Database Concurrency Control and Recovery

Pessimistic concurrency control
Two-phase locking (2PL) and Strict 2PL

Timestamp ordering (TSO) and Strict TSO
Optimistic concurrency control (OCC)
definition

validator operation — phases 1 and 2

Recovery —see 11

Database concurrency control and recovery

Simple database model

N/

transaction
manager”

pre-processing of operations; dealing with distrithon

scheduler-1--determines relative order of execution of operatgon

.- knows about volatile and stable storage

data manager

| -Responsible for commit and abort; also, systemuegls when
recovery manageft " volatile memory is lost; also media failures.
Can return database to a state that contains ak thpdates of
committed transactions and none of uncommitted ones

... Manages volatile storage (the cache —in memory gata

cache manager-
Operates on database

D — Operating System not shown, see Transactions Elide

—

Database concurrency control and recovery

Concurrency control — 1: two-phase locking
[

operationl () info

@ data object in DB
Al
lock data-object

unlock |in DBMS cache

operationN ()
[

Locking all potentially conflicting objects at trsaction start reduces concurrency. Also,
some of the transaction’s objects may be determlyedmically.
Usually, some form afivo-phase locking (2PLi$ used:
1. Non-strict 2PL.:
a) phase of acquiring locks: locks are acquiretha®bjects are needed
b) phase of releasing locks: once all locks hawnlaequired,
locks are released when the object operations caelple
- ensures aerialisableexecution schedule
(serialisation graph cycleare prevented because locks cannot be releasédse @)).
- subject todeadlock- see discussion in 06-persistence, slides 2 — 14
but a deadlock occurs when the serialisation gragkld have had a cycle.
- subject tocascading aborisee 32, 33, 34
2. Strict 2PL:
a) phase of acquiring locks as above
b) hold locks and release aftexmmit— enforced solation - preventsascading aborts

Database concurrency control and recovery 3

Concurrency control — 2: Timestamp ordering (TSO)

* Each transaction has a timestamp, e.g. its staet t
» An object records the timestamp of the invokirapsaction with the info it holds on the object
» Arequest for a conflicting operation from a tracon with a later timestamp is accepted
* Arequest for a conflicting operation from a tracson with an earlier timestamp
is rejected - TOO LATE ! Transaction is aborted aestarted.
All its operations that have completed must be medo
* One serialisable ordés achieved — that of the transactions’ timestamps
» Decisions are based on information local to theab — transaction IDs and timestamps
 TSO isnot subject to deadlockthe TSO prevents cycles
* BUT serialisable executions can be rejectdbdose where concurrent transactions request
to invokeall conflicting operations on shared objects in@ese timestamp order
* TSO is simple to implement.
» Because decisions are local to each object, TStllites well

Database concurrency control and recovery 4

Concurrency control — 3: Strict TSO

* Cascading abor@are possible with TSO unlebsolation is enforced bystrict TSO

» For Strict TSO, objects need to lbeked when an invocation request is granted by theabbj
andunlocked aftercommitsucceeds — coordinated by the transaction manager

 TSO and Strict TSO armeot subject to deadlockthe TSO prevents cycles

 BUT, as with TSO,serialisable executions can be rejected

* TSO and Strict TSO are simple to implement

» Because invocation decisions are local to eachobp] SO distributes well

Database concurrency control and recovery 5

Optimistic concurrency control (OCC) - 1

In some applicationsonflicts arerare: OCC avoids overhead e.g. locking, and delay.

OCC definition:
At transaction start, or on demand, take a “shadapy” of all objects invoked by it
Do they represent a consistent system state?
How can this be achieved?
NOTE: atomic commitmenis part of gpessimistic approach
OCC does not lock all a transaction’s objects dyciommit
NOTE: Isolation is enforced — the transaction invokes the shadoeoctd)j

The transaction requestsmmit The system must ensure:
the transaction’s shadow objects were consisteiieastart
no other transaction has committed an operati@am aibject that conflicts with
one of this committing transaction’s invocations.

If both of these conditions are satisfied tlmemmitthe updates at the persistent objects
in the same order of transactions at every object
If not, abort— discard the shadow copies and restart the traosact

Used in IBM’s IMS Fast Track in the 1980’s and iloyped performance greatly

Database concurrency control and recovery 6

Optimistic concurrency control - 2

At transaction start, or on demand, take a “shadopy” of all objects invoked by it
Do they represent a consistent system state?
How could inconsistent copies be taken?

e.g.validatorcommits
updates for a transaction,
creating object versionsx
The transaction’s objects are A, B,

commit manage
(validator)

at this point a new
\transaction takes

s shadow copies
- of Band C
B is at versionrk
C is at some earlier version,
e.g.Tk-1, or earlier.
B and C’s shadows represent an
inconsistent state

Database concurrency control and recovery 7

Optimistic concurrency control - 3

We assume a single centralised validator.
Assume a timestampnTis allocated to a transaction by the validator witelecides it can
committhe transaction
Therefore every object hasrarsion numbecomprising its “most recent timestamp”.
The validator can use the version numbers of thefsabjects used by a transaction
to decide whether they represent a consistentraystiate.
Note that the validator has no control over the imgof shadow copies.
What it has available is the timestamps of trangactommis.

transaction R’s objects’ transaction R’s execution phase:
versions (timestamps) makes updates to objects
¥,
T T _ I |
T1 T2 Tk " ¢ start time of transaction R
timestamp of an transaction R > & requestsommit

unacknowledged/
incompletecommit
of a transaction that
shares some of R’s objects
(available to validator)

(recorded with R and
available to validator)

Database concurrency control and recovery 8

Optimistic concurrency control - 4

validated transaction timestan|p objects and updates! updhates acknowledged?

previous transactions| | | ...

P ti A B,C,D,E Yes
Q ti+1 B, C, E,F Yes
R ti+2 B,C,D Yes
S ti+3 A C, E Yes

object versions before and after S is committed:
object version before S’s updates versioer &ts updates

A P, ti S, ti+3
B R, ti+2 R, ti+2
C R, ti+2 S, ti+3
D R, ti+2 R, ti+2
E Q, ti+l S, ti+3
F Q, ti+l Q, ti+l

This degree of contention is not expected to ootpractice in systems where OCC is used

Database concurrency control and recovery

Optimistic concurrency control - 5

v

object . .
BJ. P,I ti Q: ti+1 T takels a shadow copy
C P, ti '!' takes a shadopyc Q,I ti+1
I I

validation phase 1: T has taken inconsistent vessad objects B and C

>

ol:gect P, fi Q,ti+1 T takes a shadow copyR, ti+2 .
! ! ' ' T requests
c P,I ti Q, ti|+1 T takes a shladow copy tiR2 S,I ti+3 corpmit
T T T T T T >

validation phase 1: T has taken consistent verssbogjects B and C
phase 2: during T's execution phase updates haarme dcrammitted at B and C.
If any of these conflict with T's updates then Talsorted.
If none conflict, T is assigned an update timestamg its updates
are queued for application at the objects B and C.

Database concurrency control and recovery 10

Recovery

We give a short overview of how recovery might implemented:

Database concurrency control and recovery

Requirements for recovery

A practical approach to recovery — keep a recol@yy- must be write-ahead
Example showing system components with valuesBrabBd in-memory cache
Checkpoint procedure: to aid processing of thg lemge recovery log
Transaction categories for recovery

An algorithm for the recovery manager

11

Requirements for Recovery

Media failure e.g. disc-head crash.
Part of persistent store is lost — need to restore i
Transactions in progress may be using this arear abhcommitted transactions.

System failuree.g. crash - main memory lost.
Persistent store is not lost but may have beenggthhy uncommitted transactions.
Also, committed transactions’ effects may not yateheeached persistent objects.

Transaction abort
Need to undo any changes made by the aborted ttaorsa

Our object model assumed all invocations are resmbwdth the object.
It was not made clear how this was to be implenteateynchronously in persistent store?
We need to optimise for performance reasons - nib¢sgut every operation synchronously.

We consider one method +@&covery log i.e. update data objects in place in persistne, as

Database concurrency control and recovery

and when appropriate, and make a (recovery) lageotipdates.

12

Recovery Log

1. Assume a periodic (daily?) dump of the database Op. Sys. backup)

2. Assume that a record of every change to the dagais written to a log
{transaction-1D, data-object-ID, operation (argumes), old value, new value }

3. |If a failure occurs the log can be used by theoRery manager to REDO or UNDO

selected operations. UNDO and REDO must be idemp@tepeatable), e.g. contain before
and after values, not just “add 3”. Further crashaght occur at any time.

Transaction abort:

UNDO the operations — roll back the transaction
System failure

AIM: REDO committed transactions, UNDO uncommittemhsactions
Media failure

reload the database from the last dump

REDO the operations of all the transactions thatrodted since then

But the log is very large to search for this infatman
S0, to assist rapid recovery, take a CHECKPOINBmuall” time intervals
e.g. after 5 mins or after n log items — see 15

Database concurrency control and recovery 13

Recovery Log must be “write-ahead”

Two distinct operations:

. write a change to an object in the database

. write the log record of the change

A failure could occur between them — in which orsleould they be done?

If an object is updated in the database, there i®oord of the previous value,
so no means of UNDOing the operation on abort.

The log must be written first.

Also, a transaction is not allowed fwommit
until the log records for all its operations havedm written out to the log.

Note: we can’t, and needn't, take time to updatthéndatabase on evergmmit
the (few) objects involved in a transaction.

Note: a log can be written efficiently, because:

» there are enough records from the many transactioprogress at any time,

» the writes are to one place — the log file.

Database concurrency control and recovery 14

Checkpoints and the checkpoint procedure

From 13:
The log is very large to search for this informatan transactions
especially for abort of a single transaction,
so take a CHECKPOINT at “small” time intervals
e.g. After 5 mins or after n log items.

Checkpoint procedure :
* Force-write any log records in main memory outht® log (OSmustdo this)
» Force-write a checkpoint record to the log, camtay:
- list of all transactions active (started but nomenitted) at the time of the checkpoint
- address within the log of each transaction’s mes¢nt log record
- note: the log records of a given transaction aened
» Force-write database buffers (database updatem stiain memory) out to the database.
* Write the address of the checkpoint record withmlog into a restart file.

Database concurrency control and recovery 15

A recovery log with a checkpoint record

main memory

objict_vslues b_the dactia mana%elr keeps j log records
= object updates and log recorgls :)
a=9 in its cache in main memory _|T_1:);' 2(3(3((;))7253
2. d, -

! persistent memory. L

persistent system stalte log file
... many previous records ...

object values

X=2 T1 X, add(1), 2 ->3
a=7 T2 a, add(2) 7->9
_ checkpoint record
restart file active Txs T, T2
_ T1 most recent log location
has the locations T2 most recent log locatiop
of checkpoint records
in the log file

Database concurrency control and recovery 16

Transaction categories for recovery

Time checkpoint time failure time

v

T2 T1: no action
T, T2: REDO from checkpoint

Ts Ts: UNDO all

Ta T4+ REDO
Ts —— Ts: UNDO

Checkpoint record says @nd T are active
T its log records were written out befaremmit

Any remaining DB updates were written out at chedkptime. No action required.
T2: any updates made after the checkpoint are itothand can be re-applied (REDO)
T4 log records are written aommit— can be re-applied (REDO is idempotent)
Tsand T: any changes that might have been made can bd fouhe log

and previous state recovered (undone using UND@atipe)
Tsrequires log to be searched before the checkpoint
— checkpoint contains pointer to previous log record

Database concurrency control and recovery 17

Algorithm for recovery manager

Keeps: UNDOQO list - initially contains all transaat®listed in the checkpoint record
REDO list — initially empty

Searches forward through the log starting fromctieckpoint record, to the end of the log
e |f it finds astart-transactionrecord it adds that transaction to the UNDO list
e |f it finds acommitrecord it moves that transaction from the UNDOtlisthe REDO list

Then, works backwards through the log

UNDOing transactions on the UNDO list (restoresegta
Finally, works forward again through the log

REDOing transactions on the REDO list

Database concurrency control and recovery 18

Reference for correctness of two-phase lockingd@®— 488):
Database System Implementation
Hector Garcia-Molina, Jeffrey Ullman, Jennifer Wido
Prentice-Hall, 2000

References for OCC
Optimistic Concurrency Control
H-T Kung and J T Robinson
ACM Transactions on Database Systef<, (1981), 312-326
Apologizing versus Asking Permission: Optimisticri€arrency Control for Abstract Data Types

Maurice Herlihy
ACM Transactions on Database Systeibds;1 (1990), 96-124

Database concurrency control and recovery 19

