Transactions

In the next few lectures we motivate the needramgactions then study them in detalil

From a single operation on a data object in a coantisystem, we extend to:
Composite operations: in main memory, and withipgst memory

We first study deadlock in general terms, _ _
starting from composite operations in main memseeg classical concurrency control

Then, continuing with single and composite operetio
Persistent data
Crashes
Atomic composite operations and how to implemeatrth
Concurrency control with data in persistent memory
Serialisation concept to underpin transactions

Transactions: composite operations involving pesisdata
Terminology
ACID properties
ACID properties; implications of relaxing isolation
serialisability, serialisation graphs
cascading aborts
recovering state

Transactions: composite operations on persistgattsh

Deadlock

Systems that allocate resourclgmamicallyare subject taleadlock

We will encounter deadlock in transaction procegsystems.

We now take some time to look at deadlock befongrnéng to the development of transactions.
Recall: composite operations in main memory hadxample of deadlock

Background policies that make deadlock possibld,vamat events make it occur dynamically?
Deadlock prevention — discussion of the conditiamsalvoidance and recovery.

Dining philosophers program — example of deadloak @scussion of policies

Modelling deadlock — to support deadlock avoidance.
object allocation, resource requests and cyclectiete
data structures and an algorithm for deadlock dietec

Further reading

Transactions: composite operations on persistgattsh

Composite operations with no concurrency control - 1

Recallthe example below (CCC 32) involving only main meyno
— we now highlight a condition for deadlock to exist

process P process Q
l semA l
wait (semA ——1 A wait (semB)

l semB l
wait (semBj/ B/ wait (semA)

v

v

At this point we haveleadlock Process P holdsemAand is blocked, queued samB
Process Q holdsemBand is blocked, queued semA
Neither process can proceed to use the resourdesigmal the respective semaphores.

A cycle of processes existwhere eacholds one resourand isblocked waiting for
another, held by another process in the cycle

Transactions: composite operations on persistgattsh 3

Conditions for deadlocto exist

1. Policy. mutual exclusion _
Processes can claim exclusive access to the resoilrey acquire

2. Policy. hold-while-waiting
Processes can hold the resources they have alaegdiyred while waiting
for additional resources.

3. Policy: no pre-emption
Resources cannot be forcibly removed from proces&esources are explicitly
released by processes (euglock/signalas above).

4. Dynamic occurrenceCircular wait (cycle)
A circular chain of processes exists such that @asbess holds (at least) one
resource being requested by the next process ichtia.

If ALL of the above hold then deadlock exists, if themnily one instance of each resource.
See 8, 10.

Other processes will be able to continue execuiigrthe system is degraded

by the resources held by the deadlocked processes.
Other processes may proceed to block on resouritieis whe deadlock cycle.

Transactions: composite operations on persistgattsh 4

Deadlock prevention

At all times at least one of the four conditionsstnoiot hold if deadlock
Is to be prevented by system design.

1 Policy. mutual exclusion _ _
Cannot always be relaxed — introduced to prevenmtption of shared resources.

2. Policy. hold-while-waiting
Request all resources required in advance? Ineffi@and costly.
Consider long-running transactions. Processeslaige resource requirements
could suffer starvation.

3. Policy: no pre-emption
Pre-emption could introduce the problems we wiplere caused by visibility
of intermediate results of transactions.

4. Dynamic occurrenceCircular wait (cycle) _
Impose an order of use on resources — used by s@seNdt easy to impose
and check in general.

Perhaps allowing deadlock to occur, detectingradvering by restarting
some transactions is preferable.
NOTE - this (support for restart) may be in placecfash recovery

The mechanisms for concurrency control and crasbvesy could be combined.
We come back to this later. First, another example

Transactions: composite operations on persistgattsh

Dining philosophers (due to Dijkstra, 1965) - 1
O

OOO@D

ovQO
L=
Five philosophers spend their time thinking andngafThey each have a chair at a shared table
with a shared bowl of food and shared forks — thegntwo forks to eat.
To eat they “execute” an identical algorithm —
pick up left fork, pick up right fork, eat, put doviorks.

var fork : array [O .. 4] of semaphore \\ all iniilised to 1
philosopher i may then be specified as:

repeat
wait (fork [i]) ;
wait (fork [i+1 mod 5]) ;
EAT
signal (fork [i]) ;
signal (fork [+1 mod 51]) ;
THINK

until false

Transactions: composite operations on persistgattsh

Dining philosophers - 2

We have the policies in place for deadlock to bespue:
exclusive hold, hold-while-wait, no preemption.
Dynamically, deadlock can occur:
a cycle is created when the philosophers each iectheir left fork
and block waiting for their right fork.

The problem can be solved in a number of ways néisdlg by ensuring
that at least one of the conditions necessarydadbbck to exist cannot hold
Breaking the symmetry of the algorithm can achigne
e.g. make odds pick up their forks as specifiethdn R,
and evens pick up their forks in reverse ordehéhtL.

Transactions: composite operations on persistgattsh

Object allocation and request — graphical notation

Rlo_@ ------- 5| R2
o O

R1 and R2 are object/resource types. R1 has otemgesand R2 has two.
The directed edge from the single instance of Rirécess P
indicates that P holds that resource.
The dashed directed edge from P to the objectRpmdicates that P has an outstanding
request for an object of type R2.
P is therefore blocked, waiting for an R2.

If a cycle exists in such a graph and there is onky instance of each of the types involved
in the cycle, then deadlock exists (necessary afittignt condition).

If there is more than one object of some or atheftypes, then a cycle is a necessary but
not a sufficient condition for deadlock to exist.

Transactions: composite operations on persistgattsh

Dynamic object allocation and request — example
R3

//o °
resource allocation must decide whether
to give the R2 instance to P or to Q

R1 e R2

R3 R3
| —o o
| —o o
L‘\ /—\

R1 o—e@\ R2 RLer=~(Q) R2

™

give the R2 instance to Q: no cycle give the R2 instance to Bycle = deadlock

AFAIK, Q can complete and release R1 and R2,
then P can have R1 and R2 and complete.
There may of course be further dynamic requests.

Transactions: composite operations on persistgattsh

Cycles without and with deadlock
R3

(F)
a cycle exists, but no deadlock
I’ T could release R2, and unblock Q
R1 6 @ ‘r2 |7
'd

R3

O
a cycle and deadlock
24 P is blocked waiting for R1
N\ Q is blocked, waiting for R2

2 R

R1 e

Transactions: composite operations on persistgattsh

10

Data structures for resource/object allocation rgansent

Allocation matrix A, Request matrix B,
object/resource type——> object/resource type——>
process & &, &, process by, by, B,
&1 & - - - - Gy by by By,
amlah'\Z""ﬁm bmlbm2""h1n
g, is the number of objects of type j b; is the number of objects of type j
allocated to process i requested by process i
objects being managed: R(r;r, 1), the number of typeiisr
objects available: V= (v,v, V), the number of typeiisy

computable from Rminus the objects allocated

Transactions: composite operations on persistgattsh

11

Algorithm for deadlock detection

Mark the rows of the allocation matrix that &ad©T part of a deadlocked set

1. Mark all null rows of A (a process holding noaesces cannot be part of a deadlocked set

2. Initialise a working vector W =V initially, thavailable objects
3. Search for an unmarked row, say row i, suchBhatw

(the objects that process i is requestlng are labks” in W).

If none is found, terminate the algorithm.

4. SetW =W + Aand mark row i. Return to step 3.

Example allocated: A requested: B total R available V -> W initia
10110 01001 21121 00001
11000 00101
00010 00001
000O00O 10101

Transactions: composite operations on persistgattsh

12

Algorithm for deadlock detection - example

3. Search for an unmarked row, say row i, sheh B <W
If none is found, terminate the algorithm.
4. SetW =W + Aand mark row i. Return to step 3.

Example allocated: A requested: B total R available V -> W initia
10110 01001 21121 OOO__?Ol
11000 oco101 T
000 i‘\Q\ 0000 l“"""'ﬁ_focess 3’s request can be satisfied
0000O0X~._ 10101
10110 KFAlK\process 3 can complete and return its resoesc
11000 .y
0001O0X W becomes0 0 0 1 1 (now “available™)

0000 OX

processes 1 and 2 are deadlocked over objectsd23an
10110 01001

11000 00101 _
0001O0X 00001 @;gééii
00O00O0O0X 10101

Transactions: composite operations on persistgattsh 13

Deadlock — further reading

see Bacon “Concurrent Systems” or Bacon and Ha@etating Systems”
- for a visualisation of the above algorithm showihg object allocations and requests

- for an extension of the approach for deadlock daoce
in the case where the maximum resource requesittbe processes are known statically
But this turns out to be over-conservative

- If more information is available statically we rhigdo better.
In the case of multiphase processes, we know tier am which objects
are released and requested.

- distributed deadlock detection, where the proceaséd objects reside on various
nodes of a distributed system.

Transactions: composite operations on persistgattsh 14

Persistent data

So far we have focussed on concurrency contradliared data in main memory.

We have seen how to make a single operation oaradhlata object
ATOMIC (indivisible) by enforcing execution undemtoal exclusion

Note that on a crash, all data in main memoryss lo
Now consider how to implementsangle atomic operatioon persistent data

- concurrency control can be implemented as before

- the new problem is how to achieve atomicity in pnesence ofrashes

- i.e. the operation has externally visible effeantsl the crash may occur at any time
Definition: ATOMIC operation:

- if it terminates normally, all its effects are neggermanent (stable storage abstraction)
- else it has no effect at all

e.g.credit (account #, £1000)

- note: tell the user “done” AFTER checking that tieav value has been written

Transactions: composite operations on persistgattsh 15

Crash model, idempotent operations and atomicity

We shall assume that a crasfeis-stop
processors, TLBs, caches, main memory are lost
persistent memory on disc is not lost

To what extent can operations be made idempotepeétable)?
e.g. append-to-file (address-in-memory, amoumtadd) is not
e.g. append-to-file (address-in-memory, amoumadé, position in file) is repeatable

- but the system may use an implicit pointer (e.§IX)
- in general, not every operation can be made idésmpo

How can atomic operations on persistent data béimgnted?
- logging update the data in place,
butfirst write a separate log record to disc of the old e values
on a crash can use these to roll-back or forward

- shadowingkeep the old data intact
build up a new version of the data
flip atomically from the old to the new versiongeflip a pointer

on both cases output “done” to the cliafter committing the update.

Transactions: composite operations on persistgattsh 16

Atomic operations involving persistence — system gonents

A typical structure of a centralised transactiongesssing system

DBMS (database management system)
responsible for fine-grained data manipulation,
concurrency control and recovery

OS: manages files
buffers data in memory (may deferites for performance)
note: DBMS needs data written through to digksp rather tharwrite?)

persistent g

Transactions: composite operations on persistgattsh 17

Introducing transactions — composite operations prsistence

We have studied how to make one operation on sltatedatomic in the presence of
concurrency and crashes.
Now suppose a meaningful operation is composit@peising several such operations:
e.g. delete a file (remove link from directory, @m metadata, add file blocks to free list)
e.g. transfer £1000, account_A, account B

AN

invoke_operation (arg > crash!

A\ 4

Concurrency controwhy not lock all data — do all operations — unlock?
But contention may be rare, and “locking all” maypmse overhead and slow response.
Problems can occur if operations can be invoke@dwoantly — see next slides.

Crasheshave any permanent/visible/persistent changes imaele to any of the shared data?
Has annconsistent stateesulted from the crash?

Transactions: composite operations on persistgattsh 18

Composite operations with no concurrency control — 2
the “lost update” problem

What is defined as a single operation on persistatat?
In the example belowgadandwrite to disc are taken to be separate operations.

process P process Q
transfer (£1000, account_A, account_B) transfe£200, account_C, account_A)

As before, transfer operations may execute cogrectlil an unfortunate interleaving occurs:

debit (£200, account_C)
read (account_C)
write (account_C)

Q has debited account_C by £200
debit (£1000, account_A)
read (account_A)

credit (£200, account_A)
read (account_A)

write (‘account_A)
write (account_A)

Q’s update to account_A overwrites P’s update.

Transactions: composite operations on persistgattsh 19

Object semantics - 1

Define atomic operations on persistent objectsklagk account objects
with operations that includereditanddebit,omitting createanddeletewe might have:

| |
credit () A e e 1o
, in-memor I
debit () topy y , Q
I bank account objects
|
check_balance (|) I Q
|
O O
read_balance () 1
main | .
memory | persistent store
add_interest () :
| I
I

Transactions: composite operations on persistgattsh 20

Object semantics — 2

Object operations are atomic — we have object saosamiot read/write semantics.
Does this solve the concurrency control problems?

process P process Q
transfer (£1000, account_A, account_B) add_intdréaccount_N)

Suppose add_interest updates all accounts daily. _ _
As before, the operations may execute correctly antunfortunate interleaving occurs.

check_balance (£1000, account_A)
debit (£1000, account_A)

add_interest (account_A)
add_interest (account_B)

credit (£1000, account_B)

The interest on £1000 is lost to the account heldgained by the system.
The database state is (arguably) incorrect
The problem is due to the visibility of the effeofsthe suboperations ¢fansfer.

Transactions: composite operations on persistgattsh

21

Object semantics — 3

Can we solve this problem by locking individual @ant objects before a sequence of
operations on them? Adadck andunlock to the object operations:
process P process Q

transfer (£1000, account_A, account_B) add_interéaccount_N)

lock (account A)

) no ac‘r?]ess check_balance (£1000, account_A)
etween these japit (£1000, account A) lock (account_A)
OPerations njock (account_A) wait for lock

unlock (account_A)
lock (‘account_B)
lock (‘account_B) add_interest (account_B)
wait for lock _unlock (‘account_B)

credit (£1000, account_B)
unlock (‘account_B)

This does not solve the problem. With unfortunaterieaving the interest on £1000
can still be lost. The database state is still(abdy) incorrect.

The effects of the suboperationsti@nsfer are still visible.

Suppose we allow more than one object to be locked

Transactions: composite operations on persistgattsh

22

Object semantics — 4

process P process Q
transfer (£1000, account_A, account_B) add_intearéaccount_N)for all accounts

lock (account_A)
add_interest (account_A)

unlock (‘account_A)
lock (account_A)

check_balance (£1000, account_A)

debit (£1000, account_A)
lock A held

lock (‘account_B)
lock B requested ~ Waitforlock <
credit (£1000, account_B)
unlock (account_B)
unlock (‘account_A

lock (account_B)
add_interest (account_B)
unlock (account_B)

So-calledwo-phase locking, 2Pl(as above) does not solve this problem — see theeahterleaving
lock (<list of locks>) implies a lock server that interacts with all thpewts.

P: lock (account_A , account BPK

But should Process Q lock every bank account irsyiseem?

It's a special-case example — perhaps it's OK toartak service unavailable while interest is added?

Transactions: composite operations on persistgattsh

23
Serialisation of composite operations - visualigatio
single-object/operation composite operation composite operation with
serialisation strict serialisation interleavings — are any correct?
P1 P2 P3 P1 P2 P3 PL P2 P3

Transactions: composite operations on persistgattsh
24

Transactions — notation

Transaction identifiers, commit and abort — example:

Ti = starti,
checkbalance(account_A),
debit (£1000, account_A),
credit (£1000, account_B),
commit

Each operation of a transaction is tagged withriduesaction identifier
The last operation on successful terminatioroisimit
If the transaction fails, e.gheckbalancaeturns a fail, the last operationaisori
Onabortany intermediate effects of the transaction musti K& ONE
e.g. suppose a crash occurs afiteit
account_Amust be restored to its initial state
(note thatreditis the undo operation fatebii)
Theabort operation could be given to the application progrem e.g.:

transaction
if checkbalance (£1000, account_A)
then transfer (£1000, account_A, account_B); comm
else abort;

Transactions: composite operations on persistgattsh

25

Serialisability - definition

If transactions execute strictly serially then flystem state (and any output) is correct.

I.e. transactions are meaningful, high-level operst The execution of a transaction
moves the system from one consistent state to anoth

If we can show that a concurrent, interleaved exedion is equivalent to some serial
execution then the concurrent execution is correct

Example:

serial execution: non-serialisable execution
debit (£1000, account_A) debit (£1000, account_A)
credit (£1000, account_B)

add_interest (account_A) add_interest (account_A)
add_interest (account_B) add_interest (account_B)

serial execution:

credit (£1000, account_B)
add_interest (account_A)
add_interest (account_B)

debit (£1000, account_A)
credit (£1000, account_B)

Transactions: composite operations on persistgattsh

26

Transactions - ACID properties

Atomicity all or none of the operations are done (executeith@persistenstore)
Consistency a transaction transforms the system from one ciamgistate to another

Isolation the effects of a transaction are not visible teeothansactions until
it is committed

Durability the effects of a committed transaction endure/persi

C andl| are defined with concurrency control primarily irneh,

A andD with requirements for crash recovery primarily imch

But we have seen already that the mechanisms foragmg
concurrency control and crash recovery are intietted.

Strict enforcement df reduces concurrency, sometimes unnecessarily.
We investigate, in slides 32 onwards,
whetherl can be relaxed in implementations while still ensyserialisability.

D can be implemented by using techniques such ale svage, involving redundant disc
writes, RAID array techniques, etc. and we shatlstady this property further

Transactions: composite operations on persistgattsh 27

Object model for transaction processing

I |
credit () TNk EEEEE - @
A i O
. |
debit () '”'T:g‘/ory ! Q
|
! bank account objects
check_balance (|) ! Q
|
O~ O
read_balance () !
1
main ! i
add_interest () memory: persistent store
1
» objects are identified uniquel\,I :

* each operation is atomic
» the object has a single clock
» for each operation invocation completed, the dljecords completion time and transaction-1D

DEFINITION: non-commutative/conflicting operations
Thefinal state or output value depends ondhger in which these operations are carried out

debitor creditandadd_interestconflict,
creditandcreditor debitanddebitor creditanddebitdo not conflict
Arithmetic + and— do not conflict* conflicts with+ and —

Transactions: composite operations on persistgattsh 28

Serialisability — property for implementation

For serialisability of two transactions it is nesary and sufficient
for their order of execution of all conflicting psiof operations
to be the same for all the objects that are invdkedoth

transaction T1 transaction T2

debit (£1000, account_A)
add_interest (account_A)
add_interest (account_B)

credit (£1000, account_B)
objectsaccount_Aandaccount_Bare invoked by T1 and T2
operationadd_interestconflicts with operationgdebitandcredit
objectaccount_A T1 before T2
objectaccount_B T2 before T1

The above operation interleavings do not form &aBsable execution

Transactions: composite operations on persistgattsh 29

Serialisability — transaction execution represeatati

I I
W and X W @ Y and Z Y
conflict X conflict Z

L | L |

transaction T @—' @

transaction ¥ @_. @

1 T1 and T are serialisable if both Y& is before XA and YiB is before 2B
(‘or if both WAA is after XA and YiB is after 2B)

T1and T2are NOT serialisable if \BA is before XA and YiB is after 2B
(orif W1A is after XA and Y1B is before 2B)

Note that thésolation property of transactions is not being enforcechmitnplementations.

Transactions: composite operations on persistgattsh 30

Serialisation graphs

DEFINITION: A history represents the concurrent executioa sét of transactions.
(as in the previous slide when the order of executif conflicting operations is included)

DEFINITION: A serialisable history represents a serialisalkcution

DEFINITION: a serialisation graph shows only transactiondBd dependencies between them.

To— T2 Ti<=— T2

A transaction history is serialisable if and orflits serialisation graph is acyclic

T2
\
T1 /'/' Ts

\T4 /

Transactions: composite operations on persistgattsh 31

Cascading aborts

I I
W and X W @ Y and Z Y
conflict X conflict Z

L | L |

transaction T @—' @ @
transaction T @_. @ X—'@

Suppose that to enforce serialisability the tratisascheduler makes
T2 execute conflicting operations on shared objectéd B after transactiora T

Now suppose Taborts after updating the objects

T2must also be aborted -CAASCADING ABORT

This has resulted from not enforcing thelation property of transactions.
T2 has operated on uncommitted state.

An execution in whichsolation is enforced is defined &TIRICT

Transactions: composite operations on persistgattsh 32

Recovering state — 1 (without conflicting operatijons

To implement transactions, it must be possibletmver some previously committed state.
What are the implications of not enforcing thelation property?

Money in accounts: A B C
startl £5000 £1000 £8000
creditl (£1000, account_A) £6000
creditl (£500, account_B) £1500
start2
credit2 (£200, account_A) £6200
creditl(£300, account_C) £8300
abortl

undo £8000

undo £1000

undo £5200

This is possible only because credits do not confli

and undo focreditis debit
credit2 (£600, account_B)) A600
abort2 undo £1000

undo £5000

Transactions: composite operations on persistgattsh

33

Recovering state — 2 (with conflicting operations)
Money in account: A

Start £5000

credit (£1000, account_A) £6000

start

credit (£2000, account_A) £8000

starts

add_interest (account_A) £8008

request commit commitpended — state of uncommitted transactions has Umsssh
starts
creditz (£1000, account_A) £9008
request commit comnpended — state of uncommitted transactions has Upsssh

abort undo4 £8008
undo3 £8000
undol £7000
redo3 £7007
redo4 £8007

abort undo4 £7007
undo3 £7000
undo2 £5000
redo3 £5005
redo4 £6005

commis

commit

Transactions: composite operations on persistgattsh 34

Computer Laboratory Technical Reports.
Seehttp://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-taliitml

459 An open parallel architecture for data-intensigplications
Mohamad Afshar July 1999, PhD, 225p, 48R

338A new approach to implementing atomic data types
Zhixue Wu May 1994, PhD, 170 338

Reference for correctness of two-phase locking 4pgp.— 488) in:
Database System Implementation
Hector Garcia-Molina, Jeffrey Ullman, Jennifer Wido
Prentice-Hall, 2000

Transactions: composite operations on persistgattsh

35

