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Transactions

In the next few lectures we motivate the need for transactions then study them in detail

From a single operation on a data object in a concurrent system, we extend to:
Composite operations: in main memory, and with persistent memory

We first study deadlock in general terms, 
starting from composite operations in main memory, see classical concurrency control

Then, continuing with single and composite operations:         
Persistent data
Crashes
Atomic composite operations and how to implement them
Concurrency control with data in persistent memory
Serialisation concept to underpin transactions

Transactions: composite operations involving persistent data
Terminology
ACID properties
ACID properties; implications of relaxing isolation

serialisability, serialisation graphs
cascading aborts
recovering state
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Deadlock 

Systems that allocate resources dynamicallyare subject to deadlock.

We will encounter deadlock in transaction processing systems.

We now take some time to look at deadlock before returning to the development of transactions.

Recall: composite operations in main memory had an example of deadlock

Background policies that make deadlock possible, and what events make it occur dynamically?

Deadlock prevention – discussion of the conditions for avoidance and recovery.

Dining philosophers program – example of deadlock and discussion of policies

Modelling deadlock – to support deadlock avoidance. 
object allocation, resource requests and cycle detection
data structures and an algorithm for deadlock detection

Further reading
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Composite operations with no concurrency control - 1 

At this point we have deadlock.  Process P holds semAand is blocked, queued on semB
Process Q holds semBand is blocked, queued on semA

Neither process can proceed to use the resources and signal the respective semaphores.

A cycle of processes exists, where each holds one resource and is blocked waiting for 
another, held by another process in the cycle.

Recallthe example below (CCC 32) involving only main memory 
– we now highlight a condition for deadlock to exist:

wait ( semB )

wait ( semA )

wait ( semA )

wait ( semB )

process P process Q

A

semA

B

semB
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Conditions for deadlock to exist

1. Policy: mutual exclusion
Processes can claim exclusive access to the resources they acquire

2. Policy: hold-while-waiting
Processes can hold the resources they have already acquired while waiting 
for additional resources.

3.    Policy: no pre-emption
Resources cannot be forcibly removed from processes. Resources are explicitly 
released by processes (e.g. unlock/signal as above).

4.   Dynamic occurrence: Circular wait (cycle)
A circular chain of processes exists such that each process holds (at least) one
resource being requested by the next process in the chain.

If ALL of the above hold then deadlock exists, if there is only one instance of each resource.
See 8, 10.

Other processes will be able to continue execution but the system is degraded 
by the resources held by the deadlocked processes. 
Other processes may proceed to block on resources within the deadlock cycle.
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Deadlock prevention

At all times at least one of the four conditions must not hold if deadlock
is to be prevented by system design.

1 Policy: mutual exclusion       
Cannot always be relaxed – introduced to prevent corruption of shared resources.

2. Policy: hold-while-waiting
Request all resources required in advance? Inefficient and costly. 
Consider long-running transactions. Processes with large resource requirements
could suffer starvation.

3.    Policy: no pre-emption
Pre-emption could introduce the problems we will explore caused by visibility
of intermediate results of transactions.

4.   Dynamic occurrence: Circular wait (cycle)
Impose an order of use on resources – used by some OSs. Not easy to impose
and check in general.

Perhaps allowing deadlock to occur, detecting and recovering by restarting 
some transactions is preferable.
NOTE – this (support for restart) may be in place for crash recovery.

The mechanisms for concurrency control and crash recovery could be combined.
We come back to this later.  First, another example:
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Dining philosophers (due to Dijkstra, 1965) - 1 

Five philosophers spend their time thinking and eating. They each have a chair at a shared table 
with a shared bowl of food and shared forks – they need two forks to eat.

To eat they “execute” an identical algorithm –
pick up left fork, pick up right fork, eat, put down forks.

repeat 
wait ( fork [i] ) ;
wait ( fork [i+1 mod 5 ] ) ;
EAT
signal ( fork [i] ) ;
signal ( fork [i+1 mod 5 ] ) ;
THINK

until false

var fork : array [0 .. 4] of semaphore  \\ all initialised to 1

philosopher i may then be specified as:
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Dining philosophers - 2

We have the policies in place for deadlock to be possible: 
exclusive hold, hold-while-wait,  no preemption. 

Dynamically, deadlock can occur:
a cycle is created when the philosophers each acquire their left fork 
and block waiting for their right fork. 

The problem can be solved in a number of ways, essentially by ensuring
that at least one of the conditions necessary for deadlock to exist cannot hold
Breaking the symmetry of the algorithm can achieve this 

e.g. make odds pick up their forks as specified, L then R, 
and evens pick up their forks in reverse order, R then L.
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Object allocation and request – graphical notation

R1 and R2 are object/resource types. R1 has one instance and R2 has two.
The directed edge from the single instance of R1 to process P 

indicates that P holds that resource. 
The dashed directed edge from P to the object type R2 indicates that P has an outstanding 

request for an object of type R2. 
P is therefore blocked, waiting for an R2.

If a cycle exists in such a graph and there is only one instance of each of the types involved
in the cycle, then deadlock exists (necessary and sufficient condition).

If there is more than one object of some or all of the types, then a cycle is a necessary but
not a sufficient condition for deadlock to exist. 

R1 R2P
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Dynamic object allocation and request – example

resource allocation must decide whether
to give the R2 instance to P or to Q 

R1 R2Q

P

R3

R1 R2Q

P

R3

R1 R2Q

P

R3

give the R2 instance to Q: no cycle
AFAIK, Q can complete and release R1 and R2,
then P can have R1 and R2 and complete.
There may of course be further dynamic requests.

give the R2 instance to P: cycle = deadlock 
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Cycles without and with deadlock

a cycle exists, but no deadlock
T could release R2, and unblock Q 

R1 R2Q

P

R3

R1
R2

Q

P

R3

a cycle and deadlock
P is blocked waiting for R1
Q is blocked, waiting for R2 

T
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Data structures for resource/object allocation management

Allocation matrix Amn

a11 a12 .  .  .  .  a1n
a21 a22 .  .  .  .  a2n

am1 am2 .  .  .  .  amn

Request matrix Bmn

b11 b12 .  .  .  .  b1n
b21 b22 .  .  .  .  b2n

bm1 bm2 .  .  .  .  bmn

object/resource typeobject/resource type

process process

aij is the number of objects of type j
allocated to process i

bij is the number of objects of type j
requested by process i

objects being managed:  Rn = (r1 r2 . . . . rn ),   the number of type i is ri

objects available:  Vn = (v1 v2 . . . . vn ),   the number of type i is vi , 
computable from Rn minus the objects allocated 
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Algorithm for deadlock detection

Mark the rows of the allocation matrix that are NOT part of a deadlocked set 

1. Mark all null rows of A (a process holding no resources cannot be part of a deadlocked set

2. Initialise a working vector W = V initially, the available objects

3. Search for an unmarked row, say row i, such that Bi < W 
(the objects that process i is requesting are “available” in W).
If none is found, terminate the algorithm. 

4.    Set W = W + Ai and mark row i. Return to step 3.

1  0  1  1  0
1  1  0  0  0
0  0  0  1  0
0  0  0  0  0

Example  allocated:  A                requested:  B            total R         available V -> W initially

0  1  0  0  1
0  0  1  0  1
0  0  0  0  1
1  0  1  0  1

2  1  1  2  1 0  0  0  0  1

Transactions: composite operations on persistent objects



Algorithm for deadlock detection - example
3.    Search for an unmarked row, say row i, such that Bi < W 

If none is found, terminate the algorithm. 
4. Set W = W + Ai and mark row i. Return to step 3.

1  0  1  1  0
1  1  0  0  0
0  0  0  1  0
0  0  0  0  0  X

Example  allocated:  A                requested:  B            total R         available V -> W initially

0  1  0  0  1
0  0  1  0  1
0  0  0  0  1
1  0  1  0  1

2  1  1  2  1 0  0  0  0  1

1  0  1  1  0
1  1  0  0  0
0  0  0  1  0  X
0  0  0  0  0  X

W  becomes 0  0  0  1  1  (now “available” )

process 3’s request can be satisfied

AFAIK process 3 can complete and return its resources

1  0  1 1  0
1  1  0 0  0
0  0  0  1  0  X
0  0  0  0  0  X

0  1  0 0  1
0  0  1 0  1
0  0  0  0  1
1  0  1  0  1

R  =  2  1  1 2  1
W  = 0  0  0 1  1 

processes 1 and 2 are deadlocked  over objects 2 and 3 

13
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Deadlock – further reading

see Bacon “Concurrent Systems” or Bacon and Harris “Operating Systems”

- for a visualisation of the above algorithm showing the object allocations and requests 

- for an extension of the approach for deadlock avoidance
in the case where the maximum resource requests of all the processes are known statically
But this turns out to be over-conservative ....

- If more information is available statically we might do better.
In the case of multiphase processes, we know the order in which objects 

are released and requested. 

- distributed deadlock detection, where the processes and objects reside on various
nodes of a distributed system. 

Transactions: composite operations on persistent objects
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Persistent data 

So far we have focussed on concurrency control for shared data in main memory.

We have seen how to make a single operation on a shared data object 
ATOMIC (indivisible) by enforcing execution under mutual exclusion

Note that on a crash, all data in main memory is lost.

Now consider how to implement a single atomic operationon persistent data

- concurrency control can be implemented as before

- the new problem is how to achieve atomicity in the presence of crashes

- i.e. the operation has externally visible effects and the crash may occur at any time

Definition:  ATOMIC operation:

- if it terminates normally, all its effects are made permanent (stable storage abstraction)
- else it has no effect at all

e.g. credit ( account #, £1000 )

- note: tell the user “done” AFTER checking that the new value has been written 

Transactions: composite operations on persistent objects
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Crash model, idempotent operations and atomicity 

We shall assume that a crash is fail-stop:
processors, TLBs, caches, main memory are lost
persistent memory on disc is not lost

To what extent can operations be made idempotent (repeatable)?
e.g. append-to-file ( address-in-memory, amount of data ) is not
e.g. append-to-file ( address-in-memory, amount of data, position in file) is repeatable

- but the system may use an implicit pointer (e.g. UNIX)
- in general, not every operation can be made idempotent

How can atomic operations on persistent data be implemented?
- logging: update the data in place, 

but first write a separate log record to disc of the old and new values
on a crash can use these to roll-back or forward

- shadowing: keep the old data intact
build up a new version of the data
flip atomically from the old to the new version, e.g. flip a pointer

on both cases output “done” to the client aftercommitting the update.

Transactions: composite operations on persistent objects
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Atomic operations involving persistence – system components 

A typical structure of a centralised transaction processing system

DBMS (database management system) 
responsible for fine-grained data manipulation, 

concurrency control and recovery

client client………………….

OS: manages files 
buffers data in memory (may defer writes for performance)

note: DBMS needs data written through to disk (flush rather than write?)

persistent
store

Transactions: composite operations on persistent objects
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Introducing transactions – composite operations with persistence 
We have studied how to make one operation on shared data atomic in the presence of
concurrency and crashes.
Now suppose a meaningful operation is composite, comprising several such operations:

e.g. delete a file (remove link from directory, remove metadata, add file blocks to free list)
e.g. transfer ( £1000, account_A, account_B) 

invoke_operation ( args ) crash!

Concurrency control: why not lock all data – do all operations – unlock?
But contention may be rare, and “locking all” may impose overhead and slow response.
Problems can occur if operations can be invoked concurrently – see next slides.

Crashes:have any permanent/visible/persistent changes been made to any of the shared data?
Has an inconsistent stateresulted from the crash?

Transactions: composite operations on persistent objects
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Composite operations with no concurrency control – 2
the “lost update” problem 

As before, transfer operations may execute correctly until an unfortunate interleaving occurs:

What is defined as a single operation on persistent data?
In the example below,readand write to disc are taken to be separate operations.

process P process Q

transfer ( £1000, account_A, account_B ) transfer ( £200, account_C, account_A )

debit ( £200, account_C ) 
read ( account_C )
write ( account_C)

debit ( £1000, account_A )
read ( account_A )

write ( account_A)

Q has debited account_C by £200

credit ( £200, account_A )
read ( account_A )

write ( account_A)

Q’s update to account_A overwrites P’s update.

Transactions: composite operations on persistent objects
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Object semantics - 1 
Define atomic operations on persistent objects e.g. bank account objects 
with operations that include credit and debit, omitting create and delete we might have:

bank account objects

persistent store

check_balance ( )

read_balance ( )

add_interest ( )

credit ( )

debit ( )

AA

in-memory
copy

main
memory

Transactions: composite operations on persistent objects
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Object semantics – 2

Suppose add_interest updates all accounts daily.
As before, the operations may execute correctly until an unfortunate interleaving occurs.

Object operations are atomic – we have object semantics, not read/write semantics.
Does this solve the concurrency control problems?

process P process Q

transfer ( £1000, account_A, account_B ) add_interest ( account_N )

add_interest ( account_A ) 
add_interest ( account_B )

check_balance (£1000, account_A )
debit ( £1000, account_A )

credit ( £1000, account_B )

The interest on £1000 is lost to the account holders, gained by the system.
The database state is (arguably) incorrect
The problem is due to the visibility of the effects of the suboperations of transfer.

Transactions: composite operations on persistent objects
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Object semantics – 3
Can we solve this problem by locking individual account objects before a sequence of 
operations on them?   Add lock and unlock to the object operations:

process P process Q

transfer ( £1000, account_A, account_B ) add_interest ( account_N )

lock ( account_A)

add_interest ( account_A ) 
unlock ( account_A)
lock ( account_B )
add_interest ( account_B )
unlock ( account_B)

lock  ( account_A )
check_balance (£1000, account_A )
debit ( £1000, account_A )
unlock ( account_A )

lock ( account_B )

credit ( £1000, account_B )
unlock ( account_B )

This does not solve the problem. With unfortunate interleaving the interest on £1000 
can still be lost. The database state is still (arguably) incorrect.
The effects of the suboperations of transferare still visible.
Suppose we allow more than one object to be locked .... 

no access 
between these 

operations

Transactions: composite operations on persistent objects
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Object semantics – 4  
process P process Q

transfer ( £1000, account_A, account_B ) add_interest ( account_N )  for all accounts

lock ( account_A )
add_interest ( account_A)
unlock ( account_A)

lock ( account_B)
add_interest ( account_B) 
unlock ( account_B) 

lock  ( account_A )
check_balance (£1000, account_A )
debit ( £1000, account_A )

lock ( account_B)

credit ( £1000, account_B)
unlock ( account_B ) 
unlock ( account_A 

lock A held

lock B requested

Transactions: composite operations on persistent objects

So-called two-phase locking, 2PL, (as above) does not solve this problem – see the above interleaving 
lock ( <list of locks>)     implies a lock server that interacts with all the objects.
P:  lock  ( account_A , account_B)  OK
But should Process Q lock every bank account in the system?
It’s a special-case example – perhaps it’s OK to make the service unavailable while interest is added? 

wait for lock
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Serialisation of composite operations - visualisation

P1 P2 P3 P1 P2 P3 P1 P2 P3

single-object/operation
serialisation

composite operation
strict serialisation

composite operation with 
interleavings – are any correct?

Transactions: composite operations on persistent objects
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Transactions – notation

Transaction identifiers, commit and abort – example:

Ti = starti, 
checkbalancei ( account_A ), 
debiti ( £1000, account_A ),
crediti ( £1000, account_B),
commiti

Each operation of a transaction is tagged with the transaction identifier i
The last operation on successful termination is commit
If the transaction fails, e.g. checkbalancereturns a fail, the last operation is aborti
On abort any intermediate effects of the transaction must be UNDONE 

e.g. suppose a crash occurs after debit.
account_Amust be restored to its initial state
(note that credit is the undo operation for debit)

The abort operation could be given to the application programmer, e.g.:

transaction
if  checkbalance ( £1000, account_A ) 
then  transfer ( £1000, account_A, account_B); commit
else  abort;

Transactions: composite operations on persistent objects
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Serialisability - definition

If transactions execute strictly serially then the system state (and any output) is correct.
i.e. transactions are meaningful, high-level operations. The execution of a transaction 
moves the system from one consistent state to another.

If we can show that a concurrent, interleaved execution is equivalent to some serial 
execution then the concurrent execution is correct
Example:
serial execution:                                               non-serialisable execution
debit ( £1000, account_A )                                  debit ( £1000, account_A )
credit ( £1000, account_B ) 

add_interest ( account_A )                                 add_interest ( account_A )
add_interest ( account_B )                                 add_interest ( account_B ) 

serial execution:   
credit ( £1000, account_B )

add_interest ( account_A )
add_interest ( account_B ) 

debit ( £1000, account_A )
credit ( £1000, account_B ) 

Transactions: composite operations on persistent objects
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Transactions - ACID properties 

Atomicity all or none of the operations are done (executed on the persistentstore)

Consistency a transaction transforms the system from one consistent state to another

Isolation the effects of a transaction are not visible to other transactions until
it is committed

Durability the effects of a committed transaction endure/persist

C andI are defined with concurrency control primarily in mind,
A andD with requirements for crash recovery primarily in mind
But we have seen already that the mechanisms for enforcing 

concurrency control and crash recovery are inter-related.

Strict enforcement ofI reduces concurrency, sometimes unnecessarily.
We investigate, in slides 32 onwards,

whetherI can be relaxed in implementations while still ensuring serialisability.

D can be implemented by using techniques such as stable storage, involving redundant disc
writes, RAID array techniques, etc. and we shall not study this property further

Transactions: composite operations on persistent objects
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Object model for transaction processing 

• objects are identified uniquely
• each operation is atomic
• the object has a single clock
• for each operation invocation completed, the object records completion time and transaction-ID

DEFINITION:  non-commutative/conflicting operations  
The final state or output value depends on the order in which these operations are carried out

debitor credit and add_interestconflict,  
credit and credit or debitand debitor credit and debitdo not conflict
Arithmetic + and – do not conflict,* conflicts with+ and –

bank account objects

persistent store

check_balance ( )

read_balance ( )

add_interest ( )

credit ( )

debit ( )

AA

in-memory
copy

main
memory
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Serialisability – property for implementation

For serialisability of two transactions  it is necessary and sufficient 
for their order of execution of all conflicting pairs of operations
to be the same for all the objects that are invoked by both

transaction T1                                                  transaction T2
debit ( £1000, account_A )                                               

add_interest ( account_A )
add_interest ( account_B ) 

credit ( £1000, account_B ) 

objects account_A and account_Bare invoked by T1 and T2
operation add_interest conflicts with operations debitand credit

object account_A T1 before T2

object account_B T2 before T1

The above operation interleavings do not form a serialisable execution

Transactions: composite operations on persistent objects
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Serialisability – transaction execution representation 

transaction T1

W and X
conflict

W
A

X

Y and Z
conflict

Y
B

Z

transaction T2

S1 W1A Y1B C1

X2A Z2BS2 C2

T1 and T2 are serialisable if both W1A is before X2A and Y1B is before Z2B
( or if both W1A is after X2A and Y1B is after Z2B )

T1 and T2 are NOT serialisable if W1A is before X2A and Y1B is after Z2B
( or if W1A is after X2A and Y1B is before Z2B )

Note that the Isolation property of transactions is not being enforced in the implementations. 
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Serialisation graphs

DEFINITION: A history represents the concurrent execution of a set of transactions.
(as in the previous slide when the order of execution of conflicting operations is included)

DEFINITION: A serialisable history represents a serialisable execution

DEFINITION: a serialisation graph shows only transaction IDs and dependencies between them. 

T1 T2 T1 T2

A transaction history is serialisable if and only if its serialisation graph is acyclic

T1

T2

T3

T4

Transactions: composite operations on persistent objects
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Cascading aborts 

transaction T1

W and X
conflict

W
A

X

Y and Z
conflict

Y
B

Z

transaction T2

S1 W1A Y1B A1

X2A Z2BS2 C2

Suppose that to enforce serialisability the transaction scheduler makes 
T2 execute conflicting operations on shared objects A and B after transaction T1

Now suppose T1 aborts after updating the objects 
T2 must also be aborted – a CASCADING ABORT
This has resulted from not enforcing the Isolation property of transactions.
T2 has operated on uncommitted state.
An execution in which Isolation is enforced is defined as STRICT

X

Transactions: composite operations on persistent objects
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Recovering state – 1 (without conflicting operations)
To implement transactions, it must be possible to recover some previously committed state.
What are the implications of not enforcing the Isolation property?

start1
credit1 ( £1000, account_A)
credit1 ( £500, account_B )
start2
credit2 ( £200, account_A )
credit1( £300, account_C )
abort1

credit2 ( £600, account_B )
abort2 

Money in accounts:        A              B             C
£5000       £1000       £8000
£6000 … …

….         £1500 …

£6200  … …
… … £8300

undo                                                            £8000
undo                                               £1000
undo                             £5200
This is possible only because credits do not conflict 
and undo for credit is debit

….           £1600 …
undo £1000
undo £5000

Transactions: composite operations on persistent objects
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Recovering state – 2 (with conflicting operations)
Money in account:   A               

Start1 £5000        
credit1 ( £1000, account_A)                                       £6000
start2
credit2 ( £2000, account_A ) £8000
start3
add_interest ( account_A )                                      £8008

request commit ……. commitpended – state of uncommitted transactions has been used
start4
credit4 ( £1000, account_A ) £9008

request commit            commitpended – state of uncommitted transactions has been used
abort1 undo4 £8008

undo3 £8000
undo1 £7000
redo3 £7007
redo4 £8007

abort2 undo4 £7007
undo3   £7000
undo2 £5000
redo3 £5005
redo4 £6005

commit3
commit4

Transactions: composite operations on persistent objects
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Computer Laboratory Technical Reports. 
See http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-table.html

459 An open parallel architecture for data-intensive applications
Mohamad Afshar   July 1999,      PhD,    225p,  TR 459

338A new approach to implementing atomic data types
Zhixue Wu              May 1994,     PhD,    170p,  TR 338

Reference for correctness of two-phase locking (pp. 486 – 488) in:
Database System Implementation
Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom
Prentice-Hall, 2000 


