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Database Concurrency Control and Recovery

Pessimistic concurrency control
Two-phase locking (2PL) and Strict 2PL

Timestamp ordering (TSO) and Strict TSO

Optimistic concurrency control (OCC)
definition
validator operation – phases 1 and 2

Recovery – see 11
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Simple database model 

pre-processing of operations; dealing with distributiontransaction
manager

determines relative order of execution of operations

database

scheduler

data manager

cache manager

recovery manager

knows about volatile and stable storage

Responsible for commit and abort; also, system failures when
volatile memory is lost; also media failures.

Can return database to a state that contains all the updates of
committed transactions and none of uncommitted ones.

Manages volatile storage (the cache – in memory data);.
Operates on database
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Concurrency control – 1:  two-phase locking 

Locking all potentially conflicting objects at transaction start reduces concurrency. Also,
some of the transaction’s objects may be determined dynamically.

Usually, some form of two-phase locking ( 2PL ) is used:
1. Non-strict 2PL:

a) phase of acquiring locks: locks are acquired as the objects are needed
b) phase of releasing locks: once all locks have been acquired, 

locks are released when the object operations complete. 
- ensures a serialisableexecution schedule 

(serialisation graph cycles are prevented because locks cannot be released in phase a) ).
- subject to deadlock– see discussion in 06-persistence, slides 2 – 14

but a deadlock occurs when the serialisation graph would have had a cycle.
- subject to cascading aborts, see 32, 33, 34

2. Strict 2PL: 
a) phase of acquiring locks as above
b) hold locks and release after commit– enforces Isolation - prevents cascading aborts

data object in DB

operationN ( )

operation1 ( )
AA

data-object
in DBMS cache

info

lock

unlock
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Concurrency control – 2: Timestamp ordering (TSO)

• Each transaction has a timestamp, e.g. its start time

• An object records the timestamp of the invoking transaction with the info it holds on the object

• A request for a conflicting operation from a transaction with a later timestamp is accepted

• A request for a conflicting operation from a transaction with an earlier timestamp 

is rejected  - TOO LATE !   Transaction is aborted and restarted. 

All its operations that have completed must be undone.           

• One serialisable orderis achieved – that of the transactions’ timestamps

• Decisions are based on information local to the objects – transaction IDs and timestamps

• TSO is not subject to deadlock – the TSO prevents cycles

• BUT serialisable executions can be rejected – those where concurrent transactions request 

to invoke all conflicting operations on shared objects in reverse timestamp order

• TSO is simple to implement.

• Because decisions are local to each object, TSO distributes well

Database concurrency control and recovery
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Concurrency control – 3: Strict TSO

• Cascading aborts are possible with TSO unless Isolation is enforced by Strict TSO  

• For Strict TSO, objects need to be locked when an invocation request is granted by the object

and unlocked after commitsucceeds – coordinated by the transaction manager

• TSO and Strict TSO are not subject to deadlock – the TSO prevents cycles

• BUT, as with TSO,  serialisable executions can be rejected 

• TSO and Strict TSO are simple to implement

• Because invocation decisions are local to each object, TSO distributes well
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Optimistic concurrency control (OCC) - 1

In some applications conflicts are rare: OCC avoids overhead e.g. locking, and delay.

OCC definition:
At transaction start, or on demand, take a “shadow copy” of all objects invoked by it

Do they represent a consistent system state?
How can this be achieved?
NOTE: atomic commitmentis part of a pessimistic approach 

OCC does not lock all a transaction’s objects during commit
NOTE: Isolation is enforced – the transaction invokes the shadow objects

The transaction requests commit. The system must ensure:
the transaction’s shadow objects were consistent at the start
no other transaction has committed an operation at an object that conflicts with 

one of this committing transaction’s invocations.

If both of these conditions are satisfied then commit the updates at the persistent objects 
in the same order of transactions at every object

If not, abort – discard the shadow copies and restart the transaction

Used in IBM’s IMS Fast Track in the 1980’s and improved performance greatly
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Optimistic concurrency control - 2

At transaction start, or on demand, take a “shadow copy” of all objects invoked by it
Do they represent a consistent system state?
How could inconsistent copies be taken?

commit manager
(validator)

A

C

B

e.g.validator commits 
updates for a transaction,

creating object versions TK

The transaction’s objects are A, B, C

at this point a new
transaction takes
shadow copies
of B and C
B is at version TK

C is at some earlier version, 
e.g. TK-1, or earlier.
B and C’s shadows represent an
inconsistent state

Database concurrency control and recovery

8

Optimistic concurrency control - 3

We assume a single centralised validator.
Assume a timestamp TN is allocated to a transaction by the validator when it decides it can

commit the transaction
Therefore every object has a version numbercomprising its “most recent timestamp”. 
The validator can use the version numbers of the set of objects used by a transaction 

to decide whether they represent a consistent system state.
Note that the validator has no control over the making of shadow copies.
What it has available is the timestamps of transaction commits.

transaction R’s objects’
versions (timestamps)

T1 T2 TK start time of 
transaction R > TK
(recorded with R and
available to validator)

transaction R
requests commit

transaction R’s execution phase: 
makes updates to objects

timestamp of  an
unacknowledged/

incomplete commit
of a transaction that 

shares some of R’s objects
(available to validator)
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Optimistic concurrency control - 4

validated transaction timestamp objects and updates all updates acknowledged?

previous transactions ……. …….. …..

P  

Q  

R  

S  

ti

ti+1

ti+2

ti+3

A, B, C, D, E

B, C,      E, F

B, C, D

A,      C,      E

Yes

Yes

Yes

Yes

object versions before and after S is committed:  

object    version before S’s updates    version after S’s updates

A         P, ti                                                 S, ti+3

B         R, ti+2                                            R, ti+2

C         R, ti+2                                            S, ti+3

D         R, ti+2                                            R, ti+2 

E         Q, ti+1                                            S, ti+3

F         Q, ti+1                                            Q, ti+1
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Optimistic concurrency control - 5

validation phase 1: T has taken inconsistent versions of objects B and C

object
B

C

P, ti        Q, ti+1       T takes a shadow copy 

P, ti                            T takes a shadow copy          Q, ti+1

validation phase 1: T has taken consistent versions of objects  B and  C
phase 2: during T’s execution phase updates have been committed at B and C.

If any of these conflict with T’s updates then T is aborted.
If none conflict, T is assigned an update timestamp and its updates 
are queued for application at the objects B and C.

object
B

C

P, ti        Q, ti+1       T takes a shadow copy       R, ti+2

P, ti      Q, ti+1    T takes a shadow copy     R, ti+2     S, ti+3
T requests
commit

Database concurrency control and recovery
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Recovery

We give a short overview of how recovery might be implemented:

• Requirements for recovery

• A practical approach to recovery – keep a recovery log – must be write-ahead

• Example showing system components with values in DB and in-memory cache

• Checkpoint procedure: to aid processing of the very large recovery log

• Transaction categories for recovery

• An algorithm for the recovery manager

Database concurrency control and recovery
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Requirements for Recovery
• Media failure, e.g. disc-head crash.  

Part of persistent store is lost – need to restore it. 

Transactions in progress may be using this area – abort uncommitted transactions. 

• System failure e.g. crash - main memory lost. 

Persistent store is not lost but may have been changed by uncommitted transactions.   

Also, committed transactions’ effects may not yet have reached persistent objects.

• Transaction abort

Need to undo any changes made by the aborted transaction.

Our object model assumed all invocations are recorded with the object.

It was not made clear how this was to be implemented – synchronously in persistent store? 

We need to optimise for performance reasons - not write-out every operation synchronously.

We consider one method – a recovery log.   i.e. update data objects in place in persistent store, as 
and when appropriate, and make a (recovery) log of the updates.

Database concurrency control and recovery
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Recovery Log

1. Assume a periodic (daily?) dump of the database (e.g. Op. Sys. backup)         

2. Assume that a record of every change to the database is written to a log                           
{transaction-ID, data-object-ID, operation (arguments), old value, new value } 

3. If a failure occurs the log can be used by the Recovery manager to REDO or UNDO

selected operations. UNDO and REDO must be idempotent (repeatable), e.g. contain before 
and after values, not just “add 3”. Further crashes might occur at any time.

Transaction abort:

UNDO the operations – roll back the transaction

System failure

AIM: REDO committed transactions, UNDO uncommitted transactions

Media failure

reload the database from the last dump

REDO the operations of all the transactions that committed since then

But the log is very large to search for this information 

so, to assist rapid recovery, take a CHECKPOINT at “small” time intervals 

e.g. after 5 mins or after n log items – see 15

Database concurrency control and recovery
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Recovery Log must be “write-ahead”

Two distinct operations:

• write a change to an object in the database

• write the log record of the change

A failure could occur between them – in which order should they be done?

If an object is updated in the database, there is no record of the previous value, 

so no means of UNDOing the operation on abort.

The log must be written first.

Also, a transaction is not allowed to commit

until the log records for all its operations have been written out to the log.

Note: we can’t, and needn’t, take time to update in the database on every commit

the (few) objects involved in a transaction.

Note: a log can be written efficiently, because:

• there are enough records from the many transactions in progress at any time, 

• the writes are to one place – the log file.

Database concurrency control and recovery
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Checkpoints and the checkpoint procedure

From 13: 

The log is very large to search for this information on transactions 

especially for abort of a single transaction, 

so take a CHECKPOINT at “small” time intervals 

e.g. After 5 mins or after n log items.

Checkpoint procedure :

• Force-write any log records in main memory out to the log (OS mustdo this)

• Force-write a checkpoint record to the log, containing:

- list of all transactions active (started but not committed) at the time of the checkpoint

- address within the log of each transaction’s most recent log record

- note: the log records of a given transaction are chained

• Force-write database buffers (database updates still in main memory) out to the database.

• Write the address of the checkpoint record within the log into a restart file.

Database concurrency control and recovery
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A recovery log with a checkpoint record 

the data manager keeps
object updates and log records
in its cache in main memory

main memory

log records
T1: x, add(1), 2 ->3
T2: a, add(2) 7->9

object values
x = 3
a = 9

persistent memory

log file
... many previous records ...

T1: x, add(1), 2 ->3

T2: a, add(2) 7->9

persistent system state

object values
x = 2

a = 7

checkpoint record
active Txs T1, T2

T1 most recent log location
T2 most recent log location

restart file

has the locations
of checkpoint records

in the log file

Database concurrency control and recovery
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Transaction categories for recovery

Checkpoint record says T2 and T3 are active
T1: its log records were written out before commit. 

Any remaining DB updates were written out at checkpoint time. No action required.
T2: any updates made after the checkpoint are in the log and can be re-applied (REDO)
T4: log records are written on commit– can be re-applied (REDO is idempotent)
T3 and T5: any changes that might have been made can be found in the log 

and previous state recovered (undone using UNDO operation)
T3 requires log to be searched before the checkpoint 

– checkpoint contains pointer to previous log record.

Time                          checkpoint time                   failure time 

T1: no action

T5

T4

T3

T2

T1

T2: REDO from checkpoint

T3: UNDO all

T4: REDO

T5: UNDO

Database concurrency control and recovery

18

Algorithm for recovery manager

Keeps: UNDO list - initially contains all transactions listed in the checkpoint record

REDO list – initially empty

Searches forward through the log starting from the checkpoint record, to the end of the log

• If it finds a start-transactionrecord it adds that transaction to the UNDO list

• If it finds a commitrecord it moves that transaction from the UNDO list to the REDO list

Then, works backwards through the log

UNDOing transactions on the UNDO list (restores state)

Finally, works forward again through the log 

REDOing transactions on the REDO list

Database concurrency control and recovery
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Reference for correctness of two-phase locking (pp.486 – 488):
Database System Implementation
Hector Garcia-Molina, Jeffrey Ullman, Jennifer Widom
Prentice-Hall, 2000 

References for OCC

Optimistic Concurrency Control
H-T Kung and J T Robinson
ACM Transactions on Database Systems, 6–2 (1981), 312-326

Apologizing versus Asking Permission: Optimistic Concurrency Control for Abstract Data Types
Maurice Herlihy
ACM Transactions on Database Systems, 15–1 (1990), 96-124 


