor
7 : VRAM/ Clock L
: SS%%% hsyne !
N : — T VSYRC | 1o Monitor
:’ | Ch——> Red
. 1 RAMDAC -}——>Green
v | —> Blue
' P(.”I ) Graphics
4 Gj’ Processor

* Essentially some RAM (framebuffer) and some digital-to-analogue
circuitry (RAMDAC) — latter only required for CRTs

* (Today usually also have powerful GPU for 3D)

* Framebuffer holds 2-D array of pixels: picture elements.

* Various resolutions (640x480, 1280x1024, etc) and color depths:
8-bit (LUT), 16-bit (RGB=555), 24-bit (RGB=888), 32-bit (RGBA=888)

* Memory requirement = x x y x depth

* e.g.1280x1024 @ 32bpp needs 5,120KB for screen

* => full-screen 50Hz video requires 250 MBytes/s (or 2Gbit/s!)

Buses

ADDRESS

v

Processor | pir4 "

Memory

vy

CONTROL

y

Orher Devices

* Bus = a collection of shared communication wires:

v’ low cost
v versatile / extensible

X potential bottle-neck

* Typically comprises address lines, data lines and control lines
— and of course power/ground

* Operates in a master-slave manner, e.g.

master decides to e.g. read some data

master puts address onto bus and asserts ‘read’

slave reads address from bus and retrieves data

slave puts data onto bus

master reads data from bus

uewNeE



Bus Hierarchy

Processor

Memory Bus (400Mhz)

EBus

0
G—p] ©
Processor I —
3
512MByte
DIMM
512MByte
DIMM
Brid
Framebuffer| [ Bridge |
— I5A Bus (8Mhz)
‘ PCI Bus (33/66Mhz)

)
o)1
ks ]
-~
M
m

SCSI

Controller
Sound
Card

* In practice, have lots of different buses with different
characteristics e.g. data width, max #devices, max length.

* Most buses are synchronous (share clock signal).

Synchronous Buses

cyele 3

CLOCK _//_\_/_\_/_\_/

cyele 1

i cycle 2

A[0:31] X

Memory Address To

Read X

D[0:31]

X Data X

/MREQ

\

—

/RERD

\

—

Figure shows a read transaction which requires three bus cycles

1.

3.

deasserts control lines.
* If device not fast enough, can insert wait states

* Faster clock/longer bus can give bus skew

CPU puts addr onto address lines and, after settle, asserts control lines.

2. Device (e.g. memory) fetches data from address.
Device puts data on data lines, CPU latches value and then finally



Asynchronous Buses

A[0:31] X Memory Address To Read X
/MREQ —\ S
/READ —\ Ve
/SYN

\ /

D[0:31] X pata X

/ACK \_/_

* Asynchronous buses have no shared clock; instead use handshaking, e.g.

CPU puts address onto address lines and, after settle, asserts control lines
next, CPU asserts /SYN to say everything ready

once memory notices /SYN, it fetches data from address and puts it onto bus
memory then asserts /ACK to say data is ready

CPU latches data, then deasserts /SYN

finally, Memory deasserts /ACK

* More handshaking if multiplex address & data lines

Interrupts

* Bus reads and writes are transaction based: CPU requests
something and waits until it happens.

* Bute.g. reading a block of data from a hard-disk takes ~2ms, which
might be over 10,000,000 clock cycles!

* Interrupts provide a way to decouple CPU requests from device

responses.
1. CPU uses bus to make a request (e.g. writes some special values to
addresses decoded by some device).
2. Device goes off to get info.
3.  Meanwhile CPU continues doing other stuff.
4. When device finally has information, raises an interrupt.
5. CPU uses bus to read info from device.
* When interrupt occurs, CPU vectors to handler, then resumes using

special instruction, e.g.

0x0020: .
0x184c: add r0, r0, #8 0x0024: <do stuff>
0x1850: sub rl, 5, r6 ¥ |- -

0x0038: i

rti

0x1854: 1dr r0 [rO] 1
r \ l

0x1858: and rl, rl, rO




Interrupts (2)

* Interrupt lines (~4-8) are part of the bus.
e Oftenonly 1 or 2 pins on chip = need to encode.
* e.g. ISA & x86:

Processor
&) IR0
—_ S -
Intel — INTA —» < IR3
o\ IR4
Clone A Tre
«— D[0:7]— © |f4—— TR6
D e 1R7

Device asserts IRX

PIC asserts INT

When CPU can interrupt, strobes INTA
PIC sends interrupt number on D[0: 7]

CPU uses number to index into a table in memory which
holds the addresses of handlers for each interrupt.

CPU saves registers and jumps to handler

uhwh e

o

Direct Memory Access (DMA)

* Interrupts are good, but even better is a device which
can read and write processor memory directly.
e A generic DMA “command” might include
— source address
— source increment / decrement / do nothing
— sink address
— sink increment / decrement / do nothing
— transfer size
* Get one interrupt at end of data transfer

* DMA channels may be provided by devices themselves:
— e.g. a disk controller
— pass disk address, memory address and size
— give instruction to read or write

* Also get “stand-alone” programmable DMA controllers.



Computer Organization: Summary

e Computers made up of four main parts:

1. Processor (including register file, control unit and execution
unit — with ALU, memory access unit, branch unit, etc),

2. Memory (caches, RAM, ROM),
3. Devices (disks, graphics cards, etc.), and
4. Buses (interrupts, DMA).
* Information represented in all sorts of formats:
— signed & unsigned integers,
— strings,
— floating point,
— data structures,
— instructions.

e Can (hopefully) understand all of these at some level, but
gets pretty complex...

* Next up: bare bones programming with MIPS assembly...

What is MIPS?

e A Reduced Instruction Set Computer (RISC)
microprocessor:
— Developed at Stanford in the 1980s [Hennessy]
— Designed to be fast and simple
— Originally 32-bit; today also get 64-bit versions

— Primarily used in embedded systems (e.g. routers,
TiVo’s, PSPs...)

— First was R2000 (1985); later R3000, R4000, ...
* Also used by big-iron SGI machines (R1x000)



MIPS Instructions

* MIPS has 3 instruction formats:

— R-type - register operands

— I-type - immediate operands

— J-type - jump operands
* Allinstructions are 1 word long (32 bits)
* Examples of R-type instructions:

add $8, $1, $2 # $8 <= $1 + $2

sub $12, %6, $3 # $12 <= $6 - $3

and $1, $2, $3 # %1 <= $2 & $3

or $1, $2, $3 # $1 <= $2 | $3
* Register 0 (S0) always contains zero

add $8, $0, $0 #$8 <=0

add $8, $1, $0 # $8 <= %1

R-Type Instructions

* These take three register operands (S0 .. $31)

e R-type instructions have six fixed-width fields:

31 26 25 21 20 16 15 11 10 6 5 0

opcode Rs Rt Rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

opcode basic operation of the instruction

Rs the first register source operand
Rt the second register source operand
Rd: the register destination operand; gets result of the operation

shamt shift amount (0 if not shift instruction)

funct This field selects the specific variant of the operation and is
sometimes called the function code; e.g. for opcode 0O,
if (funct == 32) => add ; if (funct == 34) => sub



I-Type Instructions

31 26 25 21 20 16 15 0

opcode Rs Rt immediate value
6 bits 5 bits 5 bits 16 bits
| = Immediate

— Value is encoded in instruction & available directly
— MIPS allows 16-bit values (only 12-bits on ARM)

Useful for loading constants, e.g:
— 11 $7, 12 # load constant 12 into reg?7

This is a big win in practice since >50% of
arithmetic instructions involve constants!

MIPS supports several immediate mode
instructions: opcode determines which one...

Immediate Addressing on MIPS

or, and, xor and add instructions have immediate

forms which take an “j” suffix, e.g:

ori $8, $0, 0x123 # puts 0x00000123 1into r8
ori $9, $0, -6 # puts 0x0000fffa into r9
addi $10, $0, 0x123 # puts 0x00000123 into rl0
addi $11, $0, -6 # puts Oxfffffffa into rill
# (note sign extension...)

lui instruction loads upper 16 bits with a constant

and sets the least-significant 16 bits to zero
Tui $8, Oxabcd # puts Oxabcd0000 into r8
ori $8, $0, Ox123 # sets just low 16 bits

# result: r8 = Oxabcd0123
li pseudo-instruction (see later) generates lui/ori

or ori code sequence as needed...



J-Type Instruction

e Last instruction format: Jump-type (J-Type)

31 26 25 0

opcode target address (in #instructions)

6 bits 26 bits
* Only used by unconditional jumps, e.g.
j dest_addr # jump to (target<<2)

e Cannot directly jump more than 22°
instructions away (see later...)

* Branches use |-type, not J-type, since must

specify 2 registers to compare, e.g.
beq $1, $2, dest # goto dest iff $1==%2

Big Picture

X=a-b+c- d,' High level Language
sub $10, S4, S5 \
Assembl
sub S11, S6, S7 Languagg

add $12, 510, $11

0O 4 5 10 0 34
0O 6 7 11 0 34
0O 10 11 12 0 32
000000 00100 00101 01010 00000 100010 Machine Code

000000 00110 00111 01011 00000 100010
000000 01010 01011 01100 0O0O00 100000

Assumes that a, b, ¢, d are in $4, S5, S6, S7 somehow




MIPS Register Names

* Registers are used for specific purposes, by convention
* For example, registers 4, 5, 6 and 7 are used as parameters or

arguments for subroutines (see later)

* Can be specified as $4, S5, $6, S7 or as $a0, Sal, $a2 and $a3
* Other examples:

$ze
fat
$vO
$t0
$s0
$t8
$kO
$ap
$sp
$fp
$ra

ro $0

$1
, $v1 $2, $3
Y W4 $8...%15
...$s7 $16...9%23
, $t9 $24, $25
, $k1 $26, $27

$28

$29

$30

$31

zero

assembler temporary
expression eval & result
temporary registers
saved temporaries
temporary

kernel temporaries
global pointer

stack pointer

frame pointer

return address

Our first program: Hello World!

main: 11 $v0, 4
la $a0, str #

.text #
.globl main

#

syscall #
1i $v0, 10 #
syscall # exit
.data #

str:

begin code section

system call for print string
lToad address of string to print
print the string

system call for exit

begin data section
.asciiz “Hello world!\n”

# NUL terminated string, as in C

* Comments (after “#”) to aid readability
* Assembly language 5-20x line count of high level languages

* (And empirical wisdom is that development time strongly related to
number of lines of code...)



Assembler Directives

* On previous slide saw various things that weren’t assembly code

instructions: labels a

nd directives

* These are here to assist assembler to do its job ...
* ... but do not necessarily produce results in memory

*  Examples:

main:

str:

.text

.data
.ascii str
.asciiz str
.word nl,n2
.half nl1,n2
.byte nl1,n2
.space n
.align m

tell assembler where program starts
user-friendly[er] way to refer to a memory address

tells assembler that following is part of code area

following is part of data area

insert ASCII string into next few bytes of memory

...as above, but add null byte at end

reserve space for words and store values n1, n2 etc. in them
reserve space for halfwords and store values n1, n2 in them
reserve space for bytes and store values nl1, n2 in them
reserve space for n bytes

align the next datum on 2" byte boundary, e.g. .align 2
aligns on word boundary

Pseudo Instructions

e Assemblers can a

Iso support other things that look like

assembly instructions... but aren’t!

— These are called

pseudo-instructions and are there to

make life easier for the programmer
— Can be built from other actual instructions

* Some examples are:
Pseudo Instruction Translated to
move $1,9%$2 add $1, $0, $2

1i $1, 678
Ta $8, 6($1)
Ta $8, Tabel

b Tabel
beq $8, 66,

ori $1, $0, 678
addi $8, $1, 6

Tui $1, Tlabel[31:16]
ori $8, $1, label[15:0]

bgez $0, $0, Tabel

Tabel ori $1, $0, 66
beq $1, $8, Tlabel



Accessing Memory (Loads & Stores)

Can load bytes, half-words, or words

Tb $a0,c($s1) # Toad byte; $a0 = Mem[$s1+2]
Th $a0,c($s1l) # load half-word [16 bits]

Tw $a0,c($s1l) # load word [32 bits]

— gets data from memory and puts into a register
— cis a [small] constant; can omit if zero

Same for stores using sb, sh, and sw

Tw, sw etc are I-type instructions:

— destination register (Sa0), source register (Ss1), and
16-bit immediate value (constant ¢)

However assembler also allows Tw/sw (and 1a)

to be pseudo-instructions e.g.

Tw $a0, addr ---> 1lui $1, addr[31:16]
Tw $a0, addr[15:0]($1)

Control Flow Instructions

Assembly language has very few control structures...

* Branch instructions: if <cond> then goto <label>

beqz $s0, Tlabel if $s0==0 goto Tlabel
bnez $s0, Tabel if $s0!=0 goto Tabel
bge $s0, $s1, Tabel if $s0>=$s1 goto Tabel
ble $s0, $s1, Tlabel if $s0<=$s1 goto label
b1t $s0, $s1, Tabel if $s0<$s1l goto Tlabel
beq $s0, $s1, Tabel if $s0==%$s1 goto label
bgez $s0, $s1, Tabel if $s0>=0 goto Tlabel

HoHHH HHH

* Jump instructions: (unconditional goto):

j Tlabel # goto instruction at “label:”
jr $a0 # goto instruction at Memory[$a0]

* We can build while-loops, for-loops, repeat-until loops, and
if-then-else constructs from these...



if-then-else

if (5t0==$t1) then /*blockA */ else /* blockB */

beq $t0, $tl, blockA # if equal goto A
j blockB # ... else goto B

blockA:
... instructions of blockA ...
j exit

blockB:
... instructions of blockB ...

exit:
... hext part of program ...

repeat-until

repeat ... until $t0 > Stl

... initialize 5t0, e.g. to O ...
Toop:
... instructions of loop ...
add $t0, $t0, 1 # increment $tO
ble $t0, $tl, loop # if <= $tl, loop

e Other loop structures (for-loops, while-loops,
etc) can be constructed similarly



Jump Instructions

* Recall J-Type instructions have 6-bit opcode
and 26-bit target address

— in #instructions (words), so effectively 222 bits

* Assembler converts very distant conditional
branches into inverse-branch and jump, e.g.

beq $2, $3, very_far_label
/* next instruction */

e ...isconverted to:

bne $2, $3, L1; # continue
j very_far_label; # branch far

L]l:

/*next instruction */

Indirect Jumps

* Sometimes we need to jump (or branch) more than 228
bytes — can use indirect jump via register

jr $tl

# transfer control to
# memory address in $tl

e (Can also use to build a jump table

e e.g.suppose we want to branch to different locations
depending on the value held in Sa0

jtab:
main:
11:

12:
13:

.data
.word 11, 12, 13, 14, 15, 16
.text

... Instructions setting Sa0, etc ...

1w $t7, jtab($al) # load adddress
jr $t7 # jump

... instructions ...
... Instructions ...
... instructions ... (and so on...)



The Spim Simulator

« “1/,th the performance at none of the cost”

e Simulates a MIPS-based machine with some

basic virtual hardware (console)
* |nstallation

1. From the Patterson & Hennesey textbook CD

2. From the internet
http://www.cs.wisc.edu/~larus/spim.html

* Versions for Windows, Mac and Linux

register state
(incl status reg)

.text section:
(program)

.data section
and the stack

diagnostic
messages

reset “machine”, load asm
programs, run them, etc

& PCSpim
File Simulator  Window Help
EIRRIL
- 00400000  EPC - 00000000 Cause = 00000000  BadVAddr= 00000000 A
Status = 3000£f£10 HI = 00000000 Lo = 0000o0oa =
General Registers b |
(r0) = 0000000D0 R& (t0) = 00000000 R16 (s0) = 00000000 R24 (t8) = 00000000
(at) = 00000D0OD R9 (tl) = 000OODOOO R17 (sl1) = 00000DOOO R25 (t9) = 00000000
(v0) = 00000000 RIO (t2) = 00000000 R18 (s2) = 00000000 R26 (k0O) = 00000000
(v1) = 0000D0OOD RI11 (t3) = 0000ODOOO R19 (s3) = 00000000 R27 (k1) = 00OOOOOO 3
lu 54, 0($29) ; 174: 1w a0 0(SsSp) b (= al
[ ] addiun 55, 529, 4 ; 175: addiu Sal Ssp 4 # argv —
[0x00400008] 0x24260004 addiu $6, 55, 4 > 176: addiu %a2 Sal 4 # envp
[0x0040000e] 0z00041080 =11 52, 54, 2 ; 177: 511 5v0 Sa0 2
[0x00400010] 0z00c23021 addu 36, 36, $2 3 178: addu a2 a2 3v0
[Dx00400014] 002100009  jal 0x00400024 [main] ; 179: jal main
[0x00400018] 0x00000000  nop ; 180: nop v
DATA A
[0x100000007] ... [0x10040000] 0x00000000 B
STACE
[0z7fffeffe] 0x00000000
EERNEL DATA a
Copyright 1997 by Morgan Kaufmann Publishers, Inc. )
#5322 the file README for a full copyright notice.
Loaded: C:“Program Files\PCSpim“exceptions.s
emory and registers cleared and the simulator reinitialized.
C:~Docunments and Settings~JoshuaMy Documents~CDA 3101~sumltoll.asm successfully loaded 2
v
Far Help, press F1 PC=0x00400000 EPC=0x00000000 Cause=0x00000000 | | A




Using SPIM

Combines an assembler, a simulator and BIOS

Assembly language program prepared in your
favourite way as a text file

Label your first instruction as main, e.g.
main: add S5,S53,54 #comment

Read program into SPIM which will assemble it and
may indicate assembly errors (1 at a time!)

Execute your program (e.g. hit F5)

Results output to window which simulates console
(or by inspection of registers)

Let’s look at an example...

SPIM System Calls

As you’ll have noticed, SPIM allows us to use
special code sequences, e.g.

1i $a0, 10 # Toad argument $a0=10

11 $v0, 1 # call code to print integer
syscall # print $%$a0

— will print out “10” on the console
The syscall instruction does various things
depending on the value of Sv0

— this is very similar to how things work in a modern
PC or Mac BIQOS, albeit somewhat simpler

(We’ll see why these are called “system calls”
later on in the course...)



SPIM System Call Codes

Procedure code $vO argument

print int 1 Sa0 contains number
print float 2 $f12 contains number
print double 3 Sf12 contains number
print string 4 Sa0 address of string
read int 5 res returned in SvO
read float 6 res returned in SfO
read double / res returned in $f0
read string 8 Sa0 buffer, Sal length
exit program 10 /* none */

Example: Print numbers 1 to 10

.data

nhewln: .asciiz “\n”

.text

.globl main
main:

11 $s0, 1

1i $s1, 10
Toop:

move $a0, $sO

11 $vO, 1
syscall
1i $vO, 4

Ta $a0, newln

syscall

addi $s0, $s0, 1
ble $s0, $s1, loop

1i $vO0, 10
syscall

H H H*

$s0 = loop counter
$s1 = upper bound of Toop
print Toop counter $s0

syscall for print string
lToad address of string

increase counter by 1
if ($s0<=$%$s1) goto Toop
exit



Example: Increase array elems by 5

.text

.globl main
main:

Ta  $t0, Aaddr # $t0 = pointer to array A

w  $t1, len # $tl = length (of array A)

s1T  $t1, $t1, 2 # $tl = 4*length

add $t1, $t1, $tO0 # $tl = address(A)+4*T1ength
Toop:

Tw  $t2, 0($t0) # $t2 = A[1]

addi $t2, $t2, 5 # $t2 = $t2 + 5

sw  $t2, 0($t0) # A[i] = $t2

addi $t0, $t0, 4 #1 =i+l

bne $t0, $tl, Toop # if $t0<$tl goto Toop

# . exit here ...

.data
Aaddr: .word 0,2,1,4,5 # array with 5 elements
len: .word 5

Procedures

* Long assembly programs get very unwieldy!

* Procedures or subroutines (similar to methods
or functions) allow us to structure programs

* Makes use of a new J-type instruction, jal:
jal addr # jump-and-1ink

— stores (current address + 4) into register $ra

— jumps to address addr
jr $ra
— we’ve seen this before — an indirect jump

— after a jal, this will return back to the main code



Example Using Procedures

.data
newline:.asciiz “\n”
Ltext
print_eol:
T1i $vO, 4
Ta $a0, newline
syscall
jr $ra
print_int:
T1i $vO, 1
syscall
jr $ra
main:
Ti $s0, 1
T1i $s1, 10
Toop: move $a0, $sO

jal print_int

jal print_eol

addi $s0, $s0, 1
ble $s0, $s1, Toop

HHHHHHHH R

#
#
#
#
#
#
#

procedure to print "\n"
Toad system call code
Toad string to print
perform system call
return

prints integer in $a0
Toad system call code
perform system call
return

$s0 =
$s1 =
print

lToop counter
upper bound
Toop counter

print "\n“
increment loop counter
continue unless $s0>$sl

Non-leaf Procedures

* Procedures are great, but what if have
procedures invoking procedures?

procA: ... instructions to do stuff procA does ...

11 $a0, 25 # prep to call procB
jal procB # $ra = next address
jr $ra # return to caller
rocB: ... instructions to do stuff procB does ...
jr $ra # return to caller
_ INFINITE LOOP!
main:
11 $a0, 10 # prep to call procA
jal procA # $ra = next address

... rest of program ..



The Stack

Problem was that there’s only one Sra!

— generally need to worry about other regs too
We can solve this by saving the contents of
registers in memory before doing procedure

— Restore values from memory before return
The stack is a way of organizing data in memory
which is ideally suited for this purpose

— Has so-called last-in-first-out (LIFO) semantics

— push items onto the stack, pop items back off
Think of a pile of paper on a desk

— “pushing” an item is adding a piece of paper

— “popping” is removing it

— size of pile grows and shrinks over time

The Stack in Practice

Register Ssp holds address of top of stack
— In SPIM this is initialized to Ox7FFF.EFFC

A “push” stores data, and decrements Ssp
A “pop” reads back data, and increments Ssp

# $a0 holds OxFEE 8($sp) P00 AZﬁzzs
ﬁubpa‘;i'.?,, %23, 4 l Y& XI )N 0x00000001

sw $a0, 0($sp) T ] 0x20003CFC

1W ggg’ g%gsp) :;Eizg; 0x00000FEE @
add $sp, $sp, 4

-12($sp)

Lower
Addresses

We use the stack for parameter passing, storing return
addresses, and saving and restoring other registers




Fibonacci... in assembly!

fib(0)=0
fib(1)=1
fib(n) = fib(n-1) + fib(n-2)

011,23,5,8,13,21,..

1i $a0, 10 # call fib(10)
jal fib #
move $s0, $vO # $s0 = fib(10)

fib is a recursive procedure with one argument $a0
need to store argument $a0, temporary register SsO for
intermediate results, and return address Sra

Fibonacci: core procedure

fib: sub $sp, $sp,12 save registers on stack
sw $a0, 0($sp) save $a0 = n
sw $s0, 4($sp) save $s0
sw $ra, 8($sp) save return address $ra
bgt $a0,1, gen if n>1 then goto generic case
move $vO0, $a0 output = input if n=0 or n=1
j rreg goto restore registers
gen: sub $a0,%a0,1 param = n-1
jal fib compute fib(n-1)

save fib(n-1)

set param to n-2

and make recursive call

$v0 = fib(n-2)+fib(n-1)
restore registers from stack

move $s0, $v0

sub $a0,%a0,1

jal fib

add $v0, $vO, $sO
rreg: Tw $a0, 0($sp)

Tw  $s0, 4($sp)

Tw  $ra, 8($sp)

add $sp, $sp, 12

jr $ra

FoH o H OH O H OH OH MK HHHHHH

decrease the stack size



Optional Assembly Ticks

Tick 0: download SPIM (some version) and
assemble + run the hello world program

Tick 1: write an assembly program which takes
an array of 10 values and swaps the values (so
e.g. A[0]:= A[9], A[1]:= A[8], ... A[9]:= A[O])

Tick 2 (*hard*): write an optimized version of
the Fibonacci code presented here. You may

wish do custom stack frame management for
the base cases, and investigate tail-recursion.

— see what Fibonacci number you can compute in 5

minutes with the original and optimized versions N

Optional Assembly Ticks

Tick 3: write an assembly program which
reads in any 10 values from the keyboard, and
prints them out lowest to highest

There will be a prize for the shortest correct
answer to Tick 3:
— make sure you deal with e.g. duplicate values

— “shortest” means total # of MIPS instructions, so
be wary of pseudo-instructions

Email submissions to me by midnight 21t Nov

— use filename <CRSID>-tick3.asm
— use a text/plain mime attachment




