Classical concurrency control: topic overview 1
In these lectures we consider shared writeableidatein memory

Controlling access by concurrent processes to divarigeable data has been studied
as part of OS desigsince the earliest OSs (1960s onwards).

Concurrent programming languages brought the saoidgms
to application programming
For example, web servers have to handle large nisabeoncurrent requests.

Our starting point:
critical regions: regions of code in parallel preses
that read or write shared writeable data
implementing critical regions
- without blocking processes (they “spin-lock” or ‘dyuwait”)
- blocking processes that must wait,smmaphores

Classical shared memory concurrency control 1

Classical, shared memory, concurrency controlctoperview 2

We then look at how semaphores can be used:

1. asingle semaphore used to achieve mutual egalusi

2. asingle semaphore used to achieve conditiorhsgnisation
3. asingle semaphore used for N-resource allocation

Then, how semaphores are implemented.
This may be within the OS, or at application lewelhe runtime system
of a concurrent programming language

Programming with semaphores, using several semaphomlchieve both
mutual exclusion and condition synchronisation
1. single producer, single consumer processes cooatug via a shared buffer
2. many producers and consumers
3. readers and writers: multiple readers, singléawgoncurrency control

Classical shared memory concurrency control 2

Classical, shared memory, concurrency controlctoperview 3

* Discussion of semaphore programmingroblems and difficulties

« Concurrency control constructs in programming |laggs
Can concurrent programming languages make condyregramming easier than
semaphore programming?
Can the problems be solved, ameliorated (improysesh)y
or alleviated (made easier to bear)?
We look at a number of different approaches in maogning languages.

« Concurrentomposite operatioria main memory, introducing the notion that a singl|
meaningful, high-level, operation may involve se@eeparate low-level operations.

* Lock-free programming is it possible/easier/more-efficient to prograntheut locks?

Classical shared memory concurrency control 3

Critical regions

Processes A and B contain critical regions (CRs)
(code that reads or writes this shared data)

CR shared CR CRs are needed only if the data is writeable
data A CR is associated with some specific shared data

v v

How can CRs be implemented? — first attempt:

f\ B
entry protocol: entry protocol:

test flag test flag
If busy then test again If busy then test again
(called “busy-wait”) |f|ag: /busy | (called “busy-wait")
If then set tdusy If then set tdusy

shared

enter CR data enter CR

CR CR

exit protocol: exit protocol:

set flag to set flag to

l

Classical shared memory concurrency control 4

Indivisible test-and-set

The entry protocol is correct only if test and @kflag are atomic/indivisible — HOW?

» forbid interrupts? — NO — this would only work omaiprocessor, and even then would be
inappropriate for general use.

* machine instruction? - YES
e program only — no hardware exclusion - ?

CISC machines had many read-memory, test resaie-sb-memory types of instruction
RISC (load/store) architectures may only use alsingemory access per instruction
read-and-cleamwill work:
flag=0 //shared data is busy
flag=1 //shared data is free (initial value)

entry protocol:
read-and-clear, register flag

/I if value in register is 0, shared data was aesyetry
/I if value in register is 1, shared data was &ed you claimed it
/I can also be used for condition synchronisatisee-later

Multicore machines have atomic instructions e.g. k8&K instruction prefix

Classical shared memory concurrency control 5

Mutual exclusion without hardware support

This was a hot topic in the 1970s and 80s.

Examples for N-process mutual exclusion are:
Eisenberg M. A. and McGuire M. R.,
Further comments on Dijkstra’s concurrent programgnaontrol problem
CACM 15(11), 1972

Lamport L

A new solution to Dijkstra’s concurrent programmimgblem
CACM, 17(8), 1974

(his N-process bakery algorithm)

For uniprocessors and multiprocessors these algwsitmpose large overhead.
In practice, OSs built mutual exclusion on atomstiactions.

With multi-core instruction reordering it is notgwen that such programs are correct.

Classical shared memory concurrency control 6

Dijkstra THE 1968

The entry protocols above involve busy-waitingriret flag is busy), wasting CPU time
It is better to block a waiting process

Define a new type of variable — semaphore
Operations for the type are:

wait (aSem)
if aSem > 0 then aSem = aSem — 1 b
else suspend the executing process waiting on aSer.

signal (aSem)
if there are no processes waiting on aSem
then aSem = aSem + 1
else free one waiting process — continues aftemitst instruction

Implementation: an integer and a queue

Classical shared memory concurrency control 7

Mutual exclusion using a semaphore

concurrent processeserialisation of critical regions

aSem A B C
HE
@ wait (aSem)
[0]]-g wait [aSem)
CR

[0]J-B,c B iblocked 5it [asem)

signal|{(aSem
m J () C sblocked

c CR
EE—' signal (aSem)
CR
1] signal |[(aSem)
v v v

Classical shared memory concurrency control 8

Two-process synchronisation
wait before signal reafbefore wait

aSem A B A B
[0]]~ o],
mAwat (aSem)

HE

A blocked “wake-up waiting

signal (pSem)

wait| (aSem)

: > sighal |(@aSem)
[0~

Classical shared memory concurrency control

N-resource allocation using a semaphore

Suppose there are N instances of a resource.

Control its allocation using a semaphozeSeninitialised to N.

Each time a process executest (resSemjhe semaphore’s value is decremented.
When the value is 0, after Maits, all subsequent processes execuiiag (resSem)
are queued on it until freed by a current usehefresource executirggnal (resSem).

Classical shared memory concurrency control

10

Implementation of semaphores - 1

address space of a process

A
!

signal (aSem)

B
!

wait (aSem)

user threads

shared
data

protected by
aSem

N
!

wait (aSem)

d5 o

[R

per thread stack
and control block

implementation ofvait andsignal on semaphores

runtime system — user thread implementation

$/vait aSem)

asSem

[0]f+B N

Tsignal (aSem)

ﬂagaSe

wait (aSem)may callOS_block_thread (tID)

signal (aSem)may callOS_unblock_thread (tID)

Classical shared memory concurrency control

11

Implementation of semaphores -2

For user-threads only (OS sees a single-threadexs) the runtime system does all

semaphore and user thread management

When user threads are mapped to kernel threadsandsignal must themselves be

atomic operations.This is clearly the case for a multiprocessor, alsd for
a uniprocessor with preemptive scheduling

Associate a flag with each semaphore, and usecam@ainstruction such agad-and-clear
The flag must be claimed beforevait or signal can be executed for that semaphore.

This also applies to kernel threads executing t8ea@d using OS- managed semaphores

for mutual exclusion and condition synchronisation.

The need for concurrency control first came fromd@Sign. We now have concurrent

programming languages and OSs support multi-threpdszksses.

Classical shared memory concurrency control

12

Semaphore programming

We now develop some concurrent programs that usegrdoer of semaphores for
mutual exclusiorandcondition synchronisation.

1. One producer, one consumer: Two processes comatarthrough an N-slot cyclic buffer.
One process inserts, the other removes, recorfiledfsize.
Condition synchronisation is needed for when thigeous full and empty.

2. We now haveny number of producer and consumer processgasnunicating
via the buffer. We now need to ensure mutually éstgke access to the buffer.

3. Readers and writers: We note that processestihatead shared data can read simultaneously
whereas a process that writes must have exclussesa to the data.
We develop a solution that gives priority to writ@ver readers,
on the assumption that writers are keeping the ulat®@-date.

Classical shared memory concurrency control 13

N-slot cyclic buffer, single producer and consumgr

producer consumer
produce an item . — P ® is there an item in the buffer?
Q is there an empty slot in the buff remove item
Insert item consume item
S L I

inptr

@ = potential delay

@© = potential delay

two semaphores are needed
- one for the producer to block ongit), when the buffer is full
- one for the consumer to block omgjt), when the buffer is empty
- note:blocked processes must be unblocked via signals on semaphores

Classical shared memory concurrency control 14

N-slot cyclic buffer, single producer and consuma2r

programming details are not shown — we focus@mdition synchronisatid®

producer consumer
. outptr
Cgro\?v:(i:te(:;alct:irsr; i P > @ wait (items)

insert item IRRSEFTTIIIIT LT S e e
. . BRI SRS signal (spaces
signal (items) reian

consume item
inptr

@© = potential delay

@ = potential delay

“wake-up” synchronising signals

two semaphores are needed:

spaces = N// initially N spaces in buffer, - for the produde® block on, when the buffer is full.
items =0 // initially no items in buffer - for the consumer € block on, when the buffer is empty.

programming noteinsert itemmust incremeninptr to point to the next empty slot
remove itenmust incremenoutptr to point to the next item (full slot)
wheninptr = outptr the buffer is either full or empty. You may thenmef@lso keep
aninteger countof the number of items in the buffaount = 0(empty)count = N(full).

Classical shared memory concurrency control 15

N-slot cyclic buffer, many producers and consumers

a producer a consumer
. outptr
C;)rodupe an item =" .»® wait (items)
o wa!: (spacgsz. ® wait (guard)-
insévr?ite(g:Jar LT s T remove item
P e e, signal (guard)=+--'
signal (guard)====r __...- e Y signal Egpace)s)
signal (items)-="""" Inptr i
consume item
® G = potential delay ® © = potential delay
@rrrrnnnnnns S

“wake-up” synchronising signals — condition synchgation

three semaphores are used:
spaces = N// initially N spaces in buffer - for the producef® block on when the buffer is full
items =0 // initially no items in buffer - for the consumefed block on when the buffer is empty

guard = 1 // initially the buffer is free - to ensu® mutually exclusiveaccess to the buffer
programming notes — as in previous slide

variation: — allow one producer and one consumerct®ss the buffer in parallel — left as an exercise

Classical shared memory concurrency control 16

Multiple readers, single writer concurrency contbl

Many readers may read simultaneously, a writer magé exclusive access
Assume writers have priority — to keep the dataasddte.

counts:
ar = active readers
rr = reading readers (active readers who have pdece® read)
aw = active writers
ww = writing writers (active writers who have prodee to write)
but they must wait to write one-at-a-time

Semaphores are needed:
for mutual exclusione@
1. to test and update the above counts under @sclus
2. to ensure writers write under exclusion
for condition synchronisatiorQ
1. readers must wait for aw = 0 and must be woleafier blocking
2. writers must wait for rr = 0 and must be wokenratter blocking

Classical shared memory concurrency control

17

Multiple readers, single writer concurrency contl

o become active reade ® become active writer
(ar = ar+1) (aw = aw+1)
if no active writers if no active readers
then proceed to read then proceed to write
(rr =rr+1) (ww = ww+1)
else defer to writers elsewait for no readers
() (wait for aw = 0) _A(rr=0)
~, ’/
*\\\~ //
= . ,,/' wait for turn to write
READ [™ WRITE
s release claim
/, \\\
ar=ar-1 o S ®aw=aw-1
rr=rr-1 el Www = ww-1
ifrr=0 " if aw.= 0
then signal waiting writers then signal waiting readerg
exit exit

@® mutual exclusion -to access shared counts — _____

‘ >0 condition synchronisation
- for write access

Classical shared memory concurrency control

18

Multiple readers, single writer concurrency contral

Complete the program as an exercise. Solutionsdextbooks.

Note that asignal unblocks only one blocked process. The valuesetdunts indicate
how many signals to send. The last writing writerstrunblock all blocked readers.
The last reading reader must unblock all waitingess.

Take care not tavait while holding the semaphore that protects the sheoents

- see next slide.
That would cause deadlock; no other process coddaccess the counts, so could not
make the awaited condition true and wake any wagpirocesses. The deadlocked system
would exhibit queues of processes waiting on thieoua semaphores.

Classical shared memory concurrency control 19

‘become active reade ®wait (CountGuard-sem) T the critical regions that

(ar=ar+l) control access to the counts
if no active writers are implemented using
then proceed to read a semaphor€ountGuard-sem
(rr=rr+l) initialised to 1
else defer to writers
O (wait for aw = 0) signal (CountGuard-sem)

® ait (CountGuard-sem) within a critical region the counts
ar=ar+l may indicate that the process must block
if aw=0thenrr=rr+1 until some condition becomes true
elsewait (R-senf® deadlock! blocking while holding a semaphore
signal (CountGuard-sem)

So the programmer has to program to avoid deadlock.

A process that must delay must exit the regionreeftocking on the condition.
In this casewait (R-sem)must be executed afteignal (CountGuard-sem)

Classical shared memory concurrency control 20

Semaphores - discussion

Semaphores are a widely used mechanism underlgimgucrency control in operating systems
and concurrent programs

Difficult for programmers to use correctiyprograms are complex
- can forget tovait and corrupt data
- can forget tasignal and cause deadlock

Unconditional commitment to block
- but can fork new threads for concurrent activity.

Unbounded delay on wait

Priority inversion and convoy effedsee 30 for further discussion)
- low priority process with lock can hold up highgiority processes (note scheduling)
- a long lock-hold can hold up a lot of potentiadlyort ones.

Classical shared memory concurrency control 21

Concurrency control — support for the programmer, 1

We now follow some developments for concurrencyt@mn shared memory.

1. Programming language support for concurrency céntro

Concurrent programming languages provide higheglleonstructs, implemented

using semaphores. We follow the historical evohutio

passive objectritical regions and conditional critical regions
monitors (Modula 1, Modula 3, Mesa,)
(mutexes and condition variables (pthreads packagtejavered)
synchronized methods and wait/notify (Java)

active objectsguarded commands, Ada select/accept and rendezvous

it

Edsger Dijkstra

Niklaus Wirth Tony Hoare

Classical shared memory concurrency control 22

Concurrent programming paradigms and models

1.shared datis a passive object accessed via concurrency-datroperations

' .
concurrent process operationl

call operation (arguments)/'

shared data

concurrfnt process opdrationN /

N . rd ;
call operation (argumentg)/v signal () shared data objgct
encapsulated with

operations

single threaded execution

® © = potential delay of the operations is enforced

we use a programming-language-independent, diagedit representation
shared data is encapsulated with operations assiye object, called by concurrent processes
operations that read and/or write execute unugunal exclusiong
(implemented by a semaphore) are indicated by
Condition synchronisation is provided in differevalys and will be indicated &

Classical shared memory concurrency control 23

Critical regions

Critical regions were proposed as a means of hitiagcomplexity of semaphore programming.

var v: shared <data-structure> \\ compiler assigns a semaphore to proteatitially 1
region v do begin end \\ compiler inserts semaphore operations

But this is onlymutual exclusion.

Conditional critical regions (CCRs) add conditiggmshronisation

Classical shared memory concurrency control 24

........ and conditional critical regions

Condition synchronisation was added to CCRs
by including (note that this NOT implemented by a semaphore
await< some condition on shared data >

If the condition is true, the process continues.
If the condition is false the implementation ensutet the region is unlocked
and the process executiagaitis blocked until the condition becomes true.
When it is selected to continue in the region thplementation again acquires the lock for it.

Note that the programmer must leave the data sireiah a consistent state

before executingwait, as well as before exiting the region.

CCRs are difficult to implement.
Programmers may invent any condition on the shdatal.
All conditions have to be tested when any proceasgds the region.

We now introduce an illustration of CCRs and thessgfuient evolution of concurrency control

Classical shared memory concurrency control 25

lllustration of CCRs

1. shared data is a passive object accessed wiarcency-controlled operations

conditional critical region implementation

l .
concurrent process operationl

call operation (argumemsj/' -----

shared data

\ 7/

concurrfnt process operationN

call operation (arguments)/v

® © = potential delay

- shared data is encapsulated with operations assiye object, called by concurrent processes
- operations execute under mutual exclusion

- conditional critical regions (CCRaye illustrated above.
- note thaprocesses do not have to signal explicitiylike semaphores)

Classical shared memory concurrency control 26

lllustration of monitors

a monitor

|
concurrent process operationl
shared data

call operation (argumentsj/' \

ConcurIen'process operationN
....... re
call operation (arguments signal ()
1‘\

[
® © = potential delay —> “wake-up” synchronising signals

- operations execute undewuitual exclusiorfsemaphore implementatiof®
- in monitors,condition synchronisatiois provided, bywait andsignal operations on

condition variablesnamed by programmers ergpt-full, not-empty, free-to-read
Note that conditional variables are not implemer@gedemaphoresiait andsignal have different semantics:
- processes must test the data and decide whethended to block until a condition becomes true
- a process thataits on a condition variabkdways blocks, first releasing the monitor lock

(the implementation manages this)

- signal has no effect if there are no processes blockatienondition variable being signalled
- aftersignalthe monitor lock must be re-acquired for an unbéatkrocess after the signalling

process has left the region (the implementationagas this)

27

Classical shared memory concurrency control

Passive object example: monitors and conditionawées -1

producer process operation: insert (item)

produce item)/' if buffer is full then data: cyclic, N-slot buffer
call insert (item W%(notfull)

insért item outptr
signal (notempty) —
/
consumer process ‘ operatil)\://emove (item)

call remove (item)—

if buffef gmpty then
waigfhotempty)

remove ite
signal (notfull)

® © = potential delay —> “wake-up” synchronising signals

. inptr
consume ité

!

monitor operations are executed under exclusion

condition variablesr(otfull, notempty are defined for synchronisation,

operations on them aveait andsignal
data is tested in the monitor beforeait operation, semantics ofait: process is always queued
semantics o$ignal: if there is no blocked process — no effect
if there is a queue, wake up ONE process
note: only one process can ever be active insiderator (mutual exclusion property)
aftersignal, should it be the signaller or the signalled pssée(implementation decision)

28

Classical shared memory concurrency control

Passive object example: monitors and conditiorawdes - 2

count = 0 \\initialise count to zero items in buffer (maximumN)
operation: insert (item)

if buffer is full then | Nsert (item) _ . . .
wait (notfull) if count = N thenwait (notfull) \\if count < N process continues without delay
I insert item

increment inptr to point to next empty slot in buffe
count = count + 1
signal (notempty)

insert item 1
signal (n'oternpty)

operation:(remoye (item)

if bufferlempty remove (item)
then.wait if count = 0 thenwait (notempty)\\ if count > 0 process continues without delay
(nofémpty) remove item ' ' '
. increment outptr to point to next item in buffer
remove item count = count - 1

signar (notful) signal (notfull)

Classical shared memory concurrency control 29

Java synchronised methods

Synchromised methods of an object execute under mutual exclusion with respect to
all synchronised methods of an object.

concurrent process

shared data
call operation (argumentsj/' e o

concurrfnt process operatjonN /

call operation (argumen

NOtIfYAII()
® © = potential delay

- condition synchronisatiois similar to the pthreads package
- wait blocks the process/thread and releases the exclasithe object
- notify: the implementation frees an arbitrary proceske tare!
- notifyAll: the implementation frees all blocked processés.first to be scheduled
may resume its execution (under exclusion) but metstt thevait condition.
The implementation must manage reclaiming the exatuto achieve retest,
i.e. via the PC of the resuming processes.
Note that processes could resume and block repgagéed. on a multiprocessor.

Classical shared memory concurrency control

Java example, buffer for a single integer, BacahHarris section 12.2.4, p369
public classBuffer {

private intvalue = 0;

private boolearfull = false;

public synchronized voigut (int a)
throws InterruptedExceptior{
while (full)
wait ();
value = a:
full = true;
notifyAll();
}
public synchronized inget ()
throwsInterruptedException{
int result
while ('full)
wait();
result = value;
full = false;
notifyAll();
return result;
}
}

Classical shred memory concurrency control

31

Concurrent programming paradigms and models - 2

1. shared data is attive objecmanaged by a process

concurrent process operationl shared managing
] data process
call operation (argumentsy—_, | guardl
......... | —

opefationN

concurrent process

guardN

call operation (argumentsj———
\

- shared data is encapsulated with operations actwe object, called by concurrent processes
- the managing process performs condition testingd,.a
- .. only accepts calls to operations with guar@é &valuate to true
- mutual exclusion and condition synchronisationearsured by the managing process
- note thasynchronisation is at the granularity of whole @pens(note thapath expressions
also have this feature)
- which process (caller or manager)? executes ttepaed operation is implementation-dependent

Classical shared memory concurrency control 32

Active object example: Ada select/accept

I . .
operation: insert (item)

producer process _ managing
produce item guard: buffer not full| data: cyclic, N-slot buffer process
call insert (itemj— T, _ _
insert item outptr select (list)
— accept call

I. -
consumer process operation: remove (item)__{—=

call remove (item\ Inptr

consume item _
1 remove item

guard: buffer not empty

- managing processelecs from operations whose guard evaluates to truthéaselect list)

- andacceps a call from the select list

- a “rendezvous” occurs between the managing prauedshe calling process

- one of them (not defined, implementation-specié@aries out the call and return

- note that the operation programming is simplifietause the active managing process carries out
bothmutual exclusiorandcondition synchronisation

Classical shared memory concurrency control 33

Recall problems with semaphores (18) — solved?

Difficult for programmers to use correctyprograms are complex
waiting and signalling have been made easier ®ptlogrammer than with semaphore programming.

Unconditional commitment to block
- as before - can sometimes tisek for parallel operation
- pthreads offersest lockas well asvait - but there can still be race conditions betweemthe

Unbounded delay on wait
- pthreads offers time-limited waits — for mutual exszbn, not for condition synchronisation

Priority inversion (these points also apply to semaphore implememntsi

gueues of blocked processes need not be FCFS

suppose process/thread priority can be knowneantiplementation of semaphores etc.
implementations can re-order the queues of blogkedesses according to priority
raise the priority of the lock-holder to the higheriority waiting process

Convoy effect- a long lock-hold can hold up a lot of potentialyort ones.
- try to program with fine-grained locking (compotenrather than whole structures)

Library calls- a universal problem! Static analysis of code ekt under mutual exclusion
becomes impossible when these operations makesexeuse of library calls.
(motivation for Java+Kilim — see later)

Classical shared memory concurrency control 34

Concurrency control — support for the programmer, 2
1. See slides 22-34

2. Concurrent composite operations in main memory
We started from ensuring exclusive access to desitegn of shared data.
In general, programmers need to create operatiatsrivolve related
operations on multiple data items.
e.g. we saw semaphore programs where several sereaphere needed:
- producers/consumers involved multiple buffer slots
- readers/writers protected the resource and vamnaager counts.

3. We then introduce briefly an alternative apygtoto achieving concurrency control:
lock-free programming.

Classical shared memory concurrency control 35

Composite operations in main memory - 1

We have studied how to make one operation on sttedatomic in the presence of
concurrency and crashes.
Now suppose a meaningful operation comprises skesach operations:
e.g. transfer: subtract a value from one data @athadd the same value to another.
e.g. test some integer counts to decide whethecgowrite some shared data;
proceed to write if there are no existing readensrters

A\ 4

invoke_operation (arg “
r /

A\

A 4

Classical shared memory concurrency control 36

Composite operations in main memory - 2 - example

The sequence below may work correctly over a lagrgpp then unfortunate timing
may cause deadlock. We illustrate this using sera@sh- easily generalisable to
higher level constructs (that are probably impletedmusing semaphores).

process P process Q

| = |

wait (semA}——"_| A wait (semB)

| |
wait (sem Bj/ ‘B/ wait (semA)

v

v

At this point we haveleadlock Process P holdsemAand is blocked, queued eemB
Process Q holdsemBand is blocked, queued semA
Neither process can proceed to use the resourdesgmral the respective semaphores.
A cycle of processes exists, where each holdseswurce and is blocked waiting for
another, held by another process in the cycle.

Deadlock:systems that allocate resources dynamically aresuto deadlock. _
We later study the policies and conditions necgsaad sufficient for deadlock to exist.

Classical shared memory concurrency control 37

Composite operations in main memer{ — solutions?

AN

invoke_operation (arg

. /

>
>

A\

Concurrency controwhy not lock all data — do all operations — unlock?
But contention may be rare, and “locking all” maypimse overhead and slow response (e.g. Python)

Crashes?in main memory everything is lost on a crash — rabfam! unless any externally
visible effects have occurred. These could be dutplchanges to persistent state.

We’'ll consider persistent store later. Assume thaput generated by concurrent
composite operations should be deferred until ffexation completes successfully.

Atomicity: we first solved how to make a single operatioranrobject atomic/indivisible.
DEFINITION: acomposite operation is atomifceither all of its component operations

complete successfully, or no operation has anycefie. all data values are unaffected by the
composite operation and have the values they hiadebi¢ started and failed.

Note that it must be ensured that no concurrerdga®can see any intermediate state of the data.

Classical shared memory concurrency control 38

Concurrency control — support for the programmer, 3
1. Programming language support, see slides 22-34

2. Composite operations, see slides 35 — 39
3. Lock-free programming

Concurrent programs are difficult to develop cotlsegarticularly for large-scale systems.
Problems such as priority inversion, deadlock amzoying have been highlighted.

Lock-free programming became established as andsasea from the late 1990s
We’'ll introduce it this year and develop it in ngxar’s courses.
We'll use asetimplemented as aon-blocking linked lisas an example, from Tim Harris’s
paper:
“A Pragmatic Implementation of Non-Blocking Linkédsts”
DISC 2001, pp. 300-314, LNCS 2180, Springer 2001

Classical shared memory concurrency control 39

Lock-free programming - 1

Example: a set of integers represented as a dorkedl list

set operations:find (int) -> bool
insert (int) -> bool
delete (int) -> bool

(] F—lo] F—to| F—{1]]

head tail
key %
*next
node.key contains integer value key
node.next contains pointer to successor node

list operationsread (node.key) -> int
write (node.key, int)

CAS (node.key, old-int, new-int) -> bodiCompare and Swap”
CASatomically compares the contents of addresse.keywith theold-int value
and, if they match, writes theew-intvalue intonode.key

CASreturns a boolean to indicate success/failure.

Classical shared memory concurrency control 40

Lock-free programming - 2

Example: a set of integers represented as a dorkedl list
set operationsfind (int) -> bool

find (20) -> false

o] F—po| F—{1] |

head tail

exercise:
write a program to traverse a list, _
comparing the integer key in each node with se&sgh= 20

Classical shared memory concurrency control 41

Lock-free programming 3

Insertion is straightforward. First, the list iaversed until the correct position is found.
Then a new cell is created, and inserted atomiceliggCAS (compare and swap)

] (

(H]F—lo] F—{sd F—{1]
20|”]

Bl gy 3G

Note that if theCASfails, this means that the list has been updatedwoently by other
thread(s) and the traversal must start again tbthie correct place to insert.
See next slide for more detail.

Classical shared memory concurrency control 42

Lock-free programming 4

boolean = CAS (address, old-value, new-value)

Traverse the list to find where to insert 20, angvat: currentNode nextNode

o[F—{sd 5
20]7]

insertNode

CreateinsertNodewith .next pointing to the node with key 30
insertNode.next = * nextNode

done = CAS (currentNode.next, insertNode.next, *@msNode)

If a concurrent insert has been done these wilbeatqual andonewill be returned false
Restart the traversal .

Consider the correctness of concuriesertandfind.

Classical shared memory concurrency control

43

Lock-free programming 5

CompareCASwith the similar “spin lock” approach for claimingseamaphore (locking a mutex).

boolean = CAS (address-in-memory, old-value, newdea)

e.g. claimed : boolean = false
claimed = CAS (flag, 1, 0) with flag = 0 (busy/claimed)
flag = 1 (free/unclaimed)
If the flag indicates the resource is free, atottycset it to busy and return true,
otherwise return false, in which case, repeatiA& until it succeeds

Recall slide 5, with a simpler atomic compare andsRISC instruction :
read-and-clear, register flag
if register = Orepeatread-and-cleainnstruction
(spin-lock or busy-wait)
if register = 1(flag was 1, now = 0) continue into critical region

Here, theead-and-clears repeated until it succeeds.

How would you program this ordered list using sehwaps? Lock the whole list?

Classical shared memory concurrency control

44

Lock-free programming 6

Correct deletion is more difficult, consider:

/\(

(H[TF—ho|F—{sdF—{1]

CAS (address, old, nevepuld be used to changede.nextin the head to point to 30,
after checking the old value points to 10 (so tiveeee no concurrent inserts between H and 10)
But concurrent threads could have inserted valeésden 10 and 30, after 30 was selected
for the new pointer from H.
Those inserts would be lost:

(v [304%“]

lost update

Classical shared memory concurrency control 45

Lock-free programming 7

Correct deletion:

(ad L
139 LT]

NP
[H 0%

atomicallymark node for deletionX)
The node islobgically deleted and this can be detected by concurrent threads
that must cooperate to avoid concurrent insertdeistions at this point
A marked node can still be traversed.

W= SET G0

) A \
The node is physically deletet

The algorithms are given in*C- like pseudo-code in the paper, as is a proof aokectness

Classical shared memory concurrency control 46

Lock-free programming 8

Exercise: _ S
Consider concurrent executions of any combinatadrignd, insert and delete.

Selected further reading:

Keir Fraser,
Practical Lock Freedom, 2004.
PhD thesis (UK-DD winner), UCAM-CL-TR-579

Keir Fraser and Tim Harris

Concurrent programming without locks
ACM Transactions on Computer Systems (TOCS) 2514%:196, May 2007

Classical shared memory concurrency control

a7

