Concurrent and Distributed Systems Introduction

» 8 lectures on concurrency control in centralisgsteans
- interaction of components in main memory
- interactions involving main memory and persistntage
(concurrency control and crashes)
» 8 lectures on distributed systems
» Part 1A Operating Systems concepts are needed

Let’s look at the total system picture first

How do distributed systems differ fundamentallynfroentralised systems?

Introduction 1

Fundamental properties difstributed systems

Concurrent execution of components on differemtes
Independent failure modes of nodes and connextion
Network delay between nodes

No global time — each node has its own clock

NP

Implications: to be studied in lectures 9 — 16
1 components do not all fail together andnemtions may also fail

2, 3 - can't know why there’s no reply — node/comfagure and/or
node/comms. congestion

4 - can't use locally generated timestamps fdeong events from
different nodes in a DS

1, 3 - inconsistent views of state/data when itsrihuted
1 - can't wait for quiescence to resolve inconsis&Esic

What are the fundamental problems for a single node?

Introduction 2

single node characteristics cf. distributed systems

1. Concurrent execution of componeimmsa single node

2. Failure modesall components crash together, Higc failure
modes are independent

3. Network delay not relevant — but consideeractions with disc
(persistent store)

4. Single clock — event ordering not a problem

Introduction 3

single node characteristics: concurrent execution

1. Concurrent execution of componemms single node

When a program is executing in main memory all congnts fail together
on a crash, e.g. power failure.

Some old systems, e.g. original UNIX, assumeiprocessor operation.
Concurrent execution of components is achievedngprocessors

by interrupt-driven scheduling of components. Pratrae scheduling
creates most potential flexibility and most diffikces.

Multiprocessors are now the norm.

Multi-core instruction sets are being examinedeitad and found
problematic (sequential consistency).

Introduction 4

single node characteristics: failure modes

2 Failure modesall components crash together, bigc failure modes
are independent

3 Network delay not relevant — but consideeractions with disc
(persistent store)

In lectures 5-8 we consider programs that openageeosistent
data on disc. We defirteansactionscomposite operations
in the presence of concurrent execution and crashes

Introduction 5

single node characteristics: time and event orderin

4. Single clock — event orderirigot a problem™?

In distributed systems we can assume that the tamgs
generated by a given node and appended to the gesssaends are
ordered sequentially.

We could previously assume sequential orderingstfuctions on a
single computer, including multiprocessors. Buttintdre computers
now reorder instructions in complex ways. Sequéntasistency is
proving problematic.

We shall concentrate on classical concurrency obotmcepts. Multi-
core will be covered in depth in later years.

Introduction 6

single node as DS component (for lectures 9-16)

Support for distributed software components is lspfware layer
(middleware) above potentially heterogeneous OS

Components of homogeneous interface
distributed software __ |, — above heterogeneous OS

middlewar e layer .
Y < OSinterface

oS commes.
functions | Subsystem

networ k

We shall first consider a single node’s softwaracttire and dynamic execution

Introduction 7

single node: software components

» Software structure
e Support for persistent storage
« Dynamic concurrent execution — see next slide

program/ program/
process process

e OSinterface

oS
functions

device commes.
handlers subsystem

1 network
disc 110
controller devices

storage
subsyste

Introduction 8

single node — concurrent execution

program/ program/
process process

L L < OSinterface
v 0S v M
'T‘ functions 'T‘
V device € E"comms.v

handleis subsystem

v networ k
disc I/0

*ontroller devices|
storage
subsyste

* noteshared datareas in OS
* also, programs may share data
* also, “threads” in a concurrent program may shata d

Introduction 9

concurrent execution and process scheduling

program/ program/
process process
A A _
3 1 « OSinterface
0s v
functions $
device | | d commsf

RECALL from part 1A OS:

* preemptive scheduling

* interrupt-driven execution — devices, timers, systalls

» OS processes have static priority, page faultse di.... > system call handling
» OS process priority higher than application pregagority

PROBLEM: process preemption while reading/writilhgued data

Introduction 10

Some OS components apobcesses 1

—— 1y system call

user program

<«— programming language-
: language defined 1/0 interface
‘runtime/library

OSinterface (language independent)

{ 1/0 contro

Iread or write

buffer area for a device type * synchronous /O

(-
data buffers]

Aa _ user process calls into system
lgperatlons (becomes a system process)
or access to « asynchronous /0

QOO0

data buffers
;l a system process takes the call

Introduction

“ read or write user process picks up result later

. device
A handler

intierrupt Servicg
routine (ISR)

3%

hardwar e interface

11

Some OS components apobcesses 2

user prog

ram

: language
:runtime/library

buffers must be accessed undertual exclusion

——y system call

condition synchronisatiois also needed:

process gets mutex access to buffer (for how,atee) |

§I/O contro

buffer area for a device fiype

1 operations
data buffers =7 for access to

I:l I:l I:l |:| T data buffers

process finds buffer full on write or empty on read
process must BLOCK until space or data available
processnust not block while holding mutex access
(else we haveleadlock)

note priority of device handlers > priority of usedls

interrupts are independent of process execution

: device

 if mutex access to buffer is not enforced, top-dow

4handler

access could bereemptedy interrupt-driven, bottom-up

intérrupt servics

access, resulting imeadlockor incorrect data

A1

Introduction

routine (ISR) * same issue in hardware-software synchronisation

— see next slide:

12

Some OS components apacesses 3

* interrupts are independent of process execution
» care is needed over priority of ISR and interrdpten code
procf’ss A » wait andsignal must be atomic operations
v
wait (event)

use of processes and events

implementation of processes and events
" process manager

finds ev_en_t has not occurrag event manager process dafa
... then is interrupted before™. event data.}-+*"* Fblock |()
event data is updated]‘wait () == .
- —T>AL...- »| unblogk ()
opsignal (). 4. "

mterr_upt ““““ schedule

service | ..~ _ _ B

routine”” finds A is not waiting

(ISR) So sets a wake-up-waiting
(event has occurred) and exits

A proceeds to await event and block
We have deadlock!

Introduction 13

Processes and threads

a) Sequential programming languaged) Concurrent programming language, no OS suppeér(threads only)

address space address space address space address space
one progranh one progranh one program one program
one process | one process many processes | many processeq
runtime runtime
system system Tuserrthreads T Tusethhreads T
3 y runtime system runtime system
kernel threads
kernel threads
OS kernel
OS kernel
address space address space
one program one program

(n

¢) Concurrent programming languagg | many processes | many processg
OS kernel threads for user threads
1usethhreads T TusethhreadsT

runtime system runtime syster

=)

A A 4

i kernel threads

OS kernel

Introduction 14

Runtime system - user threads

b) Concurrent programming language, no OS suppeer(threads only)

address space
one program| """,
many processes Tt .. address space of a process
Tusethhreads T
runtime system A B N

T user threads

runtime system — user thread implementatign
user thread operations

H H H utlD = create_thread ()

oo O kill_thread (utl D)

per thread stack Wa|t_thread (Utl D)

and control block Signal_thread (utlD)
schedule_thread ()

many variations:

coroutines— application programmer ' kernel threads 1 one per process
does scheduling

processes — runtime system scheduleg 0OS kernel

Introduction

see later - may not
wait andsignal
a thread, but a mutex

15

user threads only

1. the application can't respond to OS events bycivig user-threads

2. can't use for real-time applications — delay ibaumded

3. the whole process is blocked if any thread mak®sstem call and

blocks

4. applications can’t exploit a multiprocessor. Th® knows, and can

schedule, only one kernel thread

5. BUT handling shared data in the concurrent prmogsasimple.
There is no user-thread preemption i.e. thread©AaleY switched

on calls to the runtime system.

After an interrupt, control returns to the pointadtich the interrupt

occurred.

Introduction

16

Runtime system - kernel threads

c) Concurrent programming language, OS can haverakikernel threads per process

addr% q)ace ------------------------------------- addr% $ace Of a prOC%
one program

many processes Al B N
Tusethhreads T
runtime system user threads
T T I T runtime system — user thread implementation

bl user/kernel thread operations

......... tID = create_thread ()
.......... OO &3 kill_thread (tI D)
......... per thread stack wait_thread (tID)
.......... and control block signal_thread (tID)

a

several kernel threads | per process

tID = create thread () callsOS create thread ()

kill_thread (tI D) calls OS _kill_thread (t D) OS kernel

wait_thread (tID) may call OS block thread (tI D)
signal_thread (tID) may call OS_unblock_thread (tI D)

The OS schedules threads

Introduction 17

kernel threads and user threads

1. thread scheduling is via the OS scheduling algori

2. applications can respond to OS events by swilctiireads, but only
if OS scheduling is preemptive and priority-badedal-time
response is therefore OS-dependent

3. user threads can make blocking system calls withiocking the
whole process — other threads can run

4. applications can exploit a multiprocessor
managing shared writeable data becomes complex

6. there are different thread packages — needn’temactly one
kernel thread per user thread.

modern applications may create large numbers ettty
kernel may allow a maximum number of threads pecess

o1

Introduction 18

