
1

Inter-process communication (IPC)
• We have studied IPC via shared data in main memory.
• Processes in separate address spaces also need to communicate.
• Consider system architecture – both shared memory and cross-address-space IPC is needed
• Recall that the OS runs in every process address space:

user thread user thread

shared
data

plus
shared memory IPC
between user threads

of a process

shared memory IPC
In OS

cross-address-space IPC
e.g. pipes, message passing

OS

user
space

user
space

an address space
of a process

an address space
of a process

plus
shared memory IPC
between user threads

of a process

Cross address-space IPC

2

Concurrent programming paradigms – overview

IPC via shared data – processes share an address space – we have covered:
1. shared data is a passive object accessed via concurrency-controlled operations:

conditional critical regions, monitors, pthreads, Java
2. active objects (shared data has a managing process/thread)

Ada select/accept and rendezvous
3. lock-free programming

We now consider: Cross-address-space IPC
Recall UNIX pipes – covered in Part 1A case study
Message passing – asynchronous – supported by all modern OS

Programming language examples:
Tuple spaces (TS)
Erlang – message passing between isolated processes in shared memory
Kilim – Java extension for shared memory message passing

Message passing – synchronous e.g. occam

Consider which of these might be used for distributed programming.

Cross address-space IPC

3

UNIX pipes outline - revision

A UNIX pipe is a synchronised, inter-process byte-stream
A process attempting to readbytes from an empty pipe is blocked.
There is also an implementation-specific notion of a “full” pipe

- a process is blocked on attempting to write to a full pipe.
(recall – a pipe is implemented as an in-memory buffer in the file buffer-cache.
The UNIX designers attempted to unify file, device and inter-process I/O).

To set up a pipe a process makes a pipesystem call and is returned two file descriptors
in its open file table. It then creates, using fork two children who inherit all the parent’s

open files, including the pipe’s two descriptors.

Typically, one child process uses one descriptor to write bytes into the pipe
and the other child process uses the other descriptor to readbytes from the pipe.
Hence: pipes can only be used between processes with a common ancestor.

Later schemes used “named pipes” to avoid this restriction.
UNIX originated in the late 1960s, and IPC came to be seen as a major deficiency.
Later UNIX systems also offered inter-process message-passing, a more general scheme.

Cross address-space IPC

4

Asynchronous message passing - 1

A B

address space of a process

OS implementation of message passing

process A’s
conceptual

message queue
(actually in shared

data area,
“waiting messages”)

waitMess () may callOS_block_thread (tID)
sendMess () may callOS_unblock_thread (tID)

waiting
messages

waitMess (ptr)sendMess (ptr)

implementation of waitMessand sendMess

waitMess ()

sendMess ()

address space of a process

. = potential delay

waitMess ()
before

sendMess ()
avoids buffering

Cross address-space IPC

5

Asynchronous message passing -2

Note no delay on sendMessin asynchronous message passing (OS buffers if no-one waiting)

Note cross-address-space IPC implemented by shared memory IPC in OS

Details of message header and body are system and language-specific e.g. typed messages.
At OS-level message transport probably sees a header plus unstructured bytes.

Need to be able to wait for a message from “anyone”as well as from specific sources
e.g. server with many clients

Client-server interaction easily set up
e.g. needed for system services in microkernel - structured OS.

A B

waitMess (ptr)sendMess (ptr) .

waitMess (ptr) sendMess (ptr).

.= potential delay

Cross address-space IPC

6

Programming language example: Tuple spaces

Since Linda was designed (Gelernter, 1985) people have found the simplicity of tuple spaces (TS)
appealing as a concurrent programming model. TS is logically shared by all processes.

Messages are programming language data-types in the form of tuples
e.g. (“tag”, 15.01, 17, “some string”)
Each field is either an expression or a formal parameter of the form ? var,

where var is a local variable in the executing process

sending processes write tuples into TS, a non-blocking operation
out (“tag”, 15.01, 17, “some string”)
receiving processes read with a template that is pattern-matched against the tuples in the TS
reads can be non-destructive rd (“tag”, ? f, ? i, “some string”), which leaves the tuple in TS
or destructive in (“tag”, ? f, ? i, “some string”), which removes the tuple from TS

Even in a centralised implementation, scalability is a problem:
• protection is an issue, since a TS is shared by all processes.
• naming is by an unstructured string literal “tag” - how to ensure uniqueness?
• inefficient: the implementation needs to look at the contents of all fields, not just a header

Several projects have tried to extend tuple spaces for distributed programming
e.g. JavaSpaces within Jini, IBM Tspaces, various research projects.

Destructive reads are hard to implement over more than a single TS,
and high performance has never been demonstrated in a distributed implementation.

Cross address-space IPC

7

Programming language example: Erlang

Erlang is a functional, declarative language with the following properties:
1. single assignment – a value can be assigned to a variable only once, after which the

variable is immutable

2. Erlang processes are lightweight (language-level, not OS) and share no common resources.
New processes can be forked (spawned), and execute in parallel with the creator:

Pid = spawn (Module, FunctionName, ArgumentList)
returns immediately – doesn’t wait for function to be evaluated
process terminates when function evaluation completes
Pid returned is known only to calling process (basis of security)
Pid is a first class value that can be put into data structures and passed in messages

3. asynchronous message passing is the only supported communication between processes.
Pid ! Message

! means send
Pid is the identifier of the destination process
Message can be any valid Erlang term

Erlang came from Ericsson and was developed for telecommunications applications.
It is becoming increasingly popular and more widely used.

Cross address-space IPC

8

Erlang – 2: receiving messages

The syntax for receiving messages is (recall guarded commands and Ada active objects):
receive

Message1 (when Guard1) ->
Actions1 ;

Message2 (when Guard2) ->
Actions2 ;

..........
end

Each process has a mailbox – messages are stored in it in arrival order.
Message1and Message2above are patterns that are matched against messages in the process
mailbox. A process executing receiveis blocked until a message is matched.
When a matching MessageNis found and the corresponding GuardNsucceeds, the message is
removed from the mailbox, the corresponding ActionsNare evaluated and receive returns
the value of the last expression evaluated in ActionsN.
Programmers are responsible for making sure that the system does not fill up

with unmatched messages.
Messages can be received from a specific process if the sender includes its Pid

in the pattern to be matched: Pid ! {self(), abc}
receive {Pid, Msg}

Cross address-space IPC

9

Erlang – 3: example fragment

Client:
PidBufferManager ! { self (), put, <data> }
PidBufferManager ! { self (), get, <pointer for returned data> }

Buffer Manager:
receive {PidClient, put, <data> }(buffer not full)

insert item into buffer and return

{PidClient, get, <pointer for returned data> } (buffer not empty)
remove item from buffer and return it to client

Cross address-space IPC

10

Erlang - 4: further information and examples

Part 1 of Concurrent Programming in Erlang is available for download from
http://erlang.org/download/erlang-book-part1.pdf

The first part develops the language and includes many small programs, including
distributed programs, e.g. page 89 (page 100 in pdf) has the server and client code,
with discussion, for an ATM machine.

The second part contains worked examples of applications, not available free.

A free version of Erlang can be obtained from
http://www.ericsson.com/technology/opensource/erlang

Erlang also works cross-address-space, and distributed.

Cross address-space IPC

11

Kilim – shared address-space message passing
Kilim extends Java via annotations and static checking. A mailbox paradigm is used.

concurrent process

call write-message (message)

• = potential delay

write-message

read-message

mailbox

•

……..
wait ()

concurrent process

call read-message ()

- after writing a message into a mailbox the sending process/thread loses all rights to that data
- the receiver/reading-process gains rights. Based on linear type theory.
- in the current shared memory implementation, threads share an address space

messages are not physically copied but pointers are used i.e. mailboxes contain pointers
- good performance demonstrated for large numbers of threads cf. Erlang

messages

Cross address-space IPC

12

Kilim further information

Sriram Srinivasan’s PhD research, CL TR 769
After some 12 years’ experience of developing web servers e.g. WebLogic, Ram wanted
more efficient, but safe, concurrent programming with very large numbers of threads.
The work is inspired by Ada and Erlang, but extending Java gives a better chance of
acceptance and use.
Another motivation for Kilim was that in classical concurrency control, methods that execute under
exclusion may make library calls, making it impossible for a compiler to carry out
static checking of exclusive access to data.

For an overview, publications and download, see:
http://www.malhar.net/sriram/kilim/

Further work is to distribute Kilim, among other things ...

Cross address-space IPC

13

Synchronous message passing -1

Delay on both sendMessand waitMessin synchronous message passing

Sender and receiver “hand-shake” - OS copies message cross-address-space

Note no message buffering in OS

How to avoid busy servers being delayed by non-waiting clients (on sending answer)?
buffers could be built at application-level
but synchronous message passing is not appropriate for client-server programming.

A B

waitMess (ptr)sendMess (ptr) .

waitMess (ptr) sendMess (ptr).

.

.

Cross address-space IPC

.= potential delay

14

Synchronous message passing example – occam
In occam communication takes place via named channels. IPC is equivalent to assignment
from one process to another, so for variable := expression, the destination process holds
the variable and the source process evaluates the expression and communicates its value:

destination process (? = input from channel) source process (! = output to channel)
channel ? variable channel ! expression

e.g. channelA ? x channelA ! y+z

input, output and assignment statements may be composed
sequentially using SEQ or in parallel using PAR

PROC square(CHAN source, sink)
WHILE TRUE

VAR x
SEQ

source ? x
sink ! x*x

PROC is a non-terminating procedure that takes a value from channel sourceand outputs its
square on channel sink. We might then make a parallel composition:

CHAN comms:
PAR
square (chan1, comms)
square (comms, chan2)

Cross address-space IPC

square sinksource
x x*x

square chan2chan1
x x*x

square
x*x*x*x

comms

15

Synchronous and asynchronous systems

Historically, synchronous systems were favoured for theoretical modelling and proof.
e.g. occam was based on the CSP formalism, Hoare 1978

occam enforces static declaration of processes - more applicable to embedded systems than
general purpose ones: “assembly language for the transputer”.
Current applications need dynamic creation of large numbers of threads.

In practice, asynchronous systems are used when large scale and distribution are needed.

See your theory courses for modelling concurrency and distribution.

Cross address-space IPC

