Inter-process communication (IPC)

We have studied IPC via shared data in main memory

Processes iseparate address spaces also need to communicate.

Consider system architecture — both shared memmatyceoss-address-space IPC is needed
Recall that the OS runs in every process addpesses

cross-address-space IPC

.O
.
.
.0
0

:| shared]: .\
data |;

. plus

shared memoryNPC shared memory IPC

between user threads between user threads
of a process of a process

Cross address-space IPC

Concurrent programming paradigms — overview

IPC via shared data — processes share an address-sp& have covered:
1. shared data is a passive object accessed warmency-controlled operations:
conditional critical regions, monitors, pthreadsya
2. active objects (shared data has a managing gsiceead)
Ada select/accept and rendezvous
3. lock-free programming

We now consider: Cross-address-space IPC
Recall UNIX pipes — covered in Part 1A case study
Message passing — asynchronetsupported by all modern OS
Programming language examples:
Tuple spaces (TS)
Erlang — message passing between isolated processkeared memory
Kilim — Java extension for shared memory messagerass

Message passing — synchroneug. occam

Consider which of these might be useddmtributed programming.

Cross address-space IPC

UNIX pipes outline - revision

A UNIX pipe is a synchronised, inter-process bytteam
A process attempting t@adbytes from an empty pipe is blocked.
There is also an implementation-specific notiom 6full” pipe
- a process is blocked on attemptinguate to a full pipe.
(recall — a pipe is implemented as an in-memorydsuft the file buffer-cache.
The UNIX designers attempted to unify file, devarel inter-process 1/0O).

To set up a pipe a process makesgoe system call and is returned two file descriptors
in its open file table. It then creates, usiagk two children who inherit all the parent’s
open files, including the pipe’s two descriptors.

Typically, one child process uses one descriptorrtte bytes into the pipe
and the other child process uses the other desctiptead bytes from the pipe.
Hence: pipes can only be used between procesdeswidmmon ancestor.

Later schemes used “named pipes” to avoid thisicéstn.

UNIX originated in the late 1960s, and IPC cambdaseen as a major deficiency.
Later UNIX systems also offered inter-process mgssessing, a more general scheme.

Cross address-space IPC

Asynchronous message passing - 1

address space of a process address space of a process
waitMeds ()
A befor B
1 L . sendMes () é Al del
.. avoids.hyfferin @ = potential delay
sendMess (ptr) T J ... WaitMess (p{Z
"u.. o
H oS impié’mgntation of message passirig E
process A's implementation oﬁva]’t‘l\/[gssandsendl\/les‘é
conceptual ,
message queue f\NaltIVIess 0) [*yaiting
(actually in shared messages
data area, ?Se”d Mess ()
“waiting messages”)

waitMess ()may callOS_block_thread (tID)
sendMess (nay callOS_unblock_thread (tID)

Cross address-space IPC

Asynchronous message passing -2

Note no delay osendMessn asynchronous message passing (OS buffers ineoa@iting)
Note cross-address-space lipglemented by shared memory IPC in OS

Details of message header and body are systenaagddge-specific e.g. typed messages.
At OS-level message transport probably sees a headeunstructured bytes.

Need to be able to wait for a message from “anyasefiell as from specific sources
e.g. server with many clients

Client-server interaction easily setup
e.g. needed for system services in microkernelesired OS.

A B
1 l Q= potential delay
sendMess (Ptr).....ceeeeee i e > WaitMess (w)‘r:____’_/,l
waitMess (I’)" sendMess (pﬁ;
Cross address-space IPC 5

Programming language example: Tuple spaces

Since Linda was designed (Gelernter, 1985) peagle lfound the simplicity of tuple spaces (TS)
appealing as a concurrent programming model. T&jisally shared by all processes.

Messages are programming language data-types fortimeof tuples

e.g.("tag”, 15.01, 17, “some string”)

Each field is either an expression or a formal peter of the forn? var,
wherevar is a local variable in the executing process

sending processes write tuples into TS, a non-hhgckperation

out (“tag”, 15.01, 17, “some string”)

receiving processes read with a template thattieqpamatched against the tuples in the TS
reads can be non-destructivel (“tag”, ? f, ? i, “some string”), which leaves the tuple in TS
or destructiven (“tag”, ? f, ? i, “some string”), which removes the tuple from TS

Even in a centralised implementation, scalabibtg iproblem:

* protection is an issue, since a TS is shared hyratlesses.

* naming is by an unstructured string liteft@lg” - how to ensure uniqueness?

» inefficient: the implementation needs to look a tontents of all fields, not just a header

Several projects have tried to extend tuple spawegistributed programming

e.g. JavaSpaces within Jini, IBM Tspaces, variossarch projects.
Destructive reads are hard to implement over niwae & single TS,
and high performance has never been demonstratedistributed implementation.

Cross address-space IPC 6

Programming language example: Erlang

Erlang is a functional, declarative language with fibllowing properties:
1. single assignment — a value can be assignegaaable only once, after which the
variable is immutable

2. Erlang processes are lightweight (language-lewalOS) and share no common resources.
New processes can be forkeggwred), and execute in parallel with the creator:
Pid = spawn (Module, FunctionName, ArgumentList)
returns immediately — doesn’t wait for function t® évaluated
process terminates when function evaluation coreplet
Pid returned is known only to calling process (basisesfurity)
Pid is a first class value that can be put into datzcsires and passed in messages

3. asynchronous message passing is the only segpoytmunication between processes.
Pid ! Message
I means send
Pid is the identifier of the destination process
Messagecan be any valid Erlang term

Erlang came from Ericsson and was developed focaedenunications applications.
It is becoming increasingly popular and more widsdgd.

Cross address-space IPC 7

Erlang — 2: receiving messages

The syntax for receiving messages is (recall guhodenmands and Ada active objects):
receive
Messagel (when Guardl) ->
Actionsl ;
Message2 (when Guard2) ->
Actions2 ;
end
Each process has a mailbox — messages are stated airival order.
MessagelandMessageabove are patterns that are matched against messaitpe process
mailbox. A process executingceiveis blocked until a message is matched.
When a matchinf@ylessageNs found and the correspondi@gardN succeeds, the message is
removed from the mailbox, the correspondiagionsNare evaluated arnéceive returns
the value of the last expression evaluateddnons\.
Programmers are responsible for making sure tieasybtem does not fill up
with unmatched messages.
Messages can be received from a specific procéiss gender includes i&d
in the pattern to be matcheeid ! {self(), abc}
receive {Pid, Msg}

Cross address-space IPC 8

Erlang — 3: example fragment

Client:
PidBufferManager ! { self (), put, <data> }
PidBufferManager ! { self (), get, <pointer for rerned data> }

Buffer Manager:
receive {PidClient, put, <data> {buffer not full)
insert item into buffer and return

{PidClient, get, <pointer for returned data>(buffer not empty)
remove item from buffer and return it to client

Cross address-space IPC

Erlang - 4: further information and examples

Part 1 of Concurrent Programming in Erlang is avdéddor download from
http://erlang.or g/downl oad/erlang-book-part1.pdf

The first part develops the language and includasynsmall programs, including
distributed programs, e.g. page 89 (page 100 inhadf the server and client code,
with discussion, for an ATM machine.

The second part contains worked examples of apjgits not available free.

A free version of Erlang can be obtained from
http: //www.ericsson.comvtechnol ogy/opensour ce/erlang

Erlang also works cross-address-space, and distdbut

Cross address-space IPC

10

Kilim — shared address-space message passing

Kilim extends Java via annotations and static clrekA mailboxparadigm is used.

concurrent process

mailbox

\ messaggs

call write-message (messagér'

concurrfnt process

call read-message k)/'

© = potential delay

- after writing a message into a mailbox the sengimgess/threalbses all rights to that data
- the receiver/reading-process gains rights. Basethear type theory
- in the current shared memory implementation, tiseshare an address space
messages are not physically copied but pointerssed i.e. mailboxes contain pointers
- good performance demonstrated for large numbetisredds cf. Erlang

Cross address-space IPC 11

Kilim further information

Sriram Srinivasan’s PhD research, CL TR 769

After some 12 years’ experience of developing webess e.g. WebLogic, Ram wanted

more efficient, but safe, concurrent programminthwery large numbers of threads.

The work is inspired by Ada and Erlang, but extegdlava gives a better chance of

acceptance and use.

Another motivation for Kilim was that in classicalrecurrency control, methods that execute under
exclusion may make library calls, making it impbésifor a compiler to carry out

static checking of exclusive access to data.

For an overview, publications and download, see:
http://mww.malhar.net/sriramvkilim/

Further work is to distribute Kilim, among ettthings ...

Cross address-space IPC 12

Synchronous message passing -1

Delay on botlsendMesandwaitMessin synchronous message passing

Sender and receiver “hand-shake” - OS copies message-address-space

Note no message buffering in OS

How to avoid busy servers being delayed by noniagitlients (on sending answer)?

buffers could be built at application-level
but synchronous message passing is not approfwratéent-server programming.

ﬁ\ %
send 'VBSS (ptr) WaitMeSS (p{%

l l
waitMess (ptr) sendMess (ptr)
T A S @ \{ .. ~

@-= potential delay

Cross address-space IPC 13

Synchronous message passing example — occam

In occam communication takes place via namieghnes. IPC is equivalent to assignment
from one process to another, so¥ariable := expressionthe destination process holds
the variable and the source process evaluatexfitession and communicates its value:

destination process= input from channel) source process=(output to channel)
channel ? variable channel ! expression
e.g. channelA ? x channelA! y+z

input, output and assignment statements may be asedp
sequentially using SEQ or in parallel using PAR

PROCsquare(CHAN source, sink)
WHILE TRUE X *
VAR X source—s| L5 sink
SEQ square
source ? X
sink | x*x

PROC is a non-terminating procedure that takedue\ieom channetourceand outputs its
square on channeink. We might then make a parallel composition:

CHAN comms i} o
PAR X X*X XEX*X*X
square (chanl, comms) ¢MNanl—si squar square—>¢chan2
square (comms, chan2) comm

Cross address-space IPC 14

Synchronous and asynchronous systems

Historically, synchronous systems were favouredtepretical modelling and proof.
e.g. occam was based on the CSP formalism, Hoai& 197

occam enforces static declaration of processes e aqgplicable to embedded systems than
general purpose ones: “assembly language for ansputer”.
Current applications need dynamic creation of langebers of threads.

In practice, asynchronous systems are used whga $aale and distribution are needed.

See your theory courses for modelling concurremaydistribution.

Cross address-space IPC 15

